Pioneers of Crispr Gene Editing Win Chemistry Nobel

Total Page:16

File Type:pdf, Size:1020Kb

Pioneers of Crispr Gene Editing Win Chemistry Nobel News in focus CRISPR, short for clustered regularly interspaced short palindromic repeats, is a microbial ‘immune system’ that prokaryotes — bacteria and archaea — use to prevent infec- tion by viruses called phages. At its core, the CRISPR system gives prokaryotes the ability to recognize precise genetic sequences that match those of a phage or other invader, and to target these sequences for destruction using specialized enzymes. Previous work had identified these enzymes, known as CRISPR-associated proteins (Cas), including one called Cas9. But Charpentier, working first at the University of Vienna and later at the Umeå Centre for Microbial Research in Sweden, identified another key component of the CRISPR system — an RNA molecule that is involved in recognizing phage sequences — in the bacterium Streptococcus pyogenes, which can cause disease in humans. Charpentier reported the discovery in 2011 and that year struck up a collaboration with ALEXANDER HEINEL/PICTURE ALLIANCE/DPA Jennifer Doudna and Emmanuelle Charpentier share the 2020 Nobel chemistry prize. Doudna. In a landmark 2012 paper (M. Jinek et al. Science 337, 816–821; 2012), the duo and their teams isolated the components of the CRISPR–Cas9 system, adapted them to func- PIONEERS OF CRISPR tion in the test tube and showed that the system could be programmed to cut specific sites in GENE EDITING WIN isolated DNA. The programmable gene-editing system has inspired a gold rush of applications CHEMISTRY NOBEL in medicine, agriculture and basic science — and work continues to tweak and improve CRISPR Emmanuelle Charpentier and Jennifer Doudna and to identify other gene-editing tools. “We were hoping that we could really trans- share award for developing the precise technology. late this into a technology for rewriting the genetic code of cells and organisms,” says By Heidi Ledford & Ewen Callaway the system, but several other researchers have Martin Jinek, a biochemist at the University of been cited — and recognized in other high-pro- Zurich who was a postdoc in Doudna’s lab and t’s CRISPR. Two scientists who pioneered file awards — as key contributors in the develop- a co-author of the pivotal Science paper. “What the revolutionary gene-editing technology ment of CRISPR. They include Feng Zhang at we didn’t quite appreciate was how quickly the are the winners of this year’s Nobel Prize the Broad Institute of MIT and Harvard in technology would be adopted by others in the in Chemistry. Cambridge, Massachusetts, George Church field and then pushed forward.” The Nobel committee’s selection of at Harvard Medical School in Boston, Massa- IEmmanuelle Charpentier, now at the Max chusetts, and biochemist Virginijus Siksnys at Race to commercialize Planck Unit for the Science of Pathogens in Vilnius University in Lithuania. In less than a decade, researchers have used Berlin, and Jennifer Doudna, at the University CRISPR–Cas9 to develop genome-edited of California, Berkeley, puts an end to years of “The ability to cut crops, insects, genetic models and experimen- speculation about who would be recognized tal human therapies. Clinical trials are under for their work developing the CRISPR–Cas9 DNA where you want way to use the technique to treat sickle-cell gene-editing tools. The technology allows has revolutionized anaemia, hereditary blindness and cancer. precise edits to the genome and has swept the life sciences.” Doudna, Charpentier and others in the field through laboratories worldwide since its incep- have launched a generation of biotechnology tion in the 2010s. It has countless applications: companies aimed at developing the technique researchers hope to use it to alter human genes Doudna was “really sound asleep” when her to achieve these goals. to eliminate diseases; create hardier plants; buzzing phone woke her and she took a call But the technology has also generated con- wipe out pathogens; and more. from a Nature reporter, who broke the news. troversy — in particular for its nascent appli- “The ability to cut DNA where you want has “I grew up in a small town in Hawaii and I never cations in human cells. In November 2018, revolutionized the life sciences,” said Pernilla in 100 million years would have imagined this Chinese biophysicist He Jiankui announced Wittung Stafshede, a biophysical chemist and happening,” says Doudna. “I’m really stunned, that twin girls had been born from embryos member of the Nobel chemistry committee, at I’m just completely in shock.” that he and his colleagues had edited using the prize announcement. “The ‘genetic scissors’ “I know so many wonderful scientists who CRISPR–Cas9. The news sparked an outcry: were discovered just eight years ago, but have will never receive this, for reasons that have editing embryos raises a host of ethical, social already benefited humankind greatly.” nothing to do with the fact that they are won- and safety concerns, and many researchers