NUMBER of SYLOW SUBGROUPS in P-SOLVABLE GROUPS 1

Total Page:16

File Type:pdf, Size:1020Kb

NUMBER of SYLOW SUBGROUPS in P-SOLVABLE GROUPS 1 PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 10, Pages 3019{3020 S 0002-9939(03)06884-9 Article electronically published on March 11, 2003 NUMBER OF SYLOW SUBGROUPS IN p-SOLVABLE GROUPS GABRIEL NAVARRO (Communicated by Stephen D. Smith) Abstract. If G is a finite group and p is a prime number, let νp(G)bethe number of Sylow p-subgroups of G.IfH is a subgroup of a p-solvable group G,weprovethatνp(H) divides νp(G). 1. Introduction Let G be a finite group, p aprimenumber,andwriteνp(G)forthenumber of Sylow p-subgroups of G.IfH is a subgroup of G, then it is well known that νp(H) ≤ νp(G). In this note, we prove the following elementary fact which perhaps has not been noticed up to now. Theorem A. Suppose that G is a finite p-solvable group. If H is a subgroup of G, then νp(H) divides νp(G). If G is not p-solvable, then Theorem A is simply not true. For instance, if G = A5, H = A4 and p =3,thenνp(H)=4andνp(G) = 10. 2. Proof We start with the following result. (2.1) Lemma. Suppose that A is a finite group acting coprimely on a finite group G,andletH be an A-invariant subgroup of G.LetC = CG(A).ThenjC : C \ Hj divides jG : Hj. Proof. By standard arguments, recall that in any coprime action, if q is a prime, then every A-invariant q-subgroup of G is contained in an A-invariant Sylow q- subgroup of G.Furthermore,anytwoA-invariant Sylow q-subgroups are C-con- 2 \ 2 jugate and if P Sylq(G)isA-invariant, then P C Sylq(C). Now, let Q be an A-invariant Sylow q-subgroup of H.ThenQ\C \H = Q\C is a Sylow q-subgroup of C \ H.Now,Q is contained in an A-invariant Sylow q-subgroup P of G.Also, C \ P is a Sylow q-subgroup of C.Now,jC \ P : C \ Q|≤jP : Qj, and therefore jC \ P : C \ Qj divides jP : Qj. We deduce that jCjq=jC \ Hjq divides jGjq=jHjq. Hence, jC : C \ Hj divides jG : Hj. 2 ⊆ ⊆ (2.2) Lemma. Suppose that G is p-solvable and let P Sylp(G).IfP M G, then jNG(P ):NM (P )j divides jG : Mj. Received by the editors April 25, 2002 and, in revised form, May 13, 2002. 2000 Mathematics Subject Classification. Primary 20D20. The author's research was partially supported by DGICYT. c 2003 American Mathematical Society 3019 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 3020 GABRIEL NAVARRO Proof. We argue by induction on jGj. Suppose first that there is a proper normal subgroup N of G such that G=N is a p0-group. Let V = M \N. Now, by induction, we have that jNN (P ):NV (P )j divides jN : V j. Now, by the Frattini argument, we have that G = NNG(P ). Hence, G =(NM)NG(P ) and thus jG : NMj = jNG(P ):NNM(P )j. Now, we claim that NNM(P )=NN (P )NM (P ). By the Frattini argument, we have that M =(M \ N)NM (P ). Thus, NM = NNM (P ). Now, NNM(P )=NNM(P ) \ NM (P )N = NM (P )NN (P ), as claimed. Now, jNG(P ):NM (P )j = jNG(P ):NNM(P )jjNNM(P ):NM (P )j = jG : NMjjNN (P ):NV (P )j divides jN : V jjG : NMj.Now,jN : V j = jNM : Mj, and we are easily done. So we may assume that there is a proper normal subgroup N of G such that G=N is a p-group. Let H = N \M. By induction, we have that jNN (P \N):NH (P \N)j divides jN : Hj = jG : Mj.Now,letG0 = NG(P \N). We have that NG(P ) ⊆ G0. \ j j Let M0 = G0 M. Suppose that G0 is proper in G.ThenNG0 (P ):NM0 (P ) = jNG(P ):NM (P )j divides jG0 : M0j.Now,sinceP ⊆ NM (P \ N)andPN = G, we have that jG0 : M0j = jNG(P \ N):NM (P \ N)j = jNN (P \ N):NH (P \ N)j divides jN : Hj = jG : Mj, and the result easily follows. Hence, we may assume that P \N/G.LetN¯ = N=P \N.ThenP acts coprimely on N¯.LetC = NG(P )\N, ¯ ¯ and notice that C = CN¯ (P ). Then jNG(P ):NM (P )j = jC¯ : C¯ \ H¯ j : Also, jG : Mj = jN¯ : H¯ j : Now, the result follows by Lemma (2.1). Proof of Theorem A. We argue by