1. Disclaimer

Total Page:16

File Type:pdf, Size:1020Kb

1. Disclaimer Deliverable D1.1. Review of Reference Architectures for IoT Enabled Agriculture Development. Consultancy Design of a reference architecture for an IoT sensor network. Company International Center for Tropical Agriculture (CIAT). Km. 17 Recta Cali-Palmira. Palmira, Valle del Cauca, Colombia. Consultant Dr. Jairo Alejandro Gómez Escobar, Eng. PhD. E-mail: [email protected]. Date 29th of April 2019. Revision 1.2. 1. Disclaimer This report (Report) has been commissioned by the CGIAR Platform for Big Data in Agriculture, represented by the International Center for Tropical Agriculture (CIAT). This Report was produced independently by Dr. Jairo Alejandro Gómez (Consultant), and it provides information intended for CIAT. None of the statements contained in this report are intended to establish any obligation, standard or procedure by or on behalf of CIAT. By virtue of publishing this report, CIAT is under no obligation to adopt any of the recommendations set forth in the Report. The views expressed in this Report are not necessarily the views of CIAT. The information, statements, statistics, guidelines, and commentary (together the ‘Information’) contained in this Report have been prepared by Consultant from publicly available material and from discussions held with researchers from CIAT. While the consultant has made every attempt to ensure that the information contained in this Report has been obtained from reliable sources, the consultant is not responsible for any errors or omissions, or for the results obtained from the use of this information. All information in this Report is provided "as is", with no guarantee of completeness, accuracy, timeliness or of the results obtained from the use of this information, and without warranty of any kind, express or implied, including, but not limited to warranties of performance, merchantability and fitness for a particular purpose. The Information contained in this Report has not been subject to an audit. Care has been taken in the preparation of this Report, but all advice, analysis, calculations, information, forecasts, guidelines, and recommendations are supplied for the assistance of CIAT and nothing herein shall to any extent be relied on as authoritative or as in substitution for the exercise of judgment by CIAT. The consultant engaged in the preparation of this Report shall not have any liability whatsoever for any direct or consequential loss arising from use of this Report or its contents and gives no warranty or representation (express or implied) as to the quality or fitness for the purpose of any architecture, design, process, product, or system referred to in the Report. In no event will the Consultant be liable to CIAT or anyone else for any decision made or action taken in reliance on the information in this Report or for any consequential, special or similar damages, even if advised of the possibility of such damages. Certain links in this Report connect to Web Sites maintained by third parties over whom the Consultant has no control. The Consultant makes no representations as to the accuracy or any other aspect of information contained in those Web Sites. 1 Review of Reference Architectures for IoT Enabled Agriculture Development 2. Executive summary In order to feed a growing global population worldwide and in light of new challenges including climate variability, degrading ecosystems, and loss of arable land, we must leverage the insights, agility, and precision made possible by digital tools and technologies in agriculture worldwide. To achieve this in developing economy contexts, much still must be learned about the appropriate technologies to collect, analyze, and act on relevant data for food security. Fortunately, in the last few decades, the data collection process has evolved. Expensive point-to-point networks gave way to distributed wide-area wireless sensor networks, and this set the stage for the Internet of Things (IoT). The IoT is a recent paradigm under which an array of electronic devices (known collectively as “things”) provide and exchange data through a network, very often through the Internet but it can also be a local or wide-area network. IoT approaches are enabling the development of new services spanning the perception-planning-action cycle. There are many different alternatives to abstract an IoT network, and this report highlights some of the most representative architectures developed by technological leaders, open-source communities, and researchers which are briefly summarized in the following paragraphs. Intel provides a compelling vision for end-to-end IoT solutions that includes a layered architecture for secure deployments, an example of common data flows as well as their characterization, a set of high-level software components and interfaces, and a detailed view of the possible communication technologies and protocols that can coexist in the solution. Intel has achieved a good balance with its architecture between abstraction, complexity, and usefulness. Intel provides development boards, gateways, and neural compute sticks that can enhance IoT applications, and in terms of software, it is contributing with other companies and the Linux Foundation to develop Zephyr1, a scalable real-time operating system (RTOS) supporting multiple hardware platforms. As Intel doesn’t provide implementation details of the software components in its architecture, they have to be mapped to the service solutions implemented by third-party companies. Over time, Intel has partnered with Amazon Web Services, Microsoft Azure, and Google Cloud Platforms to connect its hardware to the cloud2. Amazon Web Services (AWS) provides a simplified architecture with “things” that handle sensing and actuation, the cloud that handles the storage and the computing, and a set of services that enable the intelligence to transform logic and insights into action. Amazon provides a set of specific software components in the cloud to ease the IoT management, as well as low-level software (Amazon FreeRTOS, and AWS IoT Greengrass) that can run in different hardware platforms such as for microcontrollers and gateways, respectively. The problem with Amazon’s vision is that it assumes too early that the “things” in the IoT architecture are already connected to the Internet, providing little guidance as to how to achieve it. 1 Zephyr: a scalable real-time operating system (RTOS). https://www.zephyrproject.org 2 Intel IoT. https://software.intel.com/iot/home 