Quantum Simulation of the Silicene and Germanene for Sensing and Sequencing of DNA/RNA Nucleobases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Silicene, Silicene Derivatives, and Their Device Applications
Chemical Society Reviews Silicene, silicene derivatives, and their device applications Journal: Chemical Society Reviews Manuscript ID CS-REV-04-2018-000338.R1 Article Type: Review Article Date Submitted by the Author: 27-Jun-2018 Complete List of Authors: Molle, Alessandro; CNR-IMM, unit of Agrate Brianza Grazianetti, Carlo; CNR-IMM, unit of Agrate Brianza Tao, Li; The University of Texas at Autin, Microelectronics Research Center Taneja, Deepyanti; The University of Texas at Autin, Microelectronics Research Center Alam, Md Hasibul; The University of Texas at Autin, Microelectronics Research Center Akinwande, Deji; The University of Texas at Autin, Microelectronics Research Center Page 1 of 17 PleaseChemical do not Society adjust Reviews margins Chemical Society Reviews REVIEW Silicene, silicene derivatives, and their device applications Alessandro Molle,a Carlo Grazianetti,a,† Li Tao,b,† Deepyanti Taneja,c Md. Hasibul Alam,c and Deji c,† Received 00th January 20xx, Akinwande Accepted 00th January 20xx Silicene, the ultimate scaling of silicon atomic sheet in a buckled honeycomb lattice, represents a monoelemental class of DOI: 10.1039/x0xx00000x two-dimensional (2D) materials similar to graphene but with unique potential for a host of exotic electronic properties. www.rsc.org/ Nonetheless, there is a lack of experimental studies largely due to the interplay between material degradation and process portability issues. This Review highlights state-of-the-art experimental progress and future opportunities in synthesis, characterization, stabilization, processing and experimental device example of monolayer silicene and thicker derivatives. Electrostatic characteristics of Ag-removal silicene field-effect transistor exihibits ambipolar charge transport, corroborating with theoretical predictions on Dirac Fermions and Dirac cone in band structure. -
Silicene/Germanene on Mgx2 (X = Cl, Br, and I) for Li-Ion Battery Applications
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CURVE/open Silicene/germanene on MgX2 (X = Cl, Br, and I) for Li-ion battery applications Zhu, J, Chroneos, A & Schwingenschlögl, U Author post-print (accepted) deposited by Coventry University’s Repository Original citation & hyperlink: Zhu, J, Chroneos, A & Schwingenschlögl, U 2016, 'Silicene/germanene on MgX2 (X = Cl, Br, and I) for Li-ion battery applications' Nanoscale, vol 8, pp. 7272-7277 https://dx.doi.org/10.1039/C6NR00913A DOI 10.1039/C6NR00913A ISSN 2040-3364 ESSN 2040-3372 Publisher: Royal Society of Chemistry Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it. Silicene/Germanene on MgX2 (X = Cl, Br, and I) for Li-Ion Battery Applications Jiajie Zhu1, Alexander Chroneos2;3;a and Udo Schwingenschl¨ogl1;b 1PSE Division, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia 2Department of Materials, Imperial College, London SW7 2AZ, United Kingdom 3Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry CV1 5FB, United Kingdom aEmail: [email protected] bEmail: [email protected] September 30, 2015 Abstract Silicene is a promising electrode material for Li-ion batteries due to a high Li capacity and low Li diffusion barrier. -
Call for Papers | 2022 MRS Spring Meeting
Symposium CH01: Frontiers of In Situ Materials Characterization—From New Instrumentation and Method to Imaging Aided Materials Design Advancement in synchrotron X-ray techniques, microscopy and spectroscopy has extended the characterization capability to study the structure, phonon, spin, and electromagnetic field of materials with improved temporal and spatial resolution. This symposium will cover recent advances of in situ imaging techniques and highlight progress in materials design, synthesis, and engineering in catalysts and devices aided by insights gained from the state-of-the-art real-time materials characterization. This program will bring together works with an emphasis on developing and applying new methods in X-ray or electron diffraction, scanning probe microscopy, and other techniques to in situ studies of the dynamics in materials, such as the structural and chemical evolution of energy materials and catalysts, and the electronic