Mechanical Forces and Their Effect on the Ribosome and Protein
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanical Design of Translocating Motor Proteins
Cell Biochem Biophys (2009) 54:11–22 DOI 10.1007/s12013-009-9049-4 REVIEW PAPER Mechanical Design of Translocating Motor Proteins Wonmuk Hwang Æ Matthew J. Lang Published online: 19 May 2009 Ó Humana Press Inc. 2009 Abstract Translocating motors generate force and move Introduction along a biofilament track to achieve diverse functions including gene transcription, translation, intracellular cargo Motor proteins form distinct classes in the protein universe transport, protein degradation, and muscle contraction. as they can convert chemical energy directly into mechan- Advances in single molecule manipulation experiments, ical work. Among them, translocating motors move along structural biology, and computational analysis are making biopolymer tracks, such as nucleic acids, polypeptides, or it possible to consider common mechanical design princi- quaternary biofilament structures like F-actin or microtu- ples of these diverse families of motors. Here, we propose a bule (Kolomeisky and Fisher proposed the term ‘‘translo- mechanical parts list that include track, energy conversion case’’ for these motors [41]. However, we prefer to use machinery, and moving parts. Energy is supplied not just ‘‘translocating motor,’’ since translocase refers to mem- by burning of a fuel molecule, but there are other sources brane-bound motors such as SecA, whose function is to or sinks of free energy, by binding and release of a fuel or translocate a protein across the membrane [24]). Movement products, or similarly between the motor and the track. is an essential part of their function. For example, RNA Dynamic conformational changes of the motor domain can polymerase (RNAP) walks along the DNA molecule and be regarded as controlling the flow of free energy to and transcribes the genetic code into RNA [25]. -
Different Genetic Mechanisms Mediate Spontaneous Versus UVR-Induced
RESEARCH ARTICLE Different genetic mechanisms mediate spontaneous versus UVR-induced malignant melanoma Blake Ferguson1, Herlina Y Handoko1, Pamela Mukhopadhyay1, Arash Chitsazan1, Lois Balmer2,3, Grant Morahan2, Graeme J Walker1†* 1Drug Discovery Group, QIMR Berghofer Medical Research Institute, Herston, Australia; 2Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, Australia; 3School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia Abstract Genetic variation conferring resistance and susceptibility to carcinogen-induced tumorigenesis is frequently studied in mice. We have now turned this idea to melanoma using the collaborative cross (CC), a resource of mouse strains designed to discover genes for complex diseases. We studied melanoma-prone transgenic progeny across seventy CC genetic backgrounds. We mapped a strong quantitative trait locus for rapid onset spontaneous melanoma onset to Prkdc, a gene involved in detection and repair of DNA damage. In contrast, rapid onset UVR-induced melanoma was linked to the ribosomal subunit gene Rrp15. Ribosome biogenesis was upregulated in skin shortly after UVR exposure. Mechanistically, variation in the ‘usual suspects’ by which UVR may exacerbate melanoma, defective DNA repair, melanocyte proliferation, or inflammatory cell infiltration, did not explain melanoma susceptibility or resistance across the CC. *For correspondence: [email protected] Instead, events occurring soon after exposure, such as dysregulation of ribosome function, which alters many aspects of cellular metabolism, may be important. † Present address: Experimental DOI: https://doi.org/10.7554/eLife.42424.001 Dermatology Group, The University of Queensland Diamantina Institute, Woolloongabba, Australia Introduction Competing interests: The Cutaneous malignant melanoma (MM) is well known to be associated with high levels of sun expo- authors declare that no sure. -
L-Leucine Increases Translation of RPS14 and LARP1 in Erythroblasts
