Fractions Fractions: a Numerical Quantity That Is Not a Whole Number (E.G

Total Page:16

File Type:pdf, Size:1020Kb

Fractions Fractions: a Numerical Quantity That Is Not a Whole Number (E.G Fractions Fractions: A numerical quantity that is not a whole number (e.g. 1/2). A small or tiny part, amount, or proportion of something. Key Vocabulary/ Concepts: Numerator, Denominator, Mixed Number, Improper fractions, Equivalent Fractions, Lowest Common Multiple (LCM), Greatest Common Factor (GCF) Numerator: The top number of a fraction. The numerator indicates the parts being counted or considered. Denominator: The bottom number of a fraction. The denominator indicates how many equal parts the item is divided into. ퟏ ퟐ 0 ퟑ ퟑ 1 Visual Model Number Line Model Unit Fraction: A fraction with a numerator of one Examples Benchmark Fraction: Common fractions that are often used to judge against, when measuring, comparing or ordering other fractions. Examples SC STANDARDS: 5.NSF.1 Fractions Fractions: A numerical quantity that is not a whole number (e.g. 1/2). A small or tiny part, amount, or proportion of something. Equivalent fraction: Two or more fractions with the same value but with different Numerators and denominators. OR Improper fraction: A Mixed number: A whole fraction where the numerator number and fraction together. is larger than the denominator. Example: Simplest Form: When a fractions numerator and denominator have no common factors other than 1. 18 To write in simplest form: 21 . 1st find the Greatest Common Factor (GCF) of both the numerator and denominator. ÷ – 1, 2, 3, 6, 9, 18 – 1, 3, 7, 21 ÷ . 2nd Divide both numerator and Denominator by the GCF. SC STANDARDS: 5.NSF.1 Adding & Subtracting Fractions with Unlike Denominators Common Denominator Method Step 1: Change the fractions to equivalent fractions with like denominators. To do this you must first find the Least Common Multiple (LCM). + Multiples of 3 – 3, 6, 9, 12, 15, 18 + + Multiples of 5 – 5, 10, 15, 20 Step 2: Write your equivalent fractions, with your LCM as the denominator and add or subtract. Step 3: Always simplify if possible! Butterfly Method Step 1: Cross Multiply Step 2: Cross Multiply the digits in the orange the digits in the Purple ellipse. ellipse. + Step 3: Multiply the denominators to find a common denominator. Step 4: Complete the operation and simplify. SC STANDARDS: 5.NSF.1 Adding & Subtracting Fractions with Unlike Denominators Common Denominator Method + Step 1: Change the fractions to equivalent fractions with like denominators. To do this you must first find the Least Common Multiple (LCM). Multiples of 3 – 3, 6, 9, 12, 15, 18 Multiples of 5 – 5, 10, 15, 20 Step 2: Write your equivalent fractions, with your LCM as the denominator and add or subtract. + + Step 3: Always simplify if possible! SC STANDARDS: 5.NSF.1 Adding & Subtracting Fractions with Unlike Denominators Butterfly Method + Step 1: Cross Step 2: Cross Multiply the digits in Multiply the digits in the orange ellipse. the Purple ellipse. + Step 3: Multiply the denominators to find a common denominator. + Step 4: Complete the operation and simplify if possible. SC STANDARDS: 5.NSF.1 Multiplying Fractions Fraction by a Fraction Step 1: Multiply the numerators, then multiply the denominators. x Step 2: Simplify Fraction by a Whole Number Step 1: Change the whole number to a fraction x Step 2: Multiply the numerators, then multiply the denominators. x Step 3: Simplify Fraction by a Mixed Number Step 1: Change the mixed x number to a fraction Step 2: Multiply the numerators, then multiply x the denominators. Step 3: Simplify SC STANDARDS: 5.NSF.4 Dividing Fractions Fraction Divided by a Fraction Step 1: Find the reciprocal of the divisor ÷ (the number you are dividing by) ÷ Step 2: Multiply the numerators, then multiply the denominators. X Step 3: Simplify Fraction Divided by a Mixed Number Step 1: Change the mixed number into an ÷ improper fraction. Step 2: Find the reciprocal of the divisor ÷ (the number you are dividing by) X Step 3: Multiply the numerators, then multiply the denominators. Step 4: Simplify SC STANDARDS: 5.NSF.7 Dividing Fractions Whole Number Divided by a Fraction Step 1: Change the whole number to a fraction. ÷ Step 2: Find the reciprocal of the divisor (the number you are dividing by) ÷ Step 3: Multiply the numerators, then multiply X the denominators. Step 4: Simplify Fraction Divided by a Whole Number Step 1: Change the whole number to a fraction. ÷ Step 2: Find the reciprocal of the divisor (the number you are dividing by) ÷ Step 3: Multiply the numerators, then multiply the denominators. X Step 4: Simplify SC STANDARDS: 5.NSF.7 .