2 Microsoft Azure has three main components in its architecture: “things” that produce data, insights extracted from the data, and actions based on insights. Despite its conceptual simplicity, Azure manages to provide a complete set of core and optional subsystems that support its vision without underestimating the challenges of connecting the field devices to the Internet. Azure has made a remarkable effort in improving its software development kit for IoT devices in recent years to support a wide variety of hardware platforms and programming languages. At the same time, it has powered some cutting edge IoT applications in agriculture involving TV white space technology. The Google IoT reference architecture is heavily influenced by machine learning, providing software services for handling large volumes of data once they reach the cloud. However, and similarly to AWS, it doesn’t illustrate how to transfer the data from the field to the Internet beyond simple use cases. The IBM architecture for IoT has 5 layers called user layer, proximity layer, public network, provider network, and an enterprise network. The most relevant aspect of IBM architecture is that it explicitly includes the user in the IoT abstraction process, something that most of the other architectures ignore. Having the user (researchers, farmers, stakeholders) at the core of the entire IoT deployment should be a priority for CIAT’s pilot. After reviewing the commercial options, it is clear that there are great services for IoT development. However, they can be expensive for the small farmer. For this reason, a set of open source architectures and software alternatives were explored. Mainflux is a modern, scalable, secure, open source, and patent-free IoT cloud platform that can be deployed either on-premises or in the cloud. It accepts user, device, and application connections over various network protocols, thus making a seamless bridge between them. Thinger.io is an open- source platform that offers a ready to go and scalable cloud infrastructure for connecting millions of devices or things. SiteWhere is an industrial-strength open-source application-enablement platform for the Internet of Things (IoT). DeviceHive is a micro service-based system, built with high scalability and availability in mind, and Zetta is an open source software platform for creating an Internet of Things servers that run across geo-distributed computers and the cloud. The options provided by the open source community are very competitive but they do require more technical knowledge that their commercial counterparts to get a working solution. In a recent paper, Guth et al. (2018)3 proposed a simplified architecture that summarizes the key blocks that appear in many of the IoT architectures reviewed in this report. The architecture includes sensors, actuators, devices and drivers, gateways, a layer for the IoT integration middleware and another for the applications. In this architecture, sensors and actuators communicate with field devices through firmware drivers. These
Recommended publications
  • Working with Storm Topologies Date of Publish: 2018-08-13
    Apache Storm 3 Working with Storm Topologies Date of Publish: 2018-08-13 http://docs.hortonworks.com Contents Packaging Storm Topologies................................................................................... 3 Deploying and Managing Apache Storm Topologies............................................4 Configuring the Storm UI.................................................................................................................................... 4 Using the Storm UI.............................................................................................................................................. 5 Monitoring and Debugging an Apache Storm Topology......................................6 Enabling Dynamic Log Levels.............................................................................................................................6 Setting and Clearing Log Levels Using the Storm UI.............................................................................6 Setting and Clearing Log Levels Using the CLI..................................................................................... 7 Enabling Topology Event Logging......................................................................................................................7 Configuring Topology Event Logging.....................................................................................................8 Enabling Event Logging...........................................................................................................................8
    [Show full text]
  • Apache Flink™: Stream and Batch Processing in a Single Engine
    Apache Flink™: Stream and Batch Processing in a Single Engine Paris Carboney Stephan Ewenz Seif Haridiy Asterios Katsifodimos* Volker Markl* Kostas Tzoumasz yKTH & SICS Sweden zdata Artisans *TU Berlin & DFKI parisc,[email protected][email protected][email protected] Abstract Apache Flink1 is an open-source system for processing streaming and batch data. Flink is built on the philosophy that many classes of data processing applications, including real-time analytics, continu- ous data pipelines, historic data processing (batch), and iterative algorithms (machine learning, graph analysis) can be expressed and executed as pipelined fault-tolerant dataflows. In this paper, we present Flink’s architecture and expand on how a (seemingly diverse) set of use cases can be unified under a single execution model. 1 Introduction Data-stream processing (e.g., as exemplified by complex event processing systems) and static (batch) data pro- cessing (e.g., as exemplified by MPP databases and Hadoop) were traditionally considered as two very different types of applications. They were programmed using different programming models and APIs, and were exe- cuted by different systems (e.g., dedicated streaming systems such as Apache Storm, IBM Infosphere Streams, Microsoft StreamInsight, or Streambase versus relational databases or execution engines for Hadoop, including Apache Spark and Apache Drill). Traditionally, batch data analysis made up for the lion’s share of the use cases, data sizes, and market, while streaming data analysis mostly served specialized applications. It is becoming more and more apparent, however, that a huge number of today’s large-scale data processing use cases handle data that is, in reality, produced continuously over time.