Doudna and Charpentier and their col- derful scientists,” Doudna says. “I am really kind worldwide quickly condemned He’s work. leagues did crucial early work characterizing of humbled.” In September, an international panel 346 | Nature | Vol 586 | 15 October 2020 ©2020 Spri nger Nature Li mited. All rights reserved. ©2020 Spri nger Nature Li mited. All rights reserved. convened by leading US and UK scientific soci- the door to modelling and potentially treating the Milky Way, said the Royal Swedish Academy eties concluded again that the technology is human diseases — Church says that this work of Sciences, which awards the prize. not ready for use in human embryos that are could be classified as engineering and inven- Astrophysicist Monica Colpi at the Univer- destined for implantation. tion, rather than scientific discovery. “I think sity of Milan Bicocca in Italy says the prizes are The work also sparked a fierce patent bat- it’s a great choice,” he says. highly deserved. “The observational data by tle — mainly between the Broad Institute and It is always difficult to single out a discov- Genzel and Ghez are splendid and truly unique Berkeley — that rumbles on to this day over who ery for a prize, says geneticist Francis Collins, in their ability to monitor star motions around owns the lucrative intellectual-property rights head of the US National Institutes of Health in this object.” to CRISPR–Cas9 genome editing. Bethesda, Maryland. But one unique aspect of Penrose, meanwhile, is “a giant in theoreti- Still, Church agrees with how the award was CRISPR–Cas9 genome editing has been the ease cal physics”, who has influenced generations divvied up. Although he is proud of the work and versatility of the technique, he adds. “There of scientists, says Carole Mundell, an astro- in his lab and in Zhang’s — which adapted the is no molecular-biology laboratory that I know physicist at the University of Bath, UK. He is system to work in mammalian cells, opening of that hasn’t started to work with CRISPR–Cas.” “a genuinely creative thinker with immense imagination, sense of fun and a passion for curiosity in everything he does”, she adds. General relativity to geometry In a seminal 1965 paper, Penrose demon- PHYSICISTS WIN NOBEL strated how, according to general relativity, black holes could form given the right condi- PRIZE FOR BLACK-HOLE tions — the formation of a surface that traps light (R. Penrose Phys. Rev. Lett. 14, 57; 1965). DISCOVERIES Inside this surface, mass enters an irreversible gravitational collapse, producing a region of Mathematical physicist Roger Penrose shares award infinitely dense energy called a singularity. Previous researchers had demonstrated this with astronomers Andrea Ghez and Reinhard Genzel. inevitability only under conditions that were considered physically unrealistic. By Elizabeth Gibney & US astronomer Andrea Ghez and German Penrose’s contributions span many areas of Davide Castelvecchi astronomer Reinhard Genzel, share the mathematics and physics. He communicated other half of the 10-million-Swedish-kronor with the graphic artist M. C. Escher and inspired mathematical physicist and two (US$1.1-million) award for discovering the Uni- some of his drawings of impossible geometrical astronomers have won the 2020 verse’s most famous black hole — the super- objects. In the 1970s, he developed a geomet- Nobel Prize in Physics for discover- massive object at the centre of the Milky Way. rical theory: a non-repeating 2D pattern now ies relating to the most massive and Since the 1990s, Ghez and Genzel have each called Penrose tilings. These patterns occur in mysterious objects in the Universe led groups that have mapped the orbits of stars nature in ‘quasicrystals’, which were the subject A— black holes. close to the Galactic Centre. These studies led of the 2011 Nobel Prize in Chemistry. British mathematical physicist Roger them to conclude that an extremely massive, Penrose introduced sophisticated math- Penrose receives half the prize for theoret- invisible object must be dictating the stars’ ematical techniques into several branches of ical work that showed how Albert Einstein’s frantic movements. The object, known as physics, says Matilde Marcolli, a mathematical general theory of relativity should result in Sagittarius A*, is the most convincing evidence physicist at the California Institute of Technol- black holes. yet of a supermassive black hole at the centre of ogy in Pasadena. “It was a completely new way of thinking,” she says. Whereas Penrose laid the theoretical founda- tions for the existence of black holes, Ghez and Genzel’s teams produced powerful evidence that such a void sits at our Galaxy’s heart. Since the 1960s, astronomers had suspected that a supermassive black hole — with a mass more than one million times that of the Sun — might lie at the centre of most galaxies. The Milky Way was a prime candidate: radio obser- vations had revealed energetic emissions from its centre. But peering closely was a challenge, because gas and dust obscured emissions from the stars.