Recommended publications
  • Understanding Fractions – Interpretations And
    Understanding fractions: interpretations and representations An iTalk2Learn Guide for teachers Version 1.0 28-04-2014 1 1 Developing a coherent system for fractions learning Did you know that children’s performance in fractions predicts their mathematics achievement in secondary school, above and beyond the contributions of whole number arithmetic knowledge, verbal and non-verbal IQ, working memory, and family education and income? Seigler et al (2012) The iTalk2Learn project aims at helping primary school children develop robust knowledge in the field of fractions. Fractions are one of the most difficult aspect of mathematics to teach and learn (Charalambous & Pitta-Pantazi, 2007). The difficulty arises because of the complexity of fractions, such as the number of ways they can be interpreted and the number of representations teachers can draw upon to teach. In this paper we discuss these two aspect of fractions and present the iTalk2Learn Fractions Interpretations / Representations Matrix that you may find helpful in your fractions planning and teaching. 1.1 Interpretations of fractions When teaching fractions, we need to take into account that fractions can be interpreted in several different ways (Kieran, 1976, 1993). The interpretations are part-whole, ratio, operator, quotient, and measure. There is inevitable overlapping between the interpretations, but in Table 1 each interpretation is exemplified using the fraction ¾. Table 1. Interpretations of fractions, exemplified using 3/4. Interpretation Commentary Part-whole In part-whole cases, a continuous quantity or a set of discrete objects is partitioned into a number of equal-sized parts. In this interpretation, the numerator must be smaller than the denominator.
    [Show full text]
  • Unit 6: Multiply & Divide Fractions Key Words to Know
    Unit 6: Multiply & Divide Fractions Learning Targets: LT 1: Interpret a fraction as division of the numerator by the denominator (a/b = a ÷ b) LT 2: Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g. by using visual fraction models or equations to represent the problem. LT 3: Apply and extend previous understanding of multiplication to multiply a fraction or whole number by a fraction. LT 4: Interpret the product (a/b) q ÷ b. LT 5: Use a visual fraction model. Conversation Starters: Key Words § How are fractions like division problems? (for to Know example: If 9 people want to shar a 50-lb *Fraction sack of rice equally by *Numerator weight, how many pounds *Denominator of rice should each *Mixed number *Improper fraction person get?) *Product § 3 pizzas at 10 slices each *Equation need to be divided by 14 *Division friends. How many pieces would each friend receive? § How can a model help us make sense of a problem? Fractions as Division Students will interpret a fraction as division of the numerator by the { denominator. } What does a fraction as division look like? How can I support this Important Steps strategy at home? - Frac&ons are another way to Practice show division. https://www.khanacademy.org/math/cc- - Fractions are equal size pieces of a fifth-grade-math/cc-5th-fractions-topic/ whole. tcc-5th-fractions-as-division/v/fractions- - The numerator becomes the as-division dividend and the denominator becomes the divisor. Quotient as a Fraction Students will solve real world problems by dividing whole numbers that have a quotient resulting in a fraction.