structure of semiconductor and functional oxides. Additionally, this symposium will focus on works in designing, synthesizing new materials and optimizing materials properties by utilizing the insights on mechanisms of materials processes at different length or time scales revealed by in situ techniques. Emerging big data analysis approaches and method development presenting opportunities to aid materials design are welcomed. Discussion on experimental strategies, data analysis, and conceptual works showcasing how new in situ tools can probe exotic and critical processes in materials, such as charge and heat transfer, bonding, transport of molecule and ions, are encouraged. The symposium will identify new directions of in situ research, facilitate the application of new techniques to in situ liquid and gas phase microscopy and spectroscopy, and bridge mechanistic study with practical synthesis and engineering for materials with a broad range of applications. -
Application of Silicene, Germanene and Stanene for Na Or Li Ion Storage: a Theoretical Investigation
Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation Bohayra Mortazavi*,1, Arezoo Dianat2, Gianaurelio Cuniberti2, Timon Rabczuk1,# 1Institute of Structural Mechanics, Bauhaus-Universität Weimar, Marienstr. 15, D-99423 Weimar, Germany. 2Institute for Materials Science and Max Bergman Center of Biomaterials, TU Dresden, 01062 Dresden, Germany Abstract Silicene, germanene and stanene likely to graphene are atomic thick material with interesting properties. We employed first-principles density functional theory (DFT) calculations to investigate and compare the interaction of Na or Li ions on these films. We first identified the most stable binding sites and their corresponding binding energies for a single Na or Li adatom on the considered membranes. Then we gradually increased the ions concentration until the full saturation of the surfaces is achieved. Our Bader charge analysis confirmed complete charge transfer between Li or Na ions with the studied 2D sheets. We then utilized nudged elastic band method to analyze and compare the energy barriers for Li or Na ions diffusions along the surface and through the films thicknesses. Our investigation findings can be useful for the potential application of silicene, germanene and stanene for Na or Li ion batteries. Keywords: Silicene; germanene; stanene; first-principles; Li ions; *Corresponding author (Bohayra Mortazavi): [email protected] Tel: +49 157 8037 8770, Fax: +49 364 358 4511 #[email protected] 1. Introduction The interest toward two-dimensional (2D) materials was raised by the great success of graphene [1–3]. Graphene is a zero-gap semiconductor that present outstanding mechanical [4] and heat conduction [5] properties, surpassing all known materials. -
Theoretical Study of a New Porous 2D Silicon-Filled Composite Based on Graphene and Single-Walled Carbon Nanotubes for Lithium-Ion Batteries
applied sciences Article Theoretical Study of a New Porous 2D Silicon-Filled Composite Based on Graphene and Single-Walled Carbon Nanotubes for Lithium-Ion Batteries Dmitry A. Kolosov 1 and Olga E. Glukhova 1,2,* 1 Department of Physics, Saratov State University, Astrakhanskaya street 83, 410012 Saratov, Russia; [email protected] 2 Laboratory of Biomedical Nanotechnology, I.M. Sechenov First Moscow State Medical University, Trubetskaya street 8-2, 119991 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-84-5251-4562 Received: 24 July 2020; Accepted: 18 August 2020; Published: 21 August 2020 Abstract: The incorporation of Si16 nanoclusters into the pores of pillared graphene on the base of single-walled carbon nanotubes (SWCNTs) significantly improved its properties as anode material of Li-ion batteries. Quantum-chemical calculation of the silicon-filled pillared graphene efficiency found (I) the optimal mass fraction of silicon (Si)providing maximum anode capacity; (II) the optimal Li: C and Li: Si ratios, when a smaller number of C and Si atoms captured more amount of Li ions; and (III) the conditions of the most energetically favorable delithiation process. For 2D-pillared graphene with a sheet spacing of 2–3 nm and SWCNTs distance of ~5 nm the best silicon concentration in pores was ~13–18 wt.%. In this case the value of achieved capacity exceeded the graphite anode one by 400%. Increasing of silicon mass fraction to 35–44% or more leads to a decrease in the anode capacity and to a risk of pillared graphene destruction. It is predicted that this study will provide useful information for the design of hybrid silicon-carbon anodes for efficient next-generation Li-ion batteries. -
Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111)
Letter pubs.acs.org/NanoLett Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111) † † † ‡ † † † † Baojie Feng, Zijing Ding, Sheng Meng, Yugui Yao, , Xiaoyue He, Peng Cheng, Lan Chen,*, † and Kehui Wu*, † Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ‡ School of Physics, Beijing Institute of Technology, Beijing 100081, China ABSTRACT: In the search for evidence of silicene, a two- dimensional honeycomb lattice of silicon, it is important to obtain a complete picture for the evolution of Si structures on Ag(111), which is believed to be the most suitable substrate for growth of silicene so far. In this work we report the finding and evolution of several monolayer superstructures of silicon on Ag(111), depend- ing on the coverage and temperature. Combined with first- principles calculations, the detailed structures of these phases have been illuminated. These structures were found to share common building blocks of silicon rings, and they evolve from a fragment of silicene to a complete monolayer silicene and multilayer silicene. Our results elucidate how silicene forms on Ag(111) surface and provides methods to synthesize high-quality and large- scale silicene. KEYWORDS: Silicene, Ag(111), scannning tunneling microscopy, molecular beam epitaxy, first-principles calculation ith the development of the semiconductor industry of silicene and optimizing the preparation procedure for W toward a smaller scale, the rich quantum phenomena in growing high-quality silicene films, it is important to build a low-dimensional systems may lead to new concepts and complete understanding of the formation mechanism and ground-breaking applications. In the past decade graphene growth dynamics of possible silicon structures on Ag(111), has emerged as a low-dimensional system for both fundamental which is currently believed to be the best substrate for growing research and novel applications including electronic devices, silicene. -
Cooperative Electron-Phonon Coupling and Buckled Structure in Germanene on Au(111) Jincheng Zhuang University of Wollongong, [email protected]
University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2017 Cooperative Electron-Phonon Coupling and Buckled Structure in Germanene on Au(111) Jincheng Zhuang University of Wollongong, [email protected] Nan Guo Dalian University of Technology Zhi Li University of Wollongong, [email protected] Xun Xu University of Wollongong, [email protected] Jiaou Wang Chinese Academy of Sciences See next page for additional authors Publication Details Zhuang, J., Guo, N., Li, Z., Xu, X., Wang, J., Zhao, J., Dou, S. Xue. & Du, Y. (2017). Cooperative Electron-Phonon Coupling and Buckled Structure in Germanene on Au(111). ACS Nano, 11 (4), 3553-3559. Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Cooperative Electron-Phonon Coupling and Buckled Structure in Germanene on Au(111) Abstract Germanene, a single-atom-thick germanium nanosheet in a honeycomb lattice, was proposed to be a Dirac fermion material beyond graphene. We performed scanning tunneling microscopy and in situ Raman spectroscopy studies combined with first-principles calculations on the atomic structures and the electronic and phonon properties of germanene on Au(111). The low-buckled 1 x 1 germanene honeycomb lattice was determined to exist in an unexpected rectangular √7 x √7 superstructure. Through in situ Raman measurements, distinctive vibrational phonon modes were discovered in √7 x √7 germanene, revealing the special coupling between the Dirac fermion and lattice vibrations, namely, electron-phonon coupling (EPC). The significant enhancement of EPC is correlated with the tensile strain, which is evoked by the singular buckled structure of √7 x √7 germanene on the Au(111) substrate. -
Material Requirements for 3D IC and Packaging