    [Show full text]
  • Create an Email with Subject Title “Embedded Software Engineer”, Email a Copy of Your Resume to [email protected]
    To Apply for This Position: Create an email with subject title “Embedded Software Engineer”, email a copy of your resume to [email protected] Location Address: ALLEN PARK, MI,48101 Position Description: TITLE: Embedded Software Engineer ‐ Hypervisor OS technologies This position is responsible to develop QNX and Android operating system images for Ford infotainment products. This includes creating and integrating code for: bootloader, kernel, drivers, type 1 hypervisor, and build environment. Skills Required: • Lead the design, bring‐up and support of QNX and Android operating system images • Create virt‐io drivers for QNX or Android guest operating systems • Participate in root cause analysis of hardware quality problems and software defects • Participate in system design, documentation, and testing to deliver a best‐in‐class infotainment system Experience Required: • 5+ years operating system experience involving Linux or QNX • 5+ years C/C++ software development experience on embedded, mobile, or consumer electronic platforms Experience Preferred: • Experience with Type 1 hypervisors • Experience creating virt‐io drivers • Mastery of C/C++ language, GNU tool chain, and Unix (QNX, Linux, or equivalent) • Experience with embedded build systems including QNX system builder, buildroot, yocto, or equivalent • Knowledge of in‐vehicle signaling and communication mechanisms such as CAN • Proficiency with revision control including Git, Subversion, or equivalent • Multi‐site software project team experience Education Required: • Bachelor's degree in Computer Engineering, Electrical Engineering, Computer Science, or related Education Preferred: • Master's degree in Computer Engineering, Electrical Engineering or Computer Science Additional Information: Web Based Assessment not required for this position. Visa Sponsorship and Domestic Relocation is available for this position.
    [Show full text]
  • Oracle Metadata Management V12.2.1.3.0 New Features Overview
    An Oracle White Paper October 12 th , 2018 Oracle Metadata Management v12.2.1.3.0 New Features Overview Oracle Metadata Management version 12.2.1.3.0 – October 12 th , 2018 New Features Overview Disclaimer This document is for informational purposes. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle. This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates. 1 Oracle Metadata Management version 12.2.1.3.0 – October 12 th , 2018 New Features Overview Table of Contents Executive Overview ............................................................................ 3 Oracle Metadata Management 12.2.1.3.0 .......................................... 4 METADATA MANAGER VS METADATA EXPLORER UI .............. 4 METADATA HOME PAGES ........................................................... 5 METADATA QUICK ACCESS ........................................................ 6 METADATA REPORTING .............................................................