    [Show full text]
  • Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors
    Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors Prepared by Midwest Research Institute (Chatten Cowherd, MRI Project Leader) For Western Governors’ Association Western Regional Air Partnership (WRAP) 1515 Cleveland Place, Suite 200 Denver, Colorado 80202 Attn: Richard Halvey MRI Project No. 110397 February 1, 2006 Finalized November 1, 2006 Responses to Comments Received on Proposed AP-42 Revisions Commenter Source Comment Response and Date Category John Hayden, Unpaved NSSGA- This comment reference a test report prepared National Stone, Roads sponsored tests by Air Control Techniques for the National Sand and Gravel (report dated Oct. Stone, Sand & Gravel Association, dated Association 15, 2004) at October 4, 2004. The report gives the results of (NSSGA); June California tests to determine unpaved road emissions 14, 2006 aggregate factors for controlled (wet suppression only) producing plants haul roads at two aggregate processing plants. support the A variation of the plume profiling method using proposed fine TEOM continuous monitors with PM-2.5 and fractions. PM-10 inlets was employed. Tests with road surface moisture content below 1.5 percent were considered to be uncontrolled. Based on the example PM-10 concentration profiles presented in the report, the maximum roadside PM-10 dust concentrations in the subject study were in the range of 300 micrograms per cubic meter. This is an order of magnitude lower than the concentrations typically found in other unpaved road emission factor studies. For the range of plume concentrations measured in the NSSGA-sponsored test program, an average fine fraction (PM-2.5/PM- 10 ratio) of 0.15 was reported.
    [Show full text]
  • Solve by Rewriting the Expression in Fraction Form. After Solving, Rewrite the Complete Number Sentence in Decimal Form
    GRADE 4 | MODULE 6 | TOPIC D | LESSONS 12–14 KEY CONCEPT OVERVIEW In Lessons 12 through 14, students add decimals by converting decimal numbers to fraction form before adding and then converting the sum back to a decimal number. (See Sample Problem.) It is important to note that, in these lessons, students do NOT learn to add decimals by lining up the decimal points. You can expect to see homework that asks your child to do the following: ▪ Express tenths and hundredths as hundredths (e.g., 3 tenths + 4 hundredths = 34 hundredths). ▪ Add tenths and hundredths by converting tenths to hundredths before finding the sum. ▪ Add mixed numbers with units of ones, tenths, and hundredths. ▪ Solve word problems requiring the addition of numbers written in decimal form, converting to fraction form before solving. SAMPLE PROBLEM (From Lesson 13) Solve by rewriting the expression in fraction form. After solving, rewrite the complete number sentence in decimal form. 5.9 + 4.94 9 94 90 94 184 84 59..++=4945=++=4 =+5 +=4 ==9 = 10 10 100 100 100 100 100 5.9 + 4.94 = 10.84 Additional sample problems with detailed answer steps are found in the Eureka Math Homework Helpers books. Learn more at GreatMinds.org. For more resources, visit » Eureka.support GRADE 4 | MODULE 6 | TOPIC D | LESSONS 12–14 HOW YOU CAN HELP AT HOME ▪ Although it may be tempting to show your child how to add numbers in decimal form by lining up the decimals, it will be more helpful to support the current lesson of adding decimals by converting to fractions.
    [Show full text]
  • Fractions: Teacher's Manual
    Fractions: Teacher’s Manual A Guide to Teaching and Learning Fractions in Irish Primary Schools This manual has been designed by members of the Professional Development Service for Teachers. Its sole purpose is to enhance teaching and learning in Irish primary schools and will be mediated to practising teachers in the professional development setting. Thereafter it will be available as a free downloadable resource on www.pdst.ie for use in the classroom. This resource is strictly the intellectual property of PDST and it is not intended that it be made commercially available through publishers. All ideas, suggestions and activities remain the intellectual property of the authors (all ideas and activities that were sourced elsewhere and are not those of the authors are acknowledged throughout the manual). It is not permitted to use this manual for any purpose other than as a resource to enhance teaching and learning. Any queries related to its usage should be sent in writing to: Professional Development Service for Teachers, 14, Joyce Way, Park West Business Park, Nangor Road, Dublin 12. 2 Contents Aim of the Guide Page 4 Resources Page 4 Differentiation Page 5 Linkage Page 5 Instructional Framework Page 9 Fractions: Background Knowledge for Teachers Page 12 Fundamental Facts about Fractions Possible Pupil Misconceptions involving Fractions Teaching Notes Learning Trajectory for Fractions Page 21 Teaching and Learning Experiences Level A Page 30 Level B Page 40 Level C Page 54 Level D Page 65 Level E Page 86 Reference List Page 91 Appendices Page 92 3 Aim of the Guide The aim of this resource is to assist teachers in teaching the strand unit of Fractions (1st to 6th class).
