Achieving Clinical Success with BET Inhibitors As Anti-Cancer Agents

Total Page:16

File Type:pdf, Size:1020Kb

Achieving Clinical Success with BET Inhibitors As Anti-Cancer Agents www.nature.com/bjc REVIEW ARTICLE Achieving clinical success with BET inhibitors as anti-cancer agents Tatiana Shorstova1, William D. Foulkes2 and Michael Witcher 1 The transcriptional upregulation of oncogenes is a driving force behind the progression of many tumours. However, until a decade ago, the concept of ‘switching off’ these oncogenic pathways represented a formidable challenge. Research has revealed that members of the bromo- and extra-terminal domain (BET) motif family are key activators of oncogenic networks in a spectrum of cancers; their function depends on their recruitment to chromatin through two bromodomains (BD1 and BD2). The advent of potent inhibitors of BET proteins (BETi), which target either one or both bromodomains, represents an important step towards the goal of suppressing oncogenic networks within tumours. Here, we discuss the biology of BET proteins, advances in BETi design and highlight potential biomarkers predicting their activity. We also outline the logic of incorporating BETi into combination therapies to enhance its efficacy. We suggest that understanding mechanisms of activity, defining predictive biomarkers and identifying potent synergies represents a roadmap for clinical success using BETi. British Journal of Cancer (2021) 124:1478–1490; https://doi.org/10.1038/s41416-021-01321-0 BACKGROUND including both transcriptional activating or repressing marks leads Cancer is a heterogeneous disease that is characterised by to aberrant transcriptional outputs such as heightened expression abnormal cell proliferation and a range of molecular defects of oncogenes. One classical example of this is the accumulation of acquired during tumorigenesis. These renowned ‘hallmarks of transcriptionally activating lysine acetylation at enhancer regions cancer’ include sustained proliferative signalling, insensitivity to of oncogenes such as c-MYC.6 The acetylation of multiple lysine growth-suppressive signals, resistance to apoptosis, replicative residues within the N-terminal tail of core histones, mediated by immortality, angiogenesis, the capacity to invade and metastasise, histone acetyltransferases (HATs), can be recognised by proteins dysregulation of energy metabolism and the avoidance of carrying bromodomains (BRDs),7–9 which generally increase the immune detection.1 Inflammation driven by cytokine release from rate of transcription of associated genes (Fig. 1)10 through diverse tumours, genome instability and mutation are also tumour- mechanisms including the recruitment of transcriptional com- enabling characteristics. plexes and chromatin remodelling. Appropriately controlled regulation of gene expression is critical Based on the crystal structure, BRD proteins can be categorised for homoeostasis and genome stability, and an important aspect into eight families.11 One important BRD subfamily includes the of tumour biology that falls within the hallmark of genome bromo- and extra-terminal domain (BET) proteins—BRD2, BRD3, instability is transcriptional dysregulation. Dysregulated transcrip- BRD4 and BRDT. BET proteins recognise histone acetylation tional programmes trigger two major events that can promote through one of their two tandem bromodomains, BD1 or BD2, cancer: the activation of oncogenes and, conversely, the silencing and activate transcription through recruitment of the multiprotein of tumour suppressor genes. Both of these processes can mediator complex and positive transcription elongation factor b subsequently affect multiple cancer hallmarks, thereby influencing (P-TEFb), thereby enhancing transcriptional elongation.12,13 BD1 both cancer initiation and progression. To translate this biological and BD2 recognise distinct sets of acetylated histones. For concept into relevant clinical interventions, it is important to example, the BD1 pocket of BRD4 has a strong preference for identify master transcriptional regulators that drive these diverse combinations of acetylation marks on histone 4, but shows a oncogenic networks in order to pinpoint nodes for therapeutic weaker affinity for acetylated lysine residues on histone 3.11 intervention. Evidence suggests that multiple BET-family members might be Chromatin modifications, such as the post-translational mod- required for the rapid induction of