    [Show full text]
  • AMNESIA 33: How TCP/IP Stacks Breed Critical Vulnerabilities in Iot
    AMNESIA:33 | RESEARCH REPORT How TCP/IP Stacks Breed Critical Vulnerabilities in IoT, OT and IT Devices Published by Forescout Research Labs Written by Daniel dos Santos, Stanislav Dashevskyi, Jos Wetzels and Amine Amri RESEARCH REPORT | AMNESIA:33 Contents 1. Executive summary 4 2. About Project Memoria 5 3. AMNESIA:33 – a security analysis of open source TCP/IP stacks 7 3.1. Why focus on open source TCP/IP stacks? 7 3.2. Which open source stacks, exactly? 7 3.3. 33 new findings 9 4. A comparison with similar studies 14 4.1. Which components are typically flawed? 16 4.2. What are the most common vulnerability types? 17 4.3. Common anti-patterns 22 4.4. What about exploitability? 29 4.5. What is the actual danger? 32 5. Estimating the reach of AMNESIA:33 34 5.1. Where you can see AMNESIA:33 – the modern supply chain 34 5.2. The challenge – identifying and patching affected devices 36 5.3. Facing the challenge – estimating numbers 37 5.3.1. How many vendors 39 5.3.2. What device types 39 5.3.3. How many device units 40 6. An attack scenario 41 6.1. Other possible attack scenarios 44 7. Effective IoT risk mitigation 45 8. Conclusion 46 FORESCOUT RESEARCH LABS RESEARCH REPORT | AMNESIA:33 A note on vulnerability disclosure We would like to thank the CERT Coordination Center, the ICS-CERT, the German Federal Office for Information Security (BSI) and the JPCERT Coordination Center for their help in coordinating the disclosure of the AMNESIA:33 vulnerabilities.
    [Show full text]
  • Download File
    Annex 2: List of tested and analyzed data sharing tools (non-exhaustive) Below are the specifications of the tools surveyed, as to February 2015, with some updates from April 2016. The tools selected in the context of EU BON are available in the main text of the publication and are described in more details. This list is also available on the EU BON Helpdesk website, where it will be regularly updated as needed. Additional lists are available through the GBIF resources page, the DataONE software tools catalogue, the BioVel BiodiversityCatalogue and the BDTracker A.1 GBIF Integrated Publishing Toolkit (IPT) Main usage, purpose, selected examples The Integrated Publishing Toolkit is a free open source software tool written in Java which is used to publish and share biodiversity data sets and metadata through the GBIF network. Designed for interoperability, it enables the publishing of content in databases or text files using open standards, namely, the Darwin Core and the Ecological Metadata Language. It also provides a 'one-click' service to convert data set metadata into a draft data paper manuscript for submission to a peer-reviewed journal. Currently, the IPT supports three core types of data: checklists, occurrence datasets and sample based data (plus datasets at metadata level only). The IPT is a community-driven tool. Core development happens at the GBIF Secretariat but the coding, documentation, and internationalization are a community effort. New versions incorporate the feedback from the people who actually use the IPT. In this way, users can help get the features they want by becoming involved. The user interface of the IPT has so far been translated into six languages: English, French, Spanish, Traditional Chinese, Brazilian Portuguese, Japanese (Robertson et al, 2014).
    [Show full text]
  • Apache Log4j 2 V
    ...................................................................................................................................... Apache Log4j 2 v. 2.4.1 User's Guide ...................................................................................................................................... The Apache Software Foundation 2015-10-08 T a b l e o f C o n t e n t s i Table of Contents ....................................................................................................................................... 1. Table of Contents . i 2. Introduction . 1 3. Architecture . 3 4. Log4j 1.x Migration . 10 5. API . 16 6. Configuration . 19 7. Web Applications and JSPs . 50 8. Plugins . 58 9. Lookups . 62 10. Appenders . 70 11. Layouts . 128 12. Filters . 154 13. Async Loggers . 167 14. JMX . 181 15. Logging Separation . 188 16. Extending Log4j . 190 17. Programmatic Log4j Configuration . 198 18. Custom Log Levels . 204 © 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D . T a b l e o f C o n t e n t s ii © 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D . 1 I n t r o d u c t i o n 1 1 Introduction ....................................................................................................................................... 1.1 Welcome to Log4j 2! 1.1.1 Introduction Almost every large application includes its own logging or tracing API. In conformance with this rule, the E.U.