    [Show full text]
  • Operations with Fractions, Decimals and Percent Chapter 1: Introduction to Algebra
    Section 1.8: Operations with Fractions, Decimals and Percent Chapter 1: Introduction to Algebra Multiply decimals Step 1. Determine the sign of the product. Step 2. Write in vertical format, lining up the numbers on the right. Multiply the numbers as if they were whole numbers, temporarily ignoring the decimal points. Step 3. Place the decimal point. The number of decimal places in the product is the sum of the number of decimal places in the factors. Step 4. Write the product with the appropriate sign. For Example: Section 1.8: Operations with Fractions, Decimals and Percent Chapter 1: Introduction to Algebra Multiplication by powers of 10 Section 1.8: Operations with Fractions, Decimals and Percent Chapter 1: Introduction to Algebra Divide decimals Step 1. Determine the sign of the quotient. Step 2. Make the divisor a whole number by “moving” the decimal point all the way to the right. “Move” the decimal point in the dividend the same number of places—adding zeros as needed. Step 3. Divide. Place the decimal point in the quotient above the decimal point in the dividend. Step 4. Write the quotient with the appropriate sign. Remember these terms for division: For Example: Section 1.8: Operations with Fractions, Decimals and Percent Chapter 1: Introduction to Algebra A percent is a ratio whose denominator is 100. Percent means per hundred. We use the percent symbol, %, to show percent. Since a percent is a ratio, it can easily be expressed as a fraction. Convert percent to decimal Convert decimal to percent Section 1.8: Operations with Fractions, Decimals and Percent Chapter 1: Introduction to Algebra Convert decimal to a fraction Convert fraction to a decimal • Convert the fraction to a long division problem and perform the division.
    [Show full text]
  • Ratios Rates and Unit Rates Worksheet
    Ratios Rates And Unit Rates Worksheet Foaming and unhatched Hill circles fore and decalcifies his dogmatizer invectively and inquisitively. Atheistic Smitty never can so stylishly or wire any Goidelic hottest. Traveling Bernie farcings that MacArthur misshape nowadays and economising pickaback. Ratios worksheets are part of a checklist format in good food web worksheet. Grade. A mute is a guideline or little that defines how oil of one chamber have compared to utilize Unit rates are just a factory more money A discrete rate distinguishes the. Clearance for every part of the denominator have little coloring activity is a different units of. Polish your email address will help you will challenge kids less formal way of soda you compare two pairs have iframes disabled or as fractions. Write ratios and rates as fractions in simplest form and unit rates Find unit prices. Unit rates for bell ringers, check if there will always be kept dry completely before. Mathlinks grade 6 student packet 11 ratios and unit rates. Street clothes for the worksheet library, not have been saved in excel overview now please try again with minutes in an example. How to Calculate Unit Rates & Unit Prices Video & Lesson. High resolution image in the numerator and organized house cleaning tips and tub and if you. Find each worksheet to number of our extensive math. It really see what percent is. Unit Rates Ratios Proportional Reasoning Double Number. Unit Rates and Equivalent Rates Grade 6 Practice with. To heighten their logical reasoning with this worksheet shown above example of math worksheets kiddy math problems related to opt out of penguins and experienced seniors sharing templates.
