POST QUANTUM CRYPTOGRAPHY: IMPLEMENTING ALTERNATIVE PUBLIC KEY SCHEMES ON EMBEDDED DEVICES Preparing for the Rise of Quantum Computers DISSERTATION for the degree of Doktor-Ingenieur of the Faculty of Electrical Engineering and Information Technology at the Ruhr-University Bochum, Germany by Stefan Heyse Bochum, October 2013 Post Quantum Cryptography: Implementing Alternative Public Key Schemes on Embedded Devices Copyright © 2013 by Stefan Heyse. All rights reserved. Printed in Germany. F¨ur Mandy, Captain Chaos und den B¨oarn. Author’s contact information:
[email protected] www.schnufff.de Thesis Advisor: Prof. Dr.-Ing. Christof Paar Ruhr-University Bochum, Germany Secondary Referee: Prof. Paulo S. L. M. Barreto Universidade de S˜ao Paulo, Brasil Tertiary Referee: Prof. Tim E. G¨uneysu Ruhr-University Bochum, Germany Thesis submitted: October 8, 2013 Thesis defense: November 26, 2013. v “If you want to succeed, double your failure rate.” (Tom Watson, IBM). “Kaffee dehydriert den K¨orper nicht. Ich w¨are sonst schon Staub.” (Franz Kafka) vii Abstract Almost all of today’s security systems rely on cryptographic primitives as core c components which are usually considered the most trusted part of the system. The realization of these primitives on the underlying platform plays a crucial role for any real-world deployment. In this thesis, we discuss new primitives in public-key cryptography that could serve as alterna- tives to the currently used RSA, ECC and discrete logarithm cryptosystems. Analyzing these primitives in the first part of this thesis from an implementer’s perspective, we show advantages of the new primitives. Moreover, by implementing them on embedded systems with restricted resources, we investigate if these schemes have already evolved into real alternatives to the current cryptosystems.