LETTERS TO THE EDITOR Table 1. Top 20 differentially translated known 5’TOP mRNAs in L-leucine increases translation of RPS14 and LARP1 L-leucine treated erythroblasts from del(5q) myelodysplastic syn- in erythroblasts from del(5q) myelodysplastic drome patients. syndrome patients Genes LogFC of TE in patients z score patients Deletion of the long arm of chromosome 5 [del(5q)] is RPS15 3.55 2.46 the most common cytogenetic abnormality found in the RPS27A 3.48 2.40 1 myelodysplastic syndromes (MDS). Patients with the 5q- RPS25 3.47 2.39 syndrome have macrocytic anemia and the del(5q) as the RPS20 3.43 2.35 sole karyotypic abnormality.1 Haploinsufficiency of the ribosomal protein gene RPS14, mapping to the common- RPL12 3.35 2.29 ly deleted region (CDR) on chromosome 5q,2 underlies PABPC4 3.01 2.01 3 the erythroid defect found in the 5q- syndrome, and is RPS24 2.97 1.98 associated with p53 activation,4-6 a block in the process- ing of pre-ribosomal RNA,3 and deregulation of riboso- RPS3 2.95 1.96 mal- and translation-related genes.7 Defective mRNA EEF2 2.83 1.86 translation represents a potential therapeutic target in the RPS18 2.76 1.80 5q- syndrome and other ribosomopathies, such as RPS26 2.75 1.79 Diamond-Blackfan anemia (DBA).8 Evidence suggests that the translation enhancer L- RPS5 2.69 1.74 leucine may have some efficacy in the treatment of the RPS21 2.64 1.70 8 5q- syndrome and DBA. A DBA patient treated with L- RPS9 2.54 1.62 leucine showed a marked improvement in anemia and 8 EIF3E 2.53 1.61 achieved transfusion independence. -
Evolution of Translation EF-Tu: Trna
University of Illinois at Urbana-Champaign Luthey-Schulten Group NIH Resource for Macromolecular Modeling and Bioinformatics Computational Biophysics Workshop Evolution of Translation EF-Tu: tRNA VMD Developer: John Stone MultiSeq Developers Tutorial Authors Elijah Roberts Ke Chen John Eargle John Eargle Dan Wright Zhaleh Ghaemi Jonathan Lai Zan Luthey-Schulten August 2014 A current version of this tutorial is available at http://www.scs.illinois.edu/~schulten/tutorials/ef-tu CONTENTS 2 Contents 1 Introduction 3 1.1 The Elongation Factor Tu . 3 1.2 Getting Started . 4 1.2.1 Requirements . 4 1.2.2 Copying the tutorial files . 4 1.2.3 Working directory . 4 1.2.4 Preferences . 4 1.3 Configuring BLAST for MultiSeq . 5 2 Comparative Analysis of EF-Tu 5 2.1 Finding archaeal EF1A sequences . 6 2.2 Aligning archaeal sequences and removing redundancy . 8 2.3 Finding bacteria EF-Tu sequences . 11 2.4 Performing ClustalW Multiple Sequence and Profile-Profile Align- ments . 12 2.5 Creating Multiple Sequence with MAFFT . 16 2.6 Conservation of EF-Tu among the Bacteria . 16 2.7 Finding conserved residues across the bacterial and archaeal do- mains . 20 2.8 EF-Tu Interface with the Ribosome . 21 3 Computing a Maximum Likelihood Phylogenetic Tree with RAxML 23 3.1 Load the Phylogenetic Tree into MultiSeq . 25 3.2 Reroot and Manipulate the Phylogenetic Tree . 25 4 MultiSeq TCL Scripting: Genomic Context 27 5 Appendix A 30 5.1 Building a BLAST Database . 30 6 Appendix B 31 6.1 Saving QR subset of alignments in PHYLIP and FASTA format 31 6.2 Calculating Maximum Likelihood Trees with RAxML . -
Dynamics of Translation Can Determine the Spatial Organization Of
Dynamics of translation can determine the spatial organization of membrane-bound proteins and their mRNA Elgin Korkmazhana, Hamid Teimourib,c, Neil Petermanb,c, and Erel Levineb,c,1 aHarvard College, Harvard University, Cambridge, MA 02138; bDepartment of Physics, Harvard University, Cambridge, MA 02138; and cFAS Center for Systems Biology, Harvard University, Cambridge, MA 02138 Edited by William Bialek, Princeton University, Princeton, NJ, and approved October 17, 2017 (received for review January 17, 2017) Unlike most macromolecules that are homogeneously distributed these patterns are determined by the organization of the cod- in the bacterial cell, mRNAs that encode inner-membrane proteins ing sequence, the presence of slow codons, the rate of transla- can be concentrated near the inner membrane. Cotranslational tion initiation, and the availability of auxiliary proteins required insertion of the nascent peptide into the membrane brings the for membrane targeting (referred to as the secretory machinery). translating