Recommended publications
  • The Nobel Prize Sweden.Se
    Facts about Sweden: The Nobel Prize sweden.se The Nobel Prize – the award that captures the world’s attention The Nobel Prize is considered the most prestigious award in the world. Prize- winning discoveries include X-rays, radioactivity and penicillin. Peace Laureates include Nelson Mandela and the 14th Dalai Lama. Nobel Laureates in Literature, including Gabriel García Márquez and Doris Lessing, have thrilled readers with works such as 'One Hundred Years of Solitude' and 'The Grass is Singing'. Every year in early October, the world turns Nobel Day is 10 December. For the prize its gaze towards Sweden and Norway as the winners, it is the crowning point of a week Nobel Laureates are announced in Stockholm of speeches, conferences and receptions. and Oslo. Millions of people visit the website At the Nobel Prize Award Ceremony in of the Nobel Foundation during this time. Stockholm on that day, the Laureates in The Nobel Prize has been awarded to Physics, Chemistry, Physiology or Medicine, people and organisations every year since and Literature receive a medal from the 1901 (with a few exceptions such as during King of Sweden, as well as a diploma and The Nobel Banquet is World War II) for achievements in physics, a cash award. The ceremony is followed a magnificent party held chemistry, physiology or medicine, literature by a gala banquet. The Nobel Peace Prize at Stockholm City Hall. and peace. is awarded in Oslo the same day. Photo: Henrik Montgomery/TT Henrik Photo: Facts about Sweden: The Nobel Prize sweden.se Prize in Economic Sciences prize ceremonies.
    [Show full text]
  • Pomona College Magazine Fall/Winter 2020: the New (Ab
    INSIDE:THE NEW COLLEGE MAGAZINE (AB)NORMAL • The Economy • Childcare • City Life • Dating • Education • Movies • Elections Fall-Winter 2020 • Etiquette • Food • Housing •Religion • Sports • Tourism • Transportation • Work & more Nobel Laureate Jennifer Doudna ’85 HOMEPAGE Together in Cyberspace With the College closed for the fall semester and all instruction temporarily online, Pomona faculty have relied on a range of technologies to teach their classes and build community among their students. At top left, Chemistry Professor Jane Liu conducts a Zoom class in Biochemistry from her office in Seaver North. At bottom left, Theatre Professor Giovanni Molina Ortega accompanies students in his Musical Theatre class from a piano in Seaver Theatre. At far right, German Professor Hans Rindesbacher puts a group of beginning German students through their paces from his office in Mason Hall. —Photos by Jeff Hing STRAY THOUGHTS COLLEGE MAGAZINE Pomona Jennifer Doudna ’85 FALL/WINTER 2020 • VOLUME 56, NO. 3 2020 Nobel Prize in Chemistry The New Abnormal EDITOR/DESIGNER Mark Wood ([email protected]) e’re shaped by the crises of our times—especially those that happen when ASSISTANT EDITOR The Prize Wwe’re young. Looking back on my parents’ lives with the relative wisdom of Robyn Norwood ([email protected]) Jennifer Doudna ’85 shares the 2020 age, I can see the currents that carried them, turning them into the people I knew. Nobel Prize in Chemistry for her work with They were both children of the Great Depression, and the marks of that experi- BOOK EDITOR the CRISPR-Cas9 molecular scissors. Sneha Abraham ([email protected]) ence were stamped into their psyches in ways that seem obvious to me now.