    [Show full text]
  • Grade 5 Math Index For
    Common Core Standards Plus – Mathematics – Grade 5 with Common Core ELD Standard Alignment Domain Lesson Focus Standard(s) ELD Standards 1 Place Value Patterns 5.NBT.1: Recognize that in a multi‐digit 2 Place Value Patterns number, a digit in one place represents 10 times as much as it represents in the place ELD.PI.5.5: Listening actively and 3 Place Value Patterns asking/ answering questions about what to its right and 1/10 of what it represents was heard. 4 Place Value Patterns in the place to its left. E1 Evaluation ‐ Place Value Patterns 5 Powers of Ten 5.NBT.2: Explain patterns in the number of zeros of the product when multiplying a 6 Multiply by Powers of Ten number by powers of 10, and explain patterns in the placement of the decimal ELD.PI.5.5: Listening actively and 7 Divide by Powers of Ten asking/ answering questions about what point when a decimal is multiplied or was heard. 8 Multiply & Divide by Powers of Ten divided by a power of 10. Use whole‐ ELD.PI.5.10: Composing/writing number exponents to denote powers of literary and informational texts. E2 Evaluation ‐ Powers of Ten 10. P1 Performance Lesson #1 Power of Ten (5.NBT.1, 5.NBT.2) 5.NBT.7 Word Form of Decimals ‐ 9 5.NBT.3: Read, write, and compare 10 Expanded Form of Decimals decimals to thousandths. ELD.PI.5.5: Listening actively and Ten 5.NBT.3a: Read and write decimals to asking/ answering questions about what 5.NBT.1 Standard Form of Decimals thousandths using base‐ten numerals, was heard.
    [Show full text]
  • Quantile® Resource Overview
    Quantile® Resource Overview Resource Title: Finding the Least Common Denominator Quantile Skill • Compare and order fractions using renaming and Concept: strategies (QSC155) • Find multiples, common multiples, and the least common multiple numbers; explain. (QSC221) Quantile Measure: 710 Q Excerpted from: The Math Learning Center PO Box 12929, Salem, Oregon 97309-0929 www.mathlearningcenter.org ©Math Learning Center For access to other free resources, visit www.Quantiles.com. The Quantile® Framework for Mathematics, developed by educational measurement and research organization MetaMetrics®, comprises more than 500 Quantile Skills and Concepts taught from kindergarten through high school. The Quantile Framework depicts the developmental nature of mathematics and the connections between mathematics content. By matching a student's Quantile measure with the Quantile measure of a mathematical skill or concept, you can determine if the student is ready to learn that skill, needs reinforcement in supporting concepts first, or whether enrichment would be appropriate. For more information and to use free Quantile utilities, visit www.Quantiles.com. 1000 Park Forty Plaza Drive, Suite 120, Durham, North Carolina 27713 METAMETRICS®, the METAMETRICS® logo and tagline, QUANTILE®, QUANTILE FRAMEWORK® and the QUANTILE® logo are trademarks of MetaMetrics, Inc., and are registered in the United States and abroad. The names of other companies and products mentioned herein may be the trademarks of their respective owners. set a6 numbers & Operations: Fraction Concepts Blackline Use anytime after Set A6, Activity 2. Run a class set. name date set a6 H Independent Worksheet 2 independent Worksheet Finding the least Common denominator 2 4 Which is greater, 3 or 5 ? Exactly how much difference is there between these two fractions? If you want to compare, add, or subtract two fractions, it is easier if you rewrite them so they both have the same denominator.