induction on jG : Hj. Suppose that H<K<G. By induction, νp(H) divides νp(K), νp(K) divides νp(G), and we are done. So we may assume that H is a maximal subgroup of G.SinceG is p-solvable, we have that jG : Hj is a power of p or not divisible by p. j j 2 j Assume first that G : H is a power of p,andletP Sylp(G). Since ( G : j j j \ 2 H ; G : P ) = 1, we have that G = HP and Q = P H Sylp(H). Also, G = HNG(P )andjG : NG(P )j = jH : NH (P )j.Now,NH (P ) ⊆ NH (P \ H)and therefore νp(G)=jH : NH (P )j divides jH : NH (P \H)j = νp(H), and we are done in this case. j j 2 ⊆ Now, assume that G : H is not divisible by p and let P Sylp(H) Sylp(G). By Lemma (2.2), we have that jNG(P ):NH (P )j divides jG : Hj, and therefore jH : NH (P )j = νp(H) divides jG : NG(P )j = νp(G), as desired. Departament d'Algebra,` Facultat de Matematiques,` Universitat de Valencia,` 46100 Burjassot, Valencia,` Spain E-mail address: [email protected] License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use.
Recommended publications
  • On Abelian Subgroups of Finitely Generated Metabelian
    J. Group Theory 16 (2013), 695–705 DOI 10.1515/jgt-2013-0011 © de Gruyter 2013 On abelian subgroups of finitely generated metabelian groups Vahagn H. Mikaelian and Alexander Y. Olshanskii Communicated by John S. Wilson To Professor Gilbert Baumslag to his 80th birthday Abstract. In this note we introduce the class of H-groups (or Hall groups) related to the class of B-groups defined by P. Hall in the 1950s. Establishing some basic properties of Hall groups we use them to obtain results concerning embeddings of abelian groups. In particular, we give an explicit classification of all abelian groups that can occur as subgroups in finitely generated metabelian groups. Hall groups allow us to give a negative answer to G. Baumslag’s conjecture of 1990 on the cardinality of the set of isomorphism classes for abelian subgroups in finitely generated metabelian groups. 1 Introduction The subject of our note goes back to the paper of P. Hall [7], which established the properties of abelian normal subgroups in finitely generated metabelian and abelian-by-polycyclic groups. Let B be the class of all abelian groups B, where B is an abelian normal subgroup of some finitely generated group G with polycyclic quotient G=B. It is proved in [7, Lemmas 8 and 5.2] that B H, where the class H of countable abelian groups can be defined as follows (in the present paper, we will call the groups from H Hall groups). By definition, H H if 2 (1) H is a (finite or) countable abelian group, (2) H T K; where T is a bounded torsion group (i.e., the orders of all ele- D ˚ ments in T are bounded), K is torsion-free, (3) K has a free abelian subgroup F such that K=F is a torsion group with trivial p-subgroups for all primes except for the members of a finite set .K/.
    [Show full text]
  • Base Size of Finite Primitive Solvable Permutation Groups
    Base size of finite primitive solvable permutation groups Ayan Maiti Under the supervision of Prof. Pal Hegedus A thesis presented for the partial fulfilment towards the degree of Masters of Science in Mathematics Mathematics and its Application Central European University Hungary Declaration of Authorship I, Ayan Maiti, declare that this thesis titled, "Base size of finite primitive solvable per- mutation groups" and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a masters degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Ayan Maiti Date: 20th May, 2016 1 Abstract The content of this thesis report is based on the bounds of the base size of affine type primitive permutation groups, the bound was conjectured by Pyber and later was proved by Akos Seress. The the primary focus of this thesis is to understand the basic idea and the proof given by Akos Seress.