target genes,14 which suggests ification of histones and DNA methylation, establish a connection that the members might have non-overlapping functions or between repressive or permissive chromatin structure and perhaps work together within a complex. transcriptional outputs.2,3 Understanding the influence of dysre- As BET proteins are important regulators of transcriptional gulated epigenetic modification on transcriptional outputs and outputs, it is not surprising that this family of proteins has using this information to uncover novel therapeutic avenues to important roles in homoeostasis and cell survival, and that their treat cancer has been an important research goal for several dysregulation can promote cancer. Consequently, attempts have decades.4,5 It is clear that dysregulation of many modifications been made to synthesise inhibitors of these proteins—BET 1Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada and 2Departments of Oncology and Human Genetics, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada Correspondence: Michael Witcher ([email protected]) Received: 8 June 2020 Revised: 12 January 2021 Accepted: 11 February 2021 Published online: 15 March 2021 © The Author(s) 2021 Published by Springer Nature on behalf of Cancer Research UK Achieving clinical success with BET inhibitors as anti-cancer agents T Shorstova et al. 1479 Low acetylation Basal enhancer ‘closed’ transcription POL II Nucleosome dense Transformation from physiological condition, or during tumour progression BRD4 TF, SWI/SNF and Epigenetic changes SWI/SNF TF BRD4 recruitment ‘prime oncogene activation’ AC BRD4 AC AC AC AC AC AC AC AC POL II Nucleosome-free regions hyperacetylation of enhancers Aberrant activation of oncogenic enhancers AC TF AC AC AC AC BRD4 BRD4 Mediator BRD4 1234567890();,: p-TEFb PO4 SWI/SNF +++ AC AC POL II Enhanced transcriptional output mRNA of oncogenic networks Fig. 1 Transcriptional activation of oncogenes by BRD4. Under physiological conditions, proliferation and survival genes are transcribed at a basal rate to maintain homoeostasis. During the transformation of normal epithelium to neoplasia or, similarly, during the progression of a primary tumour to a more invasive stage, chromatin surrounding proto-oncogenes becomes enriched for histone acetylation, especially at enhancer regions. This change in chromatin programming allows nucleosome decompaction, which facilitates the recruitment of bromodomain chromatin remodellers, such as the SWI/SNF complex, that further open chromatin to allow the binding of transcription factors (TF). Acetylation also facilitates the recruitment of bromodomain-carrying coactivators, such as BRD4. BRD4 potently activates transcription through the recruitment of the Mediator complex, which connects enhancer elements with the RNA POLII complex at the promoter region of proto-oncogenes. Mediator, through association with CDK9, a component of the p-TEFb elongation complex, phosphorylates RNA POL II on serine 2 of its C-terminal domain, thereby stimulating transcriptional elongation. inhibitors (BETi)—as therapeutic agents that restore appropriately Cell cycle genes are controlled, in part, by the E2F family of regulated gene expression. We begin this review by outlining the transcription factors. BRD4 binds strongly to the regulatory involvement of BET-family members in the hallmarks of cancer, regions of E2F1 transcriptional targets to enhance their activation, especially avoiding growth suppression and resisting cell death. thereby promoting cell cycle progression.18,19 Interestingly, BRD2 Subsequently, we will introduce inhibitors of BET-family members, may associate with E2F1 and influence its targeting to regulatory elaborating on biomarkers predicting their efficacy, mechanisms regions.16,20 of resistance and enhancing their potency through the use of Oncogenic roles for BRD4 and BRD3 were first revealed from combination therapies. their propensity to translocate, forming fusion proteins with NUT (nuclear protein in testis, also known as NUTM1). The BRD4–NUT fusion (t(15;19)) is highly oncogenic and initiates the development A ROLE FOR BET PROTEINS IN CANCER of NUT-midline carcinoma (NMC), an aggressive tumour with a BET-family members influence cell cycle progression by activating very poor prognosis.21 The driving oncogenic nature of this oncogenes such as MYC, JUNB, CCND1 and CCNA1.15–17 Consistent translocation was confirmed by whole-exome sequencing, in with a role in regulating the expression of cell cycle genes, which BRD4–NUT appears as a unique genomic aberration.22 knockdown of BRD4 leads to arrest in S phase in some cell types.17 Furthermore, inhibiting BRD proteins (discussed below) reduced BET proteins may directly activate oncogene transcription through tumour cell proliferation and contributed to squamous cell recruitment to hyper-acetylated regulatory regions, as is seen is differentiation and apoptosis.23 BRD4–NUT leads to the activation the regions surrounding MYC and CCNA1 genes. Upon being of pro-survival genes such as MYC, which maintains NMC cells in recruited to chromatin,