Material Requirements For 3D IC and Packaging Presented by: W. R. Bottoms Frontiers of Characterization and Metrology for Nanoelectronics Hilton Dresden April 14-16, 2015 Frontiers of Characterization & Metrology for Nanoelectronics Dresden April 2015 Industry Needs Are Changing Moore’s Law is reaching limits of the physics – Scaling can no longer support the pace of progress – Power requirement and performance no longer scale with feature size Electronics Industry Drivers have changed – Mobile wireless devices, IoT and the Cloud are driving future demand Electronics are entering every aspect of our lives – Each area has unique requirements Frontiers of Characterization & Metrology for Nanoelectronics Dresden April 2015 Moore’s Law Scaling Is Nearing Its End Global Foundries You know it’s really “the End” When scaling to the next node increases cost Frontiers of Characterization & Metrology for Nanoelectronics Dresden April 2015 Moore’s Law Scaling Is Nearing Its End Scaling Can help but it cannot be a major component of the solution to these challenges Global Foundries You know it’s really “the End” When scaling to the next node increases cost Frontiers of Characterization & Metrology for Nanoelectronics Dresden April 2015 New Technology Drivers Are Emerging Frontiers of Characterization & Metrology for Nanoelectronics Dresden April 2015 Emerging Technology Drivers There are 2 market driven trends forcing more fundamental change on the industry as they move into position as the new technology Drivers. Rise of the Internet of Things Data, logic and applications moving to the Cloud Over the next 15 years almost everything will change including the global network architecture and all the components incorporated in it or attached to it. -
Computational Design and Characterization of Silicene Nanostructures for Electrical and Thermal Transport Applications
COMPUTATIONAL DESIGN AND CHARACTERIZATION OF SILICENE NANOSTRUCTURES FOR ELECTRICAL AND THERMAL TRANSPORT APPLICATIONS A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering: Materials Science and Nanotechnology By TIM H. OSBORN M.S., Wright State University, 2010 B.S., Miami University, 2008 _______________________________________ 2014 Wright State University WRIGHT STATE UNIVERSITY THE GRADUATE SCHOOL May 15, 2014 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Tim H. Osborn ENTITLED Computational Design of Silicene Nanostructures for Electrical and Thermal Transport Applications. BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. __________________________________ Amir A. Farajian, Ph.D. Dissertation Director __________________________________ Ramana V. Grandhi, Ph.D. Director, Ph.D. in Engineering Program __________________________________ Robert E.W. Fyffe, Ph.D. Dean of The Graduate School Committee on Final Examination __________________________________ Amir A. Farajian, Ph.D. __________________________________ Khalid Lafdi, Ph.D. __________________________________ Sharmila M. Mukhopadhyay, Ph.D. __________________________________ Ajit Roy, Ph.D. __________________________________ H. Daniel Young, Ph.D. ABSTRACT Osborn, Tim H. Ph.D., Ph.D. in Engineering Program, Wright State University, 2014. Computational Design of Silicene Nanostructures for Electrical and Thermal Transport Applications. Novel silicene-based nanomaterials are designed and characterized by first principle computer simulations to assess the effects of adsorptions and defects on stability, electronic, and thermal properties. To explore quantum thermal transport in nanostructures a general purpose code based on Green’s function formalism is developed. Specifically, we explore the energetics, temperature dependent dynamics, phonon frequencies, and electronic structure associated with lithium chemisorption on silicene. -
Exotic Forms of Low-Dimensional Epitaxial Silicon and Xenes
Exoc forms of low-dimensional epitaxial silicon and Xenes Guy Le Lay, Eric Salomon and Thierry Angot Aix-Marseille University, CNRS-PIIM, France Workshop on Chiral Modes in Opcs and Electronics of 2D Systems, Aussois, France, Nov. 26-28, 2018 D Epitaxial silicene archetype Kagome silicene Large area stanene structure on Ag(111)4x4 on Al(111)3x3 (3x3 nm2) on Ag(111)√3x√3 Co-workers Europe T. Angot and E. Salomon, Marseille, France Y. Sassa and coll., Uppsala, Sweden H. Sahin and F. Iyikanat, Izmir, Turkey Japan J. Yuhara and coll., Nagoya, Japan The Hunt for the Topological Qubit When a TI is coated by an s-wave superconductor (SC), the superconducng vorces are Majorana fermions—they are their own anAparAcles. Exchanging