    [Show full text]
  • CRISPR/Cas9-Mediated Genome Editing Efficiently Creates Specific
    www.nature.com/scientificreports Correction: Author Correction OPEN CRISPR/Cas9-mediated genome editing efciently creates specifc mutations at multiple loci using one Received: 18 April 2017 Accepted: 3 July 2017 sgRNA in Brassica napus Published: xx xx xxxx Hong Yang1, Jia-Jing Wu1, Ting Tang1, Ke-De Liu 2 & Cheng Dai1 CRISPR/Cas9 is a valuable tool for both basic and applied research that has been widely applied to diferent plant species. Nonetheless, a systematical assessment of the efciency of this method is not available for the allotetraploid Brassica napus—an important oilseed crop. In this study, we examined the mutation efciency of the CRISPR/Cas9 method for 12 genes and also determined the pattern, specifcity and heritability of these gene modifcations in B. napus. The average mutation frequency for a single-gene targeted sgRNA in the T0 generation is 65.3%. For paralogous genes located in conserved regions that were targeted by sgRNAs, we observed mutation frequencies that ranged from 27.6% to 96.6%. Homozygotes were readily found in T0 plants. A total of 48.2% of the gene mutations, including homozygotes, bi-alleles, and heterozygotes were stably inherited as classic Mendelian alleles in the next generation (T1) without any new mutations or reversions. Moreover, no mutation was found in the putative of-target sites among the examined T0 plants. Collectively, our results demonstrate that CRISPR/Cas9 is an efcient tool for creating targeted genome modifcations at multiple loci that are stable and inheritable in B. napus. These fndings open many doors for biotechnological applications in oilseed crops.
    [Show full text]
  • World's Leading Scientists and Technologists to Gather at the Global
    MEDIA RELEASE WORLD’S LEADING SCIENTISTS AND TECHNOLOGISTS TO GATHER AT THE GLOBAL YOUNG SCIENTISTS SUMMIT 2021 Summit will host 21 eminent scientists including Nobel Laureates, who will engage and share first-hand insights in science and research with over 500 young scientists from 30 countries 6 JANUARY 2021, SINGAPORE – The National Research Foundation Singapore (NRF) will host the ninth edition of the Global Young Scientists Summit (GYSS), which will see the gathering of the world’s foremost scientists and technologists engage and inspire aspiring young scientists. Held virtually from 12 to 15 January 2021, the eminent scientists will also discuss the latest advances in research and how they can be used to develop solutions to address major global challenges. The Summit will be graced by Singapore’s Deputy Prime Minister and Chairman of NRF, Mr Heng Swee Keat, who will deliver the opening address. The GYSS is a multi-disciplinary event covering the disciplines of chemistry, physics, biology, mathematics, computer science, and engineering. During the event, luminary scientists and technologists will share details of their discoveries by delivering plenary addresses, participating in panel discussions, and engaging with the young scientists in small group discussions. They will also provide mentorship to over 500 young researchers from more than 30 countries. Star-studded panel speaking on a wide range of subjects and issues This year, the GYSS sees 21 speakers, the highest number since the start of the Summit, of whom 17 are speaking at the Summit for the first time. The list includes Nobel Laureates, Fields Medallists, Millennium Technology Prize and the Turing Award winners.
    [Show full text]
  • Press Release Emmanuelle Charpentier and Jennifer Doudna
    Press Release Emmanuelle Charpentier and Jennifer Doudna to receive the 2016 HFSP Nakasone Award The Human Frontier Science Program Organization (HFSPO) has announced that the 2016 HFSP Nakasone Award has been awarded to Emmanuelle Charpentier of the Max Planck Institute for Infection Biology, Berlin, Germany and Umeå University, Sweden and Jennifer Doudna of the University of California at Berkeley, USA for their seminal work on gene editing by means of the CRISPR-Cas9 system. Emmanuelle Charpentier Jennifer Doudna The HFSP Nakasone Award was established to honor scientists who have made key breakthroughs in fields at the forefront of the life sciences. It recognizes the vision of Japan’s former Prime Minister Nakasone in the creation of the Human Frontier Science Program. Charpentier and Doudna will present the HFSP Nakasone Lecture at the 16th annual meeting of HFSP awardees to be held in Singapore, in July 2016. A discovery in the late 1980s revealed that neighboring bacterial DNA segments contain repeating nucleotide sequences which flank short segments. In 2007, it was shown that these repeating sequences, termed CRISPR (clustered regularly interspaced short palindromic repeats), are part of a bacterial defense system against foreign DNA. Through their recent joint study, initiated in 2011, Charpentier and Doudna have shown that the system can be harnessed as a genetic tool to efficiently and specifically edit DNA targeting any sequence in the genome. Emmanuelle Charpentier’s laboratory started to focus on the bacterial CRISPR-Cas9 system by investigating it in the human pathogen Streptococcus pyogenes. Her team described the three components of the system that consist of two RNAs forming a duplex (tracrRNA and crRNA) and the protein Cas9 (formerly named Csn1) and showed the roles of each component in the early steps of activation of the system (duplex RNA co-processing and in vivo phage sequence targeting).