Recommended publications
  • Functional Roles of Bromodomain Proteins in Cancer
    cancers Review Functional Roles of Bromodomain Proteins in Cancer Samuel P. Boyson 1,2, Cong Gao 3, Kathleen Quinn 2,3, Joseph Boyd 3, Hana Paculova 3 , Seth Frietze 3,4,* and Karen C. Glass 1,2,4,* 1 Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; [email protected] 2 Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; [email protected] 3 Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; [email protected] (C.G.); [email protected] (J.B.); [email protected] (H.P.) 4 University of Vermont Cancer Center, Burlington, VT 05405, USA * Correspondence: [email protected] (S.F.); [email protected] (K.C.G.) Simple Summary: This review provides an in depth analysis of the role of bromodomain-containing proteins in cancer development. As readers of acetylated lysine on nucleosomal histones, bromod- omain proteins are poised to activate gene expression, and often promote cancer progression. We examined changes in gene expression patterns that are observed in bromodomain-containing proteins and associated with specific cancer types. We also mapped the protein–protein interaction network for the human bromodomain-containing proteins, discuss the cellular roles of these epigenetic regu- lators as part of nine different functional groups, and identify bromodomain-specific mechanisms in cancer development. Lastly, we summarize emerging strategies to target bromodomain proteins in cancer therapy, including those that may be essential for overcoming resistance. Overall, this review provides a timely discussion of the different mechanisms of bromodomain-containing pro- Citation: Boyson, S.P.; Gao, C.; teins in cancer, and an updated assessment of their utility as a therapeutic target for a variety of Quinn, K.; Boyd, J.; Paculova, H.; cancer subtypes.
    [Show full text]
  • Bromodomain Protein BRDT Directs ΔNp63 Function and Super
    Cell Death & Differentiation (2021) 28:2207–2220 https://doi.org/10.1038/s41418-021-00751-w ARTICLE Bromodomain protein BRDT directs ΔNp63 function and super-enhancer activity in a subset of esophageal squamous cell carcinomas 1 1 2 1 1 2 Xin Wang ● Ana P. Kutschat ● Moyuru Yamada ● Evangelos Prokakis ● Patricia Böttcher ● Koji Tanaka ● 2 3 1,3 Yuichiro Doki ● Feda H. Hamdan ● Steven A. Johnsen Received: 25 August 2020 / Revised: 3 February 2021 / Accepted: 4 February 2021 / Published online: 3 March 2021 © The Author(s) 2021. This article is published with open access Abstract Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer with a particularly high prevalence in certain geographical regions and a poor prognosis with a 5-year survival rate of 15–25%. Despite numerous studies characterizing the genetic and transcriptomic landscape of ESCC, there are currently no effective targeted therapies. In this study, we used an unbiased screening approach to uncover novel molecular precision oncology targets for ESCC and identified the bromodomain and extraterminal (BET) family member bromodomain testis-specific protein (BRDT) to be 1234567890();,: 1234567890();,: uniquely expressed in a subgroup of ESCC. Experimental studies revealed that BRDT expression promotes migration but is dispensable for cell proliferation. Further mechanistic insight was gained through transcriptome analyses, which revealed that BRDT controls the expression of a subset of ΔNp63 target genes. Epigenome and genome-wide occupancy studies, combined with genome-wide chromatin interaction studies, revealed that BRDT colocalizes and interacts with ΔNp63 to drive a unique transcriptional program and modulate cell phenotype. Our data demonstrate that these genomic regions are enriched for super-enhancers that loop to critical ΔNp63 target genes related to the squamous phenotype such as KRT14, FAT2, and PTHLH.