ribosome and the mRNA close to the membrane. This By calculating the distribution of the number of proteins placed suggests that kinetic properties of translation can determine the together in the membrane, we suggest implications of mRNA spatial organization of these mRNAs and proteins, which can be localization on the organization of proteins on the membrane. modulated through posttranscriptional regulation. Here we use a We thus propose a mechanism for the formation of protein clus- simple stochastic model of translation to characterize the effect of ters in the membrane and investigate its implications on the reg- mRNA properties on the dynamics and statistics of its spatial distri- ulation of their size distribution. -
Theory of Cytoskeletal Reorganization During Crosslinker-Mediated Mitotic Spindle Assembly
bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Theory of cytoskeletal reorganization during crosslinker-mediated mitotic spindle assembly A. R. Lamson, C. J. Edelmaier, M. A. Glaser, and M. D. Betterton Abstract Cells grow, move, and respond to outside stimuli by large-scale cytoskeletal reorganization. A prototypical example of cytoskeletal remodeling is mitotic spindle assembly, during which micro- tubules nucleate, undergo dynamic instability, bundle, and organize into a bipolar spindle. Key mech- anisms of this process include regulated filament polymerization, crosslinking, and motor-protein activity. Remarkably, using passive crosslinkers, fission yeast can assemble a bipolar spindle in the absence of motor proteins. We develop a torque-balance model that describes this reorganization due to dynamic microtubule bundles, spindle-pole bodies, the nuclear envelope, and passive crosslink- ers to predict spindle-assembly dynamics. We compare these results to those obtained with kinetic Monte Carlo-Brownian dynamics simulations, which include crosslinker-binding kinetics and other stochastic effects. Our results show that rapid crosslinker reorganization to microtubule overlaps facilitates crosslinker-driven spindle assembly, a testable prediction for future experiments. Combin- ing these two modeling techniques, we illustrate a general method for studying cytoskeletal network reorganization. 1 bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. -
From Thermus Thermophilus HB8
Crystal Structure of Elongation Factor P from Thermus thermophilus HB8 Genetic information encoded in messenger RNA molecules. Several proteins were found to possess is translated into protein by the ribosome, which is a domain(s) similar to a portion of tRNA, by which they large ribonucleoprotein complex. It has been clarified interact with the ribosome. The C-terminal domain of that diverse proteins called translation factors and elongation factor G (EF-G) has a shape similar to that RNAs are involved in genetic translation. Translation of the anticodon-stem loop in the elongation factor Tu elongation factor P (EF-P) is one of the translation (EF-Tu)• tRNA• GDPNP ternary complex. Release factors and stimulates the first peptidyl transferase factor 2 (RF2) and ribosome recycling factor (RRF) activity of the ribosome [1]. EF-P is conserved in were also found to possess a protruding domain, by bacteria, and is essential for their viability. Eukarya which they are believed to bind to the ribosome A site and Archaea have an EF-P homologue, eukaryotic [3]. In contrast with these factors, the entire structure initiation factor 5A (eIF-5A). of the EF-P mimics the overall shape of the tRNA We succeeded in the determination of the crystal molecule (Fig. 2). In addition, it is notable that EF-P is structure of EF-P from Thermus thermophilus HB8 at an acidic protein and most of its surface is negatively 1.65 Å resolution, using beamline BL45PX [2]. The charged. The overall tRNA-like shape of the EF-P crystallographic asymmetric unit contains two nearly molecule and the charge distribution seem to be identical EF-P monomers (Fig. -
Construction and Loss of Bacterial Flagellar Filaments