    [Show full text]
  • Los Premios Nobel De Química
    Los premios Nobel de Química MATERIAL RECOPILADO POR: DULCE MARÍA DE ANDRÉS CABRERIZO Los premios Nobel de Química El campo de la Química que más premios ha recibido es el de la Quí- mica Orgánica. Frederick Sanger es el único laurea- do que ganó el premio en dos oca- siones, en 1958 y 1980. Otros dos también ganaron premios Nobel en otros campos: Marie Curie (física en El Premio Nobel de Química es entregado anual- 1903, química en 1911) y Linus Carl mente por la Academia Sueca a científicos que so- bresalen por sus contribuciones en el campo de la Pauling (química en 1954, paz en Física. 1962). Seis mujeres han ganado el Es uno de los cinco premios Nobel establecidos en premio: Marie Curie, Irène Joliot- el testamento de Alfred Nobel, en 1895, y que son dados a todos aquellos individuos que realizan Curie (1935), Dorothy Crowfoot Ho- contribuciones notables en la Química, la Física, la dgkin (1964), Ada Yonath (2009) y Literatura, la Paz y la Fisiología o Medicina. Emmanuelle Charpentier y Jennifer Según el testamento de Nobel, este reconocimien- to es administrado directamente por la Fundación Doudna (2020) Nobel y concedido por un comité conformado por Ha habido ocho años en los que no cinco miembros que son elegidos por la Real Aca- demia Sueca de las Ciencias. se entregó el premio Nobel de Quí- El primer Premio Nobel de Química fue otorgado mica, en algunas ocasiones por de- en 1901 al holandés Jacobus Henricus van't Hoff. clararse desierto y en otras por la Cada destinatario recibe una medalla, un diploma y situación de guerra mundial y el exi- un premio económico que ha variado a lo largo de los años.
    [Show full text]
  • PRESS RELEASE August 3, 2020 WINNER of CARL SAGAN PRIZE
    PRESS RELEASE August 3, 2020 WINNER OF CARL SAGAN PRIZE FOR SCIENCE POPULARIZATION ANNOUNCED SAN FRANCISCO — Wonderfest, the 23-year-old Bay Area Beacon of Science, announced today that neuroscientist Dr. Matthew Walker has won the 2020 Carl Sagan Prize for Science Popularization. Wonderfest’s Sagan Prize is presented specifically to recognize and encourage researchers who “have contributed mightily to the public understanding and appreciation of science.” Past Sagan Prize winners include UC Berkeley gene editor Jennifer Doudna, SETI Institute astronomer Jill Tarter, and Stanford Nobel Laureate Paul Berg. The prize includes a $5000 cash award. “Wonderfest was born in 1997, just a few months after the death of researcher and popularizer Carl Sagan,” notes the organization’s founding executive director, Tucker Hiatt. “Wonderfest’s work has been dedicated to Sagan’s memory ever since. Sagan would be proud to know that Matthew Walker, so renowned for his research and his outreach, has received Wonderfest’s Sagan Prize for 2020.” Wonderfest is a nonprofit corporation dedicated to informal science education and popularization, particularly among adults in the San Francisco Bay Area. When pandemic constraints allow, Wonderfest produces in-person science events — and their online videos — in an effort to “enlarge the concept of scientific community.” Wonderfest also produces “Science Envoy” workshops to develop the science communication skills of Bay Area PhD students. Walker is Professor of Neuroscience and Psychology at the University of California, Berkeley. He earned a degree in neuroscience from Nottingham University, UK, and a PhD in neurophysiology from the Medical Research Council, London, UK. He subsequently became a Professor of Psychiatry at Harvard Medical School.