    [Show full text]
  • Overcoming BET Inhibitor Resistance in Malignant Peripheral Nerve Sheath Tumors
    Author Manuscript Published OnlineFirst on February 22, 2019; DOI: 10.1158/1078-0432.CCR-18-2437 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Cooper and Patel, et al. Page 1 Overcoming BET inhibitor resistance in malignant peripheral nerve sheath tumors Jonathan M. Cooper1,6, Amish J. Patel1,2,6, Zhiguo Chen1,7, Chung-Ping Liao1,7, Kun Chen1,7, Juan Mo1, Yong Wang1, Lu Q. Le1,3,4,5 1Department of Dermatology, 2Cancer Biology Graduate Program, 3Simmons Comprehensive Cancer Center, 4UTSW Comprehensive Neurofibromatosis Clinic, 5Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9133, USA 6Co-first authors. 7These authors contributed equally. Author for correspondence: Lu Q. Le, M.D., Ph.D. Associate Professor Department of Dermatology Simmons Comprehensive Cancer Center UT Southwestern Medical Center Phone: (214) 648-5781 Fax: (214) 648-5553 E-mail: [email protected] Running Title: Cancer cell sensitivity and resistance to BET inhibitors Keywords: Neurofibromatosis Type1, NF1, Malignant Peripheral Nerve Sheath Tumor, MPNST, Neurofibrosarcomas, JQ1, BRD4 levels, BET inhibitor sensitivity and resistance, BET Bromodomain, PROTAC, ARV771 The authors have declared that no conflict of interest exists. Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on February 22, 2019; DOI: 10.1158/1078-0432.CCR-18-2437 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Cooper and Patel, et al. Page 2 Statement of Translational Relevance Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas with no effective therapies.
    [Show full text]
  • Triazolobenzodiazepines and -Triazepines As Protein Interaction Inhibitors Targeting Bromodomains of the BET Family
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Triazolobenzodiazepines and -triazepines as Protein Interaction Inhibitors Targeting Bromodomains of the BET Family Matthias Alfons Wrobel aus Weiden i.d.OPf. 2013 Erklärung Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Franz Bracher betreut. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, 09.12.2013 Matthias Wrobel Dissertation eingereicht am 10.12.2013 1. Gutachter: Prof. Dr. Franz Bracher 2. Gutachter: Prof. Dr. Stefan Knapp Mündliche Prüfung am 21.01.2014 This dissertation was carried out in close collaboration with the Structural Genomics Consortium of the University of Oxford. Prof. Dr. Stefan Knapp Dr. Panagis Filippakopoulos Screening via DSF / ITC / Co-crystallization …für Caro …für meine Familie Acknowledgements I would like to thank Prof. Dr. Franz Bracher for giving me the possibility to work on this interesting topic, the helpful advices in meetings, always having a sympathetic ear for all kind of affairs and his support during the time of my PhD Thesis. I would also like to thank all the members of the Board of Examiners. In gratitude for the opportunity to visit his group at the University of Oxford (UK) and his considerable commitment for our collaboration, I would like to thank Prof. Dr. Stefan Knapp. Special thanks goes to Dr. Panagis Filippakopoulos for his supervision during my stays at the SGC and his patience and support in uncountable discussions about co-crystallization, structure optimization and critical appraisal of screening results.
    [Show full text]
  • BET Bromodomain Protein Inhibition Is a Therapeutic Option for Medulloblastoma
    www.impactjournals.com/oncotarget/ Oncotarget, November, Vol.4, No 11 BET bromodomain protein inhibition is a therapeutic option for medulloblastoma Anton Henssen1, Theresa Thor2,4, Andrea Odersky 1, Lukas Heukamp6, Nicolai El- Hindy7, Anneleen Beckers8, Frank Speleman8, Kristina Althoff1, Simon Schäfers1, Alexander Schramm1, Ulrich Sure7, Gudrun Fleischhack1, Angelika Eggert9, Johannes H. Schulte1,5 1 Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany 2 German Cancer Consortium (DKTK), Germany 3 Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany 4 German Cancer Research Center (DKFZ), Heidelberg, Germany 5 Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany 6 Institute of Pathology, University Hospital Cologne, Cologne, Germany 7 Department of Neurosurgery, University of Essen, Essen, Germany 8 Center of Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium 9 Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany Correspondence to: Johannes H. Schulte, email: [email protected] Keywords: BET bromodomains, BRD4, MYC, JQ1, pediatric brain tumors, targeted therapy Received: October 23, 2013 Accepted: October 25, 2013 Published: October 27, 2013 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT: Medulloblastoma is the most common malignant brain tumor of childhood, and represents a significant clinical challenge in pediatric oncology, since overall survival currently remains under 70%. Patients with tumors overexpressing MYC or harboring a MYC oncogene amplification have an extremely poor prognosis. Pharmacologically inhibiting MYC expression may, thus, have clinical utility given its pathogenetic role in medulloblastoma.