    [Show full text]
  • Study in Egyptian Fractions
    1 STUDY IN EGYPTIAN FRACTIONS Robert P. Schneider Whether operating with fingers, stones or hieroglyphic symbols, the ancient mathematician would have been in many respects as familiar with the integers and rational numbers as is the modern researcher. If we regard both written symbols and unwritten arrangements of objects to be forms of notation for numbers, then through the ancient notations and their related number systems flowed the same arithmetic properties—associativity, commutativity, distributivity—that we know so intimately today, having probed and extended these empirical laws using modern tools such as set theory and Peano’s axioms. It is fascinating to contemplate that we share our base-ten number system and its arithmetic, almost as natural to us as sunlight and the air we breathe, with the scribes of ancient Egypt [1, p. 85]. We use different symbols to denote the numbers and operations, but our arithmetic was theirs as well. Our notation for fractions even mimics theirs with its two-tiered arrangement foreshadowing our numerator and denominator; however, the Egyptian notation for fractions leaves no space for numbers in the numerator, the position being filled by a hieroglyphic symbol meaning “part” [1, p. 93]. Aside from having special symbols to denote 2/3 and 3/4, the Egyptians always understood the numerator to be equal to unity in their fractions [4]. The representation of an improper fraction as the sum of distinct unit fractions, or fractions having numerators equal to one, is referred to as an “Egyptian fraction” [3]. I found the Egyptians’ use of fractions, as well as their multiplication and division algorithms [1, pp.
    [Show full text]
  • Teaching Fractions for Understanding: Addressing Interrelated Concepts
    Getenet & Callingham Teaching Fractions for Understanding: Addressing Interrelated Concepts Seyum Getenet Rosemary Callingham University of Southern Queensland University of Tasmania <Seyum.Getenet@usq.edu.au> <Rosemary.Callingham@utas.edu.au> The concept of fractions is perceived as one of the most difficult areas in school mathematics to learn and teach. The most frequently mentioned factors contributing to the complexity is fractions having five interrelated constructs: part-whole, ratio, operator, quotient, and measure. In this study, we used this framework to investigate the practices in a New Zealand Year 7 classroom. Video recordings and transcribed audio-recordings were analysed through the lenses of the five integrated concepts of fraction. The findings showed that students often initiated unexpected uses of fractions as quotient and as operator, drawing on part-whole understanding when solving fraction problems. Fractions are notoriously difficult for students to learn and present ongoing pedagogical challenges to mathematics teachers (e.g., Behr, Lesh, Post, & Silver, 1983; Siemon et al., 2015). They are crucial, however, to students’ future understanding of concepts such as proportional reasoning that are necessary not only for deeper mathematical understanding but also to support daily activities. These difficulties are often observed across all levels of education beginning from early primary years (e.g., Charalambous & Pitta-Pantazi, 2006; Empson & Levi, 2011; Gupta & Wilkerson, 2015). Different reasons have been identified for these difficulties, particularly in primary school. For example, fraction understanding is underpinned by larger mathematics cognitive processes including proportional reasoning and spatial reasoning (Moss & Case, 1999). In relation to having different notions of fractions, Hackenberg and Lee (2015) showed that limited understanding of particular aspects of the different meanings of fractions affects the ability of students to generalise and to work with fraction concepts.
    [Show full text]
  • Eureka Math™ Tips for Parents Module 2
    Grade 6 Eureka Math™ Tips for Parents Module 2 The chart below shows the relationships between various fractions and may be a great Key Words tool for your child throughout this module. Greatest Common Factor In this 19-lesson module, students complete The greatest common factor of two whole numbers (not both zero) is the their understanding of the four operations as they study division of whole numbers, division greatest whole number that is a by a fraction, division of decimals and factor of each number. For operations on multi-digit decimals. This example, the GCF of 24 and 36 is 12 expanded understanding serves to complete because when all of the factors of their study of the four operations with positive 24 and 36 are listed, the largest rational numbers, preparing students for factor they share is 12. understanding, locating, and ordering negative rational numbers and working with algebraic Least Common Multiple expressions. The least common multiple of two whole numbers is the least whole number greater than zero that is a What Came Before this Module: multiple of each number. For Below is an example of how a fraction bar model can be used to represent the Students added, subtracted, and example, the LCM of 4 and 6 is 12 quotient in a division problem. multiplied fractions and decimals (to because when the multiples of 4 and the hundredths place). They divided a 6 are listed, the smallest or first unit fraction by a non-zero whole multiple they share is 12. number as well as divided a whole number by a unit fraction.
    [Show full text]