biomolecules Review Construction and Loss of Bacterial Flagellar Filaments Xiang-Yu Zhuang and Chien-Jung Lo * Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan City 32001, Taiwan; [email protected] * Correspondence: [email protected] Received: 31 July 2020; Accepted: 4 November 2020; Published: 9 November 2020 Abstract: The bacterial flagellar filament is an extracellular tubular protein structure that acts as a propeller for bacterial swimming motility. It is connected to the membrane-anchored rotary bacterial flagellar motor through a short hook. The bacterial flagellar filament consists of approximately 20,000 flagellins and can be several micrometers long. In this article, we reviewed the experimental works and models of flagellar filament construction and the recent findings of flagellar filament ejection during the cell cycle. The length-dependent decay of flagellar filament growth data supports the injection-diffusion model. The decay of flagellar growth rate is due to reduced transportation of long-distance diffusion and jamming. However, the filament is not a permeant structure. Several bacterial species actively abandon their flagella under starvation. Flagellum is disassembled when the rod is broken, resulting in an ejection of the filament with a partial rod and hook. The inner membrane component is then diffused on the membrane before further breakdown. These new findings open a new field of bacterial macro-molecule assembly, disassembly, and signal transduction. Keywords: self-assembly; injection-diffusion model; flagellar ejection 1. Introduction Since Antonie van Leeuwenhoek observed animalcules by using his single-lens microscope in the 18th century, we have entered a new era of microbiology. -
Parameters of Starch Granule Genesis in Chloroplasts of Arabidopsis Thaliana
Mathematisch-Naturwissenschaftliche Fakultät Irina Malinova | Hadeel M. Qasim | Henrike Brust | Joerg Fettke Parameters of Starch Granule Genesis in Chloroplasts of Arabidopsis thaliana Suggested citation referring to the original publication: Frontiers in Plant Science 9 (2018) Art, 761 DOI http://dx.doi.org/10.3389/fpls.2018.00761 ISSN (online) 1664-462X Postprint archived at the Institutional Repository of the Potsdam University in: Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe ; 478 ISSN 1866-8372 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419295 fpls-09-00761 June 3, 2018 Time: 11:48 # 1 MINI REVIEW published: 05 June 2018 doi: 10.3389/fpls.2018.00761 Parameters of Starch Granule Genesis in Chloroplasts of Arabidopsis thaliana Irina Malinova†, Hadeel M. Qasim, Henrike Brust† and Joerg Fettke* Biopolymer Analytics, University of Potsdam, Potsdam, Germany Starch is the primary storage carbohydrate in most photosynthetic organisms and allows the accumulation of carbon and energy in form of an insoluble and semi-crystalline particle. In the last decades large progress, especially in the model plant Arabidopsis thaliana, was made in understanding the structure and metabolism of starch and its conjunction. The process underlying the initiation of starch granules remains obscure, Edited by: although this is a fundamental process and seems to be strongly regulated, as in Yasunori Nakamura, Akita Prefectural University, Japan Arabidopsis leaves the starch granule number per chloroplast is fixed with 5-7. Several Reviewed by: single, double, and triple mutants were reported in the last years that showed massively Christophe D’Hulst, alterations in the starch granule number per chloroplast and allowed further insights in Lille University of Science and Technology, France this important process. -
Crystal Structure of the Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6