    [Show full text]
  • Global Rigidity of Solvable Group Actions on S1 Lizzie Burslem Amie Wilkinson
    ISSN 1364-0380 (on line) 1465-3060 (printed) 877 eometry & opology G T Volume 8 (2004) 877–924 Published: 5 June 2004 Global rigidity of solvable group actions on S1 Lizzie Burslem Amie Wilkinson Department of Mathematics, University of Michigan 2074 East Hall, Ann Arbor, MI 48109-1109 USA and Department of Mathematics, Northwestern University 2033 Sheridan Road, Evanston, IL 60208-2730 USA Email: [email protected], [email protected] Abstract In this paper we find all solvable subgroups of Diffω(S1) and classify their actions. We also investigate the Cr local rigidity of actions of the solvable Baumslag–Solitar groups on the circle. The investigation leads to two novel phenomena in the study of infinite group actions on compact manifolds. We exhibit a finitely generated group Γ and a manifold M such that: Γ has exactly countably infinitely many effective real-analytic actions on • M , up to conjugacy in Diffω(M); every effective, real analytic action of Γ on M is Cr locally rigid, for • some r 3, and for every such r, there are infinitely many nonconjugate, ≥ effective real-analytic actions of Γ on M that are Cr locally rigid, but not Cr−1 locally rigid. AMS Classification numbers Primary: 58E40, 22F05 Secondary: 20F16, 57M60 Keywords: Group action, solvable group, rigidity, Diffω(S1) Proposed:RobionKirby Received:26January2004 Seconded: Martin Bridson, Steven Ferry Accepted: 28 May 2004 c eometry & opology ublications G T P 878 Lizzie Burslem and Amie Wilkinson Introduction This paper describes two novel phenomena in the study of infinite group actions on compact manifolds. We exhibit a finitely generated group Γ and a manifold M such that: Γ has exactly countably infinitely many effective real-analytic actions on • M , up to conjugacy in Diffω(M); every effective, real analytic action of Γ on M is Cr locally rigid, for • some r 3, and for every such r, there are infinitely many nonconjugate, ≥ effective real-analytic actions of Γ on M that are Cr locally rigid, but not Cr−1 locally rigid.
    [Show full text]
  • On Non-Solvable Camina Pairs ∗ Zvi Arad A, Avinoam Mann B, Mikhail Muzychuk A, , Cristian Pech C
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Journal of Algebra 322 (2009) 2286–2296 Contents lists available at ScienceDirect Journal of Algebra www.elsevier.com/locate/jalgebra On non-solvable Camina pairs ∗ Zvi Arad a, Avinoam Mann b, Mikhail Muzychuk a, , Cristian Pech c a Department of Computer Sciences and Mathematics, Netanya Academic College, University St. 1, 42365, Netanya, Israel b Einstein Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel c Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel article info abstract Article history: In this paper we study non-solvable and non-Frobenius Camina Received 27 September 2008 pairs (G, N). It is known [D. Chillag, A. Mann, C. Scoppola, Availableonline29July2009 Generalized Frobenius groups II, Israel J. Math. 62 (1988) 269–282] Communicated by Martin Liebeck that in this case N is a p-group. Our first result (Theorem 1.3) shows that the solvable residual of G/O (G) is isomorphic either Keywords: p e = Camina pair to SL(2, p ), p is a prime or to SL(2, 5), SL(2, 13) with p 3, or to SL(2, 5) with p 7. Our second result provides an example of a non-solvable and non- 5 ∼ Frobenius Camina pair (G, N) with |Op (G)|=5 and G/Op (G) = SL(2, 5).NotethatG has a character which is zero everywhere except on two conjugacy classes. Groups of this type were studies by S.M. Gagola [S.M. Gagola, Characters vanishing on all but two conjugacy classes, Pacific J.