or braiding Majorana vorces, as sketched here, leads to non-abelian stasAcs. Such behavior could form the basis piece of hardware (Majorana Qubit) for topological quantum compung. Xiao-Liang Qi and Shou-Cheng Zhang, Physics Today Jan. 2010, 33 The Challenge: the Hardware QSHE « Experimental synthesis and characterizaon of 2D Topological Insulators remain a major challenge at present, offering outstanding opportuniAes for innovaon and breakthrough. » Kou et al., J. Phys. Chem. Le. 2017, 8, 1905 The way: Nanoarchitectonics, i.e., create atomically controlled ar9ficial structure by design The ar9ficial Xenes What about Si, Ge, Sn, and Pb group 14 arficial counterparts of graphene? XXXXXXXXXXXXXXXXXXXXX Graphene Flat No band gap Minute SOC Silicene Germanene Increasing Spin Orbit Coupling Stanene 82 Plumbene Pb The hardware beyond graphene First predic9on in 1994, 10 years before the isola9on of graphene! “Theorecal Possibility of Stage Corrugaon in Si and Ge Analogs of graphite” ⇒ K. -
Recent Advances in Synthesis, Properties, and Applications of Phosphorene
www.nature.com/npj2dmaterials REVIEW ARTICLE OPEN Recent advances in synthesis, properties, and applications of phosphorene Meysam Akhtar1,2, George Anderson1, Rong Zhao1, Adel Alruqi1, Joanna E. Mroczkowska3, Gamini Sumanasekera1,2 and Jacek B. Jasinski2 Since its first fabrication by exfoliation in 2014, phosphorene has been the focus of rapidly expanding research activities. The number of phosphorene publications has been increasing at a rate exceeding that of other two-dimensional materials. This tremendous level of excitement arises from the unique properties of phosphorene, including its puckered layer structure. With its widely tunable band gap, strong in-plane anisotropy, and high carrier mobility, phosphorene is at the center of numerous fundamental studies and applications spanning from electronic, optoelectronic, and spintronic devices to sensors, actuators, and thermoelectrics to energy conversion, and storage devices. Here, we review the most significant recent studies in the field of phosphorene research and technology. Our focus is on the synthesis and layer number determination, anisotropic properties, tuning of the band gap and related properties, strain engineering, and applications in electronics, thermoelectrics, and energy storage. The current needs and likely future research directions for phosphorene are also discussed. npj 2D Materials and Applications (2017) 1:5 ; doi:10.1038/s41699-017-0007-5 INTRODUCTION properties, including high carrier mobility, ultrahigh surface area, Since the discovery of graphene in 2004 (ref. 1), there has been a excellent thermal conductivity, and quantum confinement effect 9 quest for new two-dimensional (2D) materials aimed at fully have been well documented. However, the lack of band gap is a exploring new fundamental phenomena stemming from quantum serious limitation for the use of graphene in electronic devices. -
Electronic and Structural Properties of Silicene and Graphene Layered Structures
Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2012 Electronic and Structural Properties of Silicene and Graphene Layered Structures Patrick B. Benasutti Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Physics Commons Repository Citation Benasutti, Patrick B., "Electronic and Structural Properties of Silicene and Graphene Layered Structures" (2012). Browse all Theses and Dissertations. 1339. https://corescholar.libraries.wright.edu/etd_all/1339 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Electronic and Structural Properties of Silicene and Graphene Layered Structures A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science by Patrick B. Benasutti B.S.C.E. and B.S., Case Western Reserve and Wheeling Jesuit, 2009 2012 Wright State University Wright State University SCHOOL OF GRADUATE STUDIES August 31, 2012 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVI- SION BY Patrick B. Benasutti ENTITLED Electronic and Structural Properties of Silicene and Graphene Layered Structures BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Physics. Dr. Lok C. Lew Yan Voon Thesis Director Dr. Douglas Petkie Department Chair Committee on Final Examination Dr. Lok C. Lew Yan Voon Dr. Brent Foy Dr. Gregory Kozlowski Dr. Andrew Hsu, Ph.D., MD Dean, Graduate School ABSTRACT Benasutti, Patrick.