    [Show full text]
  • Macrophage Inflammatory Responses BET Inhibitor JQ1 Impair Mouse
    BET Protein Function Is Required for Inflammation: Brd2 Genetic Disruption and BET Inhibitor JQ1 Impair Mouse Macrophage Inflammatory Responses This information is current as of October 4, 2021. Anna C. Belkina, Barbara S. Nikolajczyk and Gerald V. Denis J Immunol 2013; 190:3670-3678; Prepublished online 18 February 2013; doi: 10.4049/jimmunol.1202838 Downloaded from http://www.jimmunol.org/content/190/7/3670 Supplementary http://www.jimmunol.org/content/suppl/2013/02/19/jimmunol.120283 Material 8.DC1 http://www.jimmunol.org/ References This article cites 51 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/190/7/3670.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 4, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology BET Protein Function Is Required for Inflammation: Brd2 Genetic Disruption and BET Inhibitor JQ1 Impair Mouse Macrophage Inflammatory Responses Anna C.
    [Show full text]
  • A Phase IB Dose Exploration Trial with MK-8628, a Small
    Official Protocol Title: A Phase IB Dose Exploration Trial with MK-8628, a Small Molecule Inhibitor of the Bromodomain and Extra-Terminal (BET) Proteins, in Subjects with Selected Advanced Solid Tumors NCT number: NCT02698176 Document Date: 21-Nov-2016 Product: MK-8628 1 Protocol/Amendment No.: 006-02 THIS PROTOCOL AMENDMENT AND ALL OF THE INFORMATION RELATING TO IT ARE CONFIDENTIAL AND PROPRIETARY PROPERTY OF MERCK SHARP & DOHME CORP., A SUBSIDIARY OF MERCK & CO., INC., WHITEHOUSE STATION, NJ, U.S.A. SPONSOR: Oncoethix GmbH, a wholly owned subsidiary of Merck Sharp & Dohme Corp. (hereafter referred to as the Sponsor or Merck) Weystrasse 20 6000 Lucerne Switzerland Protocol-specific Sponsor Contact information can be found in the Investigator Trial File Binder (or equivalent). TITLE: A Phase IB Dose Exploration Trial with MK-8628, a Small Molecule Inhibitor of the Bromodomain and Extra-Terminal (BET) Proteins, in Subjects with Selected Advanced Solid Tumors IND NUMBER: 123,715 EudraCT NUMBER: 2015-005488-18 MK-8628-006-02 Final Protocol 21-Nov-2016 Confidential Product: MK-8628 2 Protocol/Amendment No.: 006-02 TABLE OF CONTENTS SUMMARY OF CHANGES................................................................................................ 11 1.0 TRIAL SUMMARY.................................................................................................. 13 2.0 TRIAL DESIGN........................................................................................................ 14 2.1 Trial Design ..........................................................................................................