    [Show full text]
  • Arxiv:1612.04280V2 [Math.FA] 11 Jan 2018 Oal Opc Group Compact Important Locally a Is Groups, Discrete for Especially Amenability, SB878)
    WEAK AMENABILITY OF LIE GROUPS MADE DISCRETE SØREN KNUDBY Abstract. We completely characterize connected Lie groups all of whose countable subgroups are weakly amenable. We also provide a characteriza- tion of connected semisimple Lie groups that are weakly amenable. Finally, we show that a connected Lie group is weakly amenable if the group is weakly amenable as a discrete group. 1. Statement of the results Weak amenability for locally compact groups was introduced by Cowling and Haagerup in [11]. The property has proven useful as a tool in operator algebras going back to Haagerup’s result on the free groups [17], results on lattices on simple Lie groups and their group von Neumann algebras [11, 18], and more recently in several results on Cartan rigidity in the theory of von Neumann algebras (see e.g. [31, 32]). Due to its many applications in operator algebras, the study of weak amenability, especially for discrete groups, is important. A locally compact group G is weakly amenable if the constant function 1 on G can be approximated uniformly on compact subsets by compactly supported Herz-Schur multipliers, uniformly bounded in norm (see Section 2 for details). The optimal uniform norm bound is the Cowling–Haagerup constant (or the weak amenability constant), denoted here Λ(G). By now, weak amenability is quite well studied, especially in the setting of connected Lie groups. The combined work of [9, 11, 12, 15, 16, 18, 19] characterizes weak amenability for simple Lie groups. For partial results in the non-simple case, we refer to [10, 25]. We record the simple case here.
    [Show full text]
  • Rigidity of Some Abelian-By-Cyclic Solvable Group N Actions on T
    RIGIDITY OF SOME ABELIAN-BY-CYCLIC SOLVABLE GROUP N ACTIONS ON T AMIE WILKINSON, JINXIN XUE Abstract. In this paper, we study a natural class of groups that act as affine trans- N formations of T . We investigate whether these solvable, \abelian-by-cyclic," groups N can act smoothly and nonaffinely on T while remaining homotopic to the affine actions. In the affine actions, elliptic and hyperbolic dynamics coexist, forcing a pri- ori complicated dynamics in nonaffine perturbations. We first show, using the KAM method, that any small and sufficiently smooth perturbation of such an affine action can be conjugated smoothly to an affine action, provided certain Diophantine condi- tions on the action are met. In dimension two, under natural dynamical hypotheses, we get a complete classification of such actions; namely, any such group action by Cr diffeomorphisms can be conjugated to the affine action by Cr−" conjugacy. Next, we show that in any dimension, C1 small perturbations can be conjugated to an affine action via C1+" conjugacy. The method is a generalization of the Herman theory for circle diffeomorphisms to higher dimensions in the presence of a foliation structure provided by the hyperbolic dynamics. Contents 1. Introduction 2 1.1. The affine actions of ΓB;K¯ 4 1.2. Local rigidity of ΓB;K¯ actions 6 1.3. Global rigidity 8 2. Local rigidity: proofs 14 3. The existence of the common conjugacy 18 4. Preliminaries: elliptic and hyperbolic dynamics 20 4.1. Elliptic dynamics: the framework of Herman-Yoccoz-Katznelson-Ornstein 20 4.2. Hyperbolic dynamics: invariant foliations of Anosov diffeomorphisms 24 5.
    [Show full text]
  • Solvable and Nilpotent Groups
    SOLVABLE AND NILPOTENT GROUPS If A; B ⊆ G are subgroups of a group G, define [A; B] to be the subgroup of G generated by all commutators f[a; b] = aba−1b−1 j a 2 A; b 2 Bg. Thus, the elements of [A; B] are finite products of such commutators and their inverses. Since [a; b]−1 = [b; a], we have [A; B] = [B; A]. If both A and B are normal subgroups of G then [A; B] is also a normal subgroup. (Clearly, c[a; b]c−1 = [cac−1; cbc−1].) Recall that a characteristic [resp fully invariant] subgroup of G means a subgroup that maps to itself under all automorphisms [resp. all endomorphisms] of G. It is then obvious that if A; B are characteristic [resp. fully invariant] subgroups of G then so is [A; B]. Define a series of normal subgroups G = G(0) ⊇ G(1) ⊇ G(2) ⊇ · · · G(0) = G; G(n+1) = [G(n);G(n)]: Thus G(n)=G(n+1) is the derived group of G(n), the universal abelian quotient of G(n). The above series of subgroups of G is called the derived series of G. Define another series of normal subgroups of G G = G0 ⊇ G1 ⊇ G2 ⊇ · · · G0 = G; Gn+1 = [G; Gn]: This second series is called the lower central series of G. Clearly, both the G(n) and the Gn are fully invariant subgroups of G. DEFINITION 1: Group G is solvable if G(n) = f1g for some n. DEFINITION 2: Group G is nilpotent if Gn = f1g for some n.