    [Show full text]
  • RNA-Guided CRISPR-Cas Technologies for Genome-Scale Investigation of Disease Processes Sean E Humphrey and Andrea L Kasinski*
    Humphrey and Kasinski Journal of Hematology & Oncology (2015) 8:31 DOI 10.1186/s13045-015-0127-3 JOURNAL OF HEMATOLOGY & ONCOLOGY REVIEW Open Access RNA-guided CRISPR-Cas technologies for genome-scale investigation of disease processes Sean E Humphrey and Andrea L Kasinski* Abstract From its discovery as an adaptive bacterial and archaea immune system, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system has quickly been developed into a powerful and groundbreaking programmable nuclease technology for the global and precise editing of the genome in cells. This system allows for comprehensive unbiased functional studies and is already advancing the field by revealing genes that have previously unknown roles in disease processes. In this review, we examine and compare recently developed CRISPR-Cas platforms for global genome editing and examine the advancements these platforms have made in guide RNA design, guide RNA/Cas9 interaction, on-target specificity, and target sequence selection. We also explore some of the exciting therapeutic potentials of the CRISPR-Cas technology as well as some of the innovative new uses of this technology beyond genome editing. Introduction from a region of the host genome adjacent to the Clustered regularly interspaced short palindromic repeats CRISPR region is directed to the invading DNA in a (CRISPR)-Cas systems are adaptive immune systems used sequence-dependent manner via the crRNA. Once by many bacteria and archaea to fight off foreign DNA in bound to the foreign DNA, Cas9 introduces a double- the form of bacterial phages and/or plasmids [1-5]. Al- stranded break in the foreign DNA [11-13].
    [Show full text]
  • Premios Nobel 2020
    Calle Vitruvio, 5 28006 Madrid. España www.fundacionareces.es www.fundacionareces.tv Premios Nobel 2020 PREMIOS NOBEL 2020 COMENTARIOS A SUS ACTIVIDADES Y DESCUBRIMIENTOS FISIOLOGÍA o MEDICINA: Harvey J. Alter, Charles M. Rice y Michael Houghton FÍSICA: Roger Penrose, Reinhard Genzel y Andrea M. Ghez QUÍMICA: Emmanuelle Charpentier y Jennifer A. Doudna LITERATURA: Louise Glück PAZ: Programa Mundial de Alimentos de la ONU ECONOMÍA: Paul R. Milgrom y Robert B. Wilson María Cascales Angosto COORDINADORES Federico Mayor Zaragoza José Miguel Ortiz Melón Premios Nobel 2020 Comentarios a sus actividades y descubrimientos Federico Mayor Zaragoza María Cascales Angosto José Miguel Ortiz Melón Coordinadores Premios Nobel 2020 Comentarios a sus actividades y descubrimientos Reservados todos los derechos. Ni la totalidad ni parte de este libro puede reproducirse o transmitirse por ningún proce- dimiento electrónico o mecánico, incluyendo fotocopia, grabación magnética o cualquier almacenamiento de información y sistema de recuperación, sin permiso escrito de Editorial Centro de Estudios Ramón Areces, S.A. El contenido expuesto en este libro es responsabilidad exclusiva de sus autores. © EDITORIAL CENTRO DE ESTUDIOS RAMÓN ARECES, S.A. Tomás Bretón, 21 – 28045 Madrid Teléfono: 915 398 659 Fax: 914 681 952 Correo: [email protected] Web: www.cerasa.es © FUNDACIÓN RAMÓN ARECES Vitruvio, 5 – 28006 MADRID www.fundacionareces.es Diseño de cubierta: Omnívoros. Brand Desing & Business Communication ISBN: 978-84-9961-389-5 Depósito legal: M-13796-2021 Impreso por: ANEBRI, S.A. Antonio González Porras, 35–37 28019 MADRID Impreso en España / Printed in Spain ÍNDICE Págs. Agradecimientos ................................................................................... 7 Ponentes ............................................................................................. 9 Prólogo, Federico Mayor Zaragoza, María Cascales Angosto y José Miguel Ortiz Melón .........................................................................................