Research Collection Doctoral Thesis Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6 Author(s): Voigts-Hoffmann, Felix Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-007303759 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library ETH Zurich Dissertation No. 20189 Crystal Structure of the Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6 A dissertation submitted to ETH ZÜRICH for the degree of Doctor of Sciences (Dr. sc. ETH Zurich) presented by Felix Voigts-Hoffmann MSc Molecular Biotechnology, Universität Heidelberg born April 11, 1981 citizen of Göttingen, Germany accepted on recommendation of Prof. Dr. Nenad Ban (Examiner) Prof. Dr. Raimund Dutzler (Co-examiner) Prof. Dr. Rudolf Glockshuber (Co-examiner) 2012 blank page ii Summary Ribosomes are large complexes of several ribosomal RNAs and dozens of proteins, which catalyze the synthesis of proteins according to the sequence encoded in messenger RNA. Over the last decade, prokaryotic ribosome structures have provided the basis for a mechanistic understanding of protein synthesis. While the core functional centers are conserved in all kingdoms, eukaryotic ribosomes are much larger than archaeal or bacterial ribosomes. Eukaryotic ribosomal rRNA and proteins contain extensions or insertions to the prokaryotic core, and many eukaryotic proteins do not have prokaryotic counterparts. Furthermore, translation regulation and ribosome biogenesis is much more complex in eukaryotes, and defects in components of the translation machinery are associated with human diseases and cancer. -
Anti-MRPS17 Monoclonal Antibody, Clone FQS23694 (DCABH-6110) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
Anti-MRPS17 monoclonal antibody, clone FQS23694 (DCABH-6110) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Rabbit monoclonal to MRPS17 Antigen Description Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S17P family. The encoded protein is moderately conserved between human mitochondrial and prokaryotic ribosomal proteins. Pseudogenes corresponding to this gene are found on chromosomes 1p, 3p, 6q, 14p, 18q, and Xq. Immunogen Recombinant fragment within Human MRPS17. The exact sequence is proprietary.Database link: Q9Y2R5 Isotype IgG Source/Host Rabbit Species Reactivity Human Clone FQS23694 Purity Tissue culture supernatant Conjugate Unconjugated Applications IHC-P, WB, ICC/IF, IP Positive Control HeLa, HepG2 and U937 cell lysate; Human kidney and liver tissue; HeLa cells Format Liquid Size 100 μl Buffer pH: 7.2; Preservative: 0.01% Sodium azide; Constituents: 49% PBS, 0.05% BSA, 50% Glycerol 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Preservative 0.01% Sodium Azide Storage Store at +4°C short term (1-2 weeks). -
Effects of Oxidative Stress on Protein Translation
International Journal of Molecular Sciences Review Effects of Oxidative Stress on Protein Translation: Implications for Cardiovascular Diseases Arnab Ghosh * and Natalia Shcherbik * Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA * Correspondence: [email protected] (A.G.); [email protected] (N.S.); Tel.: +1-856-566-6907 (A.G.); +1-856-566-6914 (N.S.) Received: 24 March 2020; Accepted: 9 April 2020; Published: 11 April 2020 Abstract: Cardiovascular diseases (CVDs) are a group of disorders that affect the heart and blood vessels. Due to their multifactorial nature and wide variation, CVDs are the leading cause of death worldwide. Understanding the molecular alterations leading to the development of heart and vessel pathologies is crucial for successfully treating and preventing CVDs. One of the causative factors of CVD etiology and progression is acute oxidative stress, a toxic condition characterized by elevated intracellular levels of reactive oxygen species (ROS). Left unabated, ROS can damage virtually any cellular component and affect essential biological processes, including protein synthesis. Defective or insufficient protein translation results in production of faulty protein products and disturbances of protein homeostasis, thus promoting pathologies. The relationships between translational dysregulation, ROS, and cardiovascular disorders will be examined in this review. Keywords: protein translation; ribosome; RNA; IRES; uORF; miRNA; cardiovascular diseases; reactive oxygen species; oxidative stress; antioxidants 1. Introduction The process of protein synthesis, or protein translation, constitutes the last and final step of the central dogma of molecular biology: assembly of polypeptides based on the information encoded by mRNAs. This complex process employs multiple essential players, including ribosomes, mRNAs, tRNAs, and numerous translational factors, enzymes, and regulatory proteins.