    [Show full text]
  • Some Results from Group Theory
    Some Results from Group Theory A.l Solvable Groups Definition A.1.1. A composition series for a group G is a sequence of sub­ groups G = Go2Gi 2...GA: = {1} with G/ a normal subgroup of G/_i for each /. A group G is solvable if it has a composition series with each quotient Gi/Gi-i abehan. o Example A.1.2. (1) Every abeUan group G is solvable (as we may choose Go = GandGi = {1}). (2) If G is the group of Lemma 4.6.1, G = (a, r | a^ = 1, r^~^ = 1, rar"^ = <j^} where r is a primitive root mod/?, then G is solvable: G = GODGIDG2 = {1} with Gi the cyclic subgroup generated by a. Then Gi is a normal subgroup of G with G/Gi cyclic of order p — 1 and Gi cyclic of order p. (3) If G is the group of Lemma 4.6.3, G = (a, r | a"^ = 1, r^ = 1, rorr"^ = a^) , then G is solvable: G = Go D Gi D G2 = {1} with Gi the cyclic subgroup generated by a. Then Gi is a normal subgroup of G with G/Gi cyclic of order 2 and Gi cyclic of order 4. (4) If G is a /?-group, then G is solvable. This is Lenmia A.2.4 below. (5) If G = Sn, the synmietric group on {1,..., n}, then G is solvable for n < 4. ^1 is trivial. S2 is abelian. ^3 has the composition series ^3 D A3 D {1}. 54 has the composition series ^4 D A4 D V4 D {1} where V4 = {1, (12)(34), (13)(24), (14)(23)}.
    [Show full text]
  • The Fitting Subgroup of a Linear Solvable Group
    THE FITTING SUBGROUP OF A LINEAR SOLVABLE GROUP JOHN D. DIXON (Received 5 May 1966) 1. Introduction Let G be a group. The Fitting subgroup F(G) of G is defined to be the set union of all normal nilpotent subgroups of G. Since the product of two normal nilpotent subgroups is again a normal nilpotent subgroup (see [10] p. 238), F(G) is the unique maximal normal, locally nilpotent subgroup of G. In particular, if G is finite, then F(G) is the unique maximal normal nilpotent subgroup of G. If G is a nontrivial solvable group, then clearly F(G) * 1. The principal result of this paper is the following theorem. THEOREM 1. Let G be a completely reducible solvable subgroup of the general linear group GL (n, &) over an algebraically closed field 3F. Then \G:F(G)\ ^a-W where a = 2.3* = 2.88 • • • and b = 2.3? = 4.16 • • •. Moreover the bound is attained by some finite solvable group over the complex field whenever n = 2.4* (k = 0, 1, • • •). NOTE. When G is finite and SF is perfect, then the condition "alge- braically closed" is unnecessary since the field may be extended without affecting the complete reducibility. See [3] Theorem (70.15). A theorem of A. I. Mal'cev shows that there is a bound /?„ such that each completely reducible linear solvable group of degree n has a normal abelian subgroup of index at most /?„. (See [5].) The previous estimates for /?„ are by no means precise, but Theorem 1 allows us to give quite a precise estimate of the corresponding bound for a subnormal abelian subgroup.
    [Show full text]
  • Solvable Groups Acting on the Line 403
    TRANSACTIONS of the AMERICAN MATHEMATICAL SOCIETY Volume 278, Number I. July 1983 SOLVABLEGROUPS ACTING ON THE LINE BY J. F. PLANTE1 Abstract. Actions of discrete groups on the real line are considered. When the group of homeomorphisms is solvable several sufficient conditions are given which guarantee that the group is semiconjugate to a subgroup of the affine group of the line. In the process of obtaining these results sufficient conditions are also de- termined for the existence of invariant (quasi-invariant) measures for abelian (solva- ble) groups acting on the line. It turns out, for example, that any solvable group of real analytic diffeomorphisms or a polycyclic group of homeomorphisms has a quasi-invariant measure, and that any abelian group of C diffeomorphisms has an invariant measure. An example is given to show that some restrictions are necessary in order to obtain such conclusions. Some applications to the study of codimension one foliations are indicated. Introduction. If G is a group of homeomorphisms of the line it is reasonable to ask for a dynamic description of how G acts when reasonable restrictions are placed on G. For example, in [9] it is shown that if G is finitely generated and nilpotent then there is a G-invariant Borel measure on R which is finite on compact sets. This already says much about G. The proof is quite different from classical arguments which guarantee the existence of a finite invariant measure when an amenable group acts on a compact Hausdorff space [6] in that one uses pseudogroup properties of G rather than group properties (specifically, nonexponential growth of orbits rather than nilpotence of G).