    [Show full text]
  • Emmanuelle Charpentier
    8 “It’s really amazing how quickly PHOTO: DEREK HENTHORN FOR MPG; ILLUSTRATION: HENNING BRUER research into CRISPR-Cas9 and its possible applications has developed in recent years.” Max Planck Research · 3 | 2020 NOBEL PRIZE IN CHEMISTRY EMMANUELLE CHARPENTIER CRISPR-Cas9 as an adaptive im- also relatively straightforward in mune system that bacteria and ar- terms of its operation, it’s hard to chaea use to defend themselves imagine laboratory work without it CRISPR-Cas9 contains two molecules of RNA from attacks by viruses. In 2011, nowadays. However, CRISPR-Cas9 that can be combined Emmanuelle Charpentier and her has not only revolutionized basic into a single molecule. research groups, who were con- research, but has also become an A recognition sequence ducting joint research at Umeå indispensable tool in medicine, matching a specific University and the University of biotechnology, and agriculture. In- 9 sequence on the DNA Vienna at the time, described deed, physicians around the world strand directs the enzyme Cas9 to the location where tracrRNA – an RNA molecule that are working flat out to convert the it should cut the strand. activates the CRISPR-Cas9 CRISPR-Cas9 technology into system. A year later, Charpentier therapies for as-yet-untreatable and Doudna published their fin- diseases. Microorganisms with dings describing exactly how modified genetic material are in- CRISPR-Cas9 homes in on the tended to improve the efficiency of correct location in the DNA strand food and medicine production. With some discoveries, it seems like it and how the system can be used as And agricultural crops whose ge- will only be a matter of time before a tool for modifying genetic mate- netic material has been modified they are honored with the Nobel rial.
    [Show full text]
  • CRISPR/Cas9 Genome Editing Brochure
    mirusbio.com Cas9 Target Sequence Guide RNA GENOME EDITING: CRISPR/CAS9 DELIVERY METHODS GENOME EDITING: CRISPR/CAS9 DELIVERY What is CRISPR/Cas9 Genome Editing? The CRISPR/Cas9 system is a powerful tool for genome editing in mammalian cells that allows researchers to generate genetic variants at lower cost and with higher throughput than alternative methods like zinc finger nuclease (ZFN) or transcription activator-like effector nuclease (TALEN) genome editing. Cas9 PAM Genomic DNA Target Sequence Guide RNA crRNA tracrRNA The CRISPR/Cas9 RNP Complex. The CRISPR associated protein 9 (Cas9) endonuclease (blue) is targeted to DNA by a guide RNA (gRNA), which can be supplied as a two-part system consisting of CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA) or as a single guide RNA (sgRNA), where the crRNA and tracrRNA are connected by a linker (dotted line). Target recognition is facilitated by the protospacer-adjacent motif (PAM). A double strand break (DSB) occurs 3 bp upstream of the PAM. CRISPR Facilitates Multiple Types of Genome Modification Cleavage of Target DNA By Cas9 Deletion Modication Insertion Multiple Genomic Alterations are Possible Following Cleavage of Target DNA by Cas9. Variable length insertions and/ or deletions (indels) can result near the DNA break due to mistakes in DNA repair by the endogenous non-homologous end joining (NHEJ) pathway. These indels frequently result in disruption of gene function. Alternatively, by supplying a DNA repair template, researchers can leverage the homology-directed repair (HDR) pathway to create defined deletions, insertions or other modifications. 2 TO ORDER | Toll Free 888.530.0801 | Direct 608.441.2852 | www.mirusbio.com Glossary of CRISPR Terms Term Definition CRISPR Associated Protein 9 - Cas9 is an RNA-guided DNA endonuclease from the type Cas9 II CRISPR system of Streptococcus pyogenes that has been adapted for use in genome editing applications.
    [Show full text]
  • Download Gene Editing Evidence Update
    Gene Editing Evidence Update Summary The three most widely used new gene-editing tools Gene editing involves the insertion, deletion use bacterial proteins to find, cut, edit, add or replace or replacement of genetic material called DNA. genes, and are known as Zinc Fingers (ZFNs), TALENs, New gene-editing technologies have been developed and CRISPR. which have increased the speed, ease and accuracy Gene-editing technologies open up new opportunities of making changes to DNA in cells, and their use is and potential risks from new uses which may challenge increasing rapidly. people’s views on what is acceptable. These technologies are beginning to be used for new These new technologies pose challenges for regulators approaches in a variety of areas including research, who will find it harder to distinguish between genetic medicine, agriculture, biotechnology and have the changes in organisms generated by conventional potential to be used in pest control. breeding, gene editing, or natural mutation. What is a genome? The characteristics of all living organisms are determined BOX 1 by their genetic material and their interaction with the environment. An organism’s complete set of genetic HISTORIC SELECTION IN AGRICULTURAL CROPS material is called its genome which, in all plants, animals Some 6,000 – 10,000 years ago, Meso-American and microbes, is made of long molecules of DNA farmers began the drastic changes to a grass (deoxyribonucleic acid). The genome contains all the species called teosinte to become what is now genetic information needed to build that organism and known as maize. Through selecting and growing allow it to grow and develop.
    [Show full text]