    [Show full text]
  • (RVX-208) in Ex Vivo Treated Human Whole Blood and Primary Hepatocytes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Data in Brief 8 (2016) 1280–1288 Contents lists available at ScienceDirect Data in Brief journal homepage: www.elsevier.com/locate/dib Data Article Data on gene and protein expression changes induced by apabetalone (RVX-208) in ex vivo treated human whole blood and primary hepatocytes Sylwia Wasiak a, Dean Gilham a, Laura M. Tsujikawa a, Christopher Halliday a, Karen Norek a, Reena G. Patel a, Kevin G. McLure a, Peter R. Young b, Allan Gordon b, Ewelina Kulikowski a, Jan Johansson b, Michael Sweeney b, Norman C. Wong a,n a Resverlogix Corp., Calgary, Canada b Resverlogix Corp., San Francisco, USA article info abstract Article history: Apabetalone (RVX-208) inhibits the interaction between epige- Received 28 January 2016 netic regulators known as bromodomain and extraterminal (BET) Received in revised form proteins and acetyl-lysine marks on histone tails. Data presented 5 July 2016 here supports the manuscript published in Atherosclerosis “RVX- Accepted 22 July 2016 208, a BET-inhibitor for Treating Atherosclerotic Cardiovascular Dis- Available online 29 July 2016 ease, Raises ApoA-I/HDL and Represses Pathways that Contribute to Keywords: Cardiovascular Disease” (Gilham et al., 2016) [1]. It shows that RVX- Bromodomain 208 and a comparator BET inhibitor (BETi) JQ1 increase mRNA BET proteins expression and production of apolipoprotein A-I (ApoA-I), the BET inhibitor main protein component of high density lipoproteins, in primary RVX-208 JQ1 human and African green monkey hepatocytes. In addition, Vascular inflammation reported here are gene expression changes from a microarray- ApoA-I based analysis of human whole blood and of primary human Apolipoprotein A-I hepatocytes treated with RVX-208.
    [Show full text]
  • Targeting MYC Dependence in Cancer by Inhibiting BET Bromodomains
    Targeting MYC dependence in cancer by inhibiting BET bromodomains Jennifer A. Mertz1, Andrew R. Conery1, Barbara M. Bryant, Peter Sandy, Srividya Balasubramanian, Deanna A. Mele, Louise Bergeron, and Robert J. Sims III2 Constellation Pharmaceuticals, Inc., Cambridge, MA 02142 Edited* by Robert N. Eisenman, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved August 30, 2011 (received for review May 23, 2011) The MYC transcription factor is a master regulator of diverse in preclinical animal models of endotoxic shock caused by acti- cellular functions and has been long considered a compelling vation of Toll-like receptors that trigger the up-regulation of therapeutic target because of its role in a range of human cytokines controlled by NF-κB (7). Importantly, although RNAi- malignancies. However, pharmacologic inhibition of MYC function mediated depletion of any one individual BET protein has broad has proven challenging because of both the diverse mechanisms effects on transcription, pharmacologic inhibition of the BET driving its aberrant expression and the challenge of disrupting bromodomains perturbs the transcription of a narrower range protein–DNA interactions. Here, we demonstrate the rapid and po- of genes (7). These findings suggest an opportunity to use BET- tent abrogation of MYC gene transcription by representative small bromodomain inhibitors to fine-tune key regulatory pathways for molecule inhibitors of the BET family of chromatin adaptors. MYC therapeutic benefit. transcriptional suppression was observed in the context of the nat- BET inhibitors exhibit anticancer effects in both in vitro and ural, chromosomally translocated, and amplified gene locus. Inhi- in vivo models of midline carcinoma (8), a rare but lethal disease bition of BET bromodomain–promoter interactions and subsequent that frequently harbors a chromosomal translocation in which reduction of MYC transcript and protein levels resulted in G1 arrest the bromodomains of BRD4 are fused to the NUT gene (9).
    [Show full text]
  • Apabetalone and Hospitalization for Heart Failure in Patients Following an Acute Coronary Syndrome: a Prespecifed Analysis of the Betonmace Study Stephen J
    Nicholls et al. Cardiovasc Diabetol (2021) 20:13 https://doi.org/10.1186/s12933-020-01199-x Cardiovascular Diabetology ORIGINAL INVESTIGATION Open Access Apabetalone and hospitalization for heart failure in patients following an acute coronary syndrome: a prespecifed analysis of the BETonMACE study Stephen J. Nicholls1*, Gregory G. Schwartz2, Kevin A. Buhr3, Henry N. Ginsberg4, Jan O. Johansson5, Kamyar Kalantar‑Zadeh6, Ewelina Kulikowski5, Peter P. Toth7,8, Norman Wong5, Michael Sweeney5 and Kausik K. Ray9 on behalf of the BETonMACE Investigators Abstract Background: Patients with diabetes and acute coronary syndrome (ACS) are at high risk for subsequent heart failure. Apabetalone is a selective inhibitor of bromodomain and extra‑terminal (BET) proteins, epigenetic regulators of gene expression. Preclinical data suggest that apabetalone exerts favorable efects on pathways related to myocardial struc‑ ture and function and therefore could impact subsequent heart failure events. The efect of apabetalone on heart failure events after an ACS is not currently known. Methods: The phase 3 BETonMACE trial was a double‑blind, randomized comparison of apabetalone versus placebo on the incidence of major adverse cardiovascular events (MACE) in 2425 patients with a recent ACS and diabetes. This prespecifed secondary analysis investigated the impact of apabetalone on hospitalization for congestive heart failure, not previously studied. Results: Patients (age 62 years, 74.4% males, 90% high‑intensity statin use, LDL‑C 70.3 mg/dL, HDL‑C 33.3 mg/dL and HbA1c 7.3%) were followed for an average 26 months. Apabetalone treated patients experienced the nominal fnding of a lower rate of frst hospitalization for heart failure (2.4% vs.