    [Show full text]
  • A-Solvable Groups and the Torsion-Freeness of Ext
    International Journal of Algebra, Vol. 13, 2019, no. 3, 137 - 141 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2019.9210 A-solvable Groups and the Torsion-Freeness of Ext Ulrich Albrecht Department of Mathematics Auburn University, Auburn, AL 36849, USA Stefan Friedenberg University of Stralsund Zur Schwedenschanze 15, 18435 Stralsund, Germany This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright c 2019 Hikari Ltd. Abstract Since the group Ext(A; B) is divisible for any torsion-free group A, the natural question arises, when Ext(A; B) is torsion-free - espe- cially without vanishing. While the class ∗B of all groups A such that Ext(A; B) is torsion-free was discussed in several publications, for ex- ample see [4] and [5], there is less known about the dual class A∗. This paper investigates some homological properties of the class of Abelian groups B such that Ext(A; B) is torsion-free. Moreover, we compare the 1 ranks of the divisible groups Ext(A; B) and BextB(A; B) whenever A is a countable torsion-free B-solvable group and B has a right hereditary endomorphism ring. Mathematics Subject Classification: 20K15, 20K35 Keywords: Abelian group, extension, torsion-free, solvable group 1 Introduction Every Abelian group B induces functors HB(·) = Hom(B; ·) and TB(·) = ·⊗E B between the category of Abelian groups and the category of right E-modules where E = E(B) denotes the endomorphism ring of B. These functors induce natural maps θA : TBHB(A) ! A and φM : M ! HBTB(M) defined by θA(α ⊗ a) = α(a) and [φM (x)](a) = x ⊗ a for all α 2 HB(A), x 2 M, and a 2 B.
    [Show full text]
  • Linear Algebraic Groups
    Linear algebraic groups N. Perrin November 9, 2015 2 Contents 1 First definitions and properties 7 1.1 Algebraic groups . .7 1.1.1 Definitions . .7 1.1.2 Chevalley's Theorem . .7 1.1.3 Hopf algebras . .8 1.1.4 Examples . .8 1.2 First properties . 10 1.2.1 Connected components . 10 1.2.2 Image of a group homomorphism . 10 1.2.3 Subgroup generated by subvarieties . 11 1.3 Action on a variety . 12 1.3.1 Definition . 12 1.3.2 First properties . 12 1.3.3 Affine algebraic groups are linear . 14 2 Tangent spaces and Lie algebras 15 2.1 Derivations and tangent spaces . 15 2.1.1 Derivations . 15 2.1.2 Tangent spaces . 16 2.1.3 Distributions . 18 2.2 Lie algebra of an algebraic group . 18 2.2.1 Lie algebra . 18 2.2.2 Invariant derivations . 19 2.2.3 The distribution algebra . 20 2.2.4 Envelopping algebra . 22 2.2.5 Examples . 22 2.3 Derived action on a representation . 23 2.3.1 Derived action . 23 2.3.2 Stabilisor of the ideal of a closed subgroup . 24 2.3.3 Adjoint actions . 25 3 Semisimple and unipotent elements 29 3.1 Jordan decomposition . 29 3.1.1 Jordan decomposition in GL(V ).......................... 29 3.1.2 Jordan decomposition in G ............................. 30 3.2 Semisimple, unipotent and nilpotent elements . 31 3.3 Commutative groups . 32 3.3.1 Diagonalisable groups . 32 3 4 CONTENTS 3.3.2 Structure of commutative groups . 33 4 Diagonalisable groups and Tori 35 4.1 Structure theorem for diagonalisable groups .
    [Show full text]