    [Show full text]
  • Chemogenomics for Drug Discovery: Clinical Molecules from Open Access Chemical Probes Cite This: RSC Chem
    RSC Chemical Biology View Article Online REVIEW View Journal | View Issue Chemogenomics for drug discovery: clinical molecules from open access chemical probes Cite this: RSC Chem. Biol., 2021, 2, 759 Robert B. A. Quinlan a and Paul E. Brennan *ab In recent years chemical probes have proved valuable tools for the validation of disease-modifying targets, facilitating investigation of target function, safety, and translation. Whilst probes and drugs often differ in their properties, there is a belief that chemical probes are useful for translational studies and can Received 27th January 2021, accelerate the drug discovery process by providing a starting point for small molecule drugs. This review Accepted 25th March 2021 seeks to describe clinical candidates that have been inspired by, or derived from, chemical probes, and DOI: 10.1039/d1cb00016k the process behind their development. By focusing primarily on examples of probes developed by the Structural Genomics Consortium, we examine a variety of epigenetic modulators along with other rsc.li/rsc-chembio classes of probe. Creative Commons Attribution 3.0 Unported Licence. Introduction catalysis.1–5 We have begun to better characterise the extra- catalytic roles of proteins and how these contribute to disease Progress in the understanding of cellular and disease biology pathology, whether as readers of epigenetic marks, as molecular has advanced our knowledge of protein function beyond solely chaperones, or scaffolding proteins. To that end, non-destructive means of target validation and investigation are useful to examine the precise role of a protein in a cellular process. a Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Where the use of RNA inhibition (RNAi) or CRISPR gene editing Old Road Campus, Oxford OX3 7FZ, UK.
    [Show full text]
  • Part 1: Design and Synthesis of BRDT Selective Inhibitors As Male
    Part 1: Design and Synthesis of BRDT Selective Inhibitors as Male Contraceptive Agents Part 2: Focused Library Synthesis for TGR5 (Takeda G Protein-Coupled Receptor 5) Antagonist A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Jiewei Jiang IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Dr. Gunda I. Georg September 2020 ©2020 Jiewei Jiang All Rights Reserved Acknowledgements I would like to express my sincere gratitude to my advisor Dr. Gunda Georg for her mentorship and guidance over the six years. Without her continuous support, I could not have accomplished this journey. Her dedication and enthusiasm to science will always be inspiring me in my future career. My appreciation also goes to Dr. Elizabeth Ambrose, Dr. Carrie Haskell-Luevano, and Dr. William Pomerantz for serving as my committee members. Their insightful suggestions as well as helpful critiques made me become a better scientific researcher. I am deeply grateful to people who made my work herein possible. Thank you to Dr. Timothy Ward and Dr. Peiliang Zhao for their contribution in the synthesis; Dr. Jon Hawkinson, Jonathan Solberg, Dr. Carolyn Paulson, Xianghong Guan for their expertise with fluorescence polarization assay; Dr. Jun Qi and Nana K. Offei-Addo for their expertise with AlphaScreen assay; Dr. Ernst Schönbrunn and Dr. Alice Chan for elegant co-crystal structures; Kristen John for her efforts and discussions about the TGR5 screening. I would like to thank all the Georg group and ITDD members for not only showing me how to do science but also making my everyday life colorful.
    [Show full text]