    [Show full text]
  • System and Organization Controls (SOC) 3 Report Over the Google Cloud Platform System Relevant to Security, Availability, and Confidentiality
    System and Organization Controls (SOC) 3 Report over the Google Cloud Platform System Relevant to Security, Availability, and Confidentiality For the Period 1 May 2020 to 30 April 2021 Google LLC 1600 Amphitheatre Parkway Mountain View, CA, 94043 650 253-0000 main Google.com Management’s Report of Its Assertions on the Effectiveness of Its Controls Over the Google Cloud Platform System Based on the Trust Services Criteria for Security, Availability, and Confidentiality We, as management of Google LLC ("Google" or "the Company") are responsible for: • Identifying the Google Cloud Platform System (System) and describing the boundaries of the System, which are presented in Attachment A • Identifying our service commitments and system requirements • Identifying the risks that would threaten the achievement of its service commitments and system requirements that are the objectives of our System, which are presented in Attachment B • Identifying, designing, implementing, operating, and monitoring effective controls over the Google Cloud Platform System (System) to mitigate risks that threaten the achievement of the service commitments and system requirements • Selecting the trust services categories that are the basis of our assertion We assert that the controls over the System were effective throughout the period 1 May 2020 to 30 April 2021, to provide reasonable assurance that the service commitments and system requirements were achieved based on the criteria relevant to security, availability, and confidentiality set forth in the AICPA’s
    [Show full text]
  • Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
    00 Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions MUTAZ BARIKA, University of Tasmania SAURABH GARG, University of Tasmania ALBERT Y. ZOMAYA, University of Sydney LIZHE WANG, China University of Geoscience (Wuhan) AAD VAN MOORSEL, Newcastle University RAJIV RANJAN, Chinese University of Geoscienes and Newcastle University Interest in processing big data has increased rapidly to gain insights that can transform businesses, government policies and research outcomes. This has led to advancement in communication, programming and processing technologies, including Cloud computing services and technologies such as Hadoop, Spark and Storm. This trend also affects the needs of analytical applications, which are no longer monolithic but composed of several individual analytical steps running in the form of a workflow. These Big Data Workflows are vastly different in nature from traditional workflows. Researchers arecurrently facing the challenge of how to orchestrate and manage the execution of such workflows. In this paper, we discuss in detail orchestration requirements of these workflows as well as the challenges in achieving these requirements. We alsosurvey current trends and research that supports orchestration of big data workflows and identify open research challenges to guide future developments in this area. CCS Concepts: • General and reference → Surveys and overviews; • Information systems → Data analytics; • Computer systems organization → Cloud computing; Additional Key Words and Phrases: Big Data, Cloud Computing, Workflow Orchestration, Requirements, Approaches ACM Reference format: Mutaz Barika, Saurabh Garg, Albert Y. Zomaya, Lizhe Wang, Aad van Moorsel, and Rajiv Ranjan. 2018. Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions.
    [Show full text]
  • Reference Guide
    Apache Syncope - Reference Guide Version 2.1.9 Table of Contents 1. Introduction. 2 1.1. Identity Technologies. 2 1.1.1. Identity Stores . 2 1.1.2. Provisioning Engines . 4 1.1.3. Access Managers . 5 1.1.4. The Complete Picture . 5 2. Architecture. 7 2.1. Core . 7 2.1.1. REST . 7 2.1.2. Logic . 8 2.1.3. Provisioning . 8 2.1.4. Workflow. 9 2.1.5. Persistence . 9 2.1.6. Security . 9 2.2. Admin UI. 10 2.2.1. Accessibility . 10 2.3. End-user UI. 12 2.3.1. Password Reset . 12 2.3.2. Accessibility . 13 2.4. CLI . 15 2.5. Third Party Applications. 15 2.5.1. Eclipse IDE Plugin . 15 2.5.2. Netbeans IDE Plugin. 15 3. Concepts . 16 3.1. Users, Groups and Any Objects . 16 3.2. Type Management . 17 3.2.1. Schema . 17 Plain . 17 Derived . 18 Virtual . 18 3.2.2. AnyTypeClass . 19 3.2.3. AnyType . 19 3.2.4. RelationshipType . 21 3.2.5. Type Extensions . 22 3.3. External Resources. 23 3.3.1. Connector Bundles . 24 3.3.2. Connector Instance details . 24 3.3.3. External Resource details . 25 3.3.4. Mapping . 26 3.3.5. Linked Accounts . 29 3.4. Realms . 29 3.4.1. Realm Provisioning . 30 3.4.2. LogicActions . 31 3.5. Entitlements. 31 3.6. Privileges . 31 3.7. Roles. 31 3.7.1. Delegated Administration . 32 3.8. Provisioning. 33 3.8.1. Overview. 33 3.8.2.
    [Show full text]
  • Performance Study of Real-Time Operating Systems for Internet Of
    IET Software Research Article ISSN 1751-8806 Performance study of real-time operating Received on 11th April 2017 Revised 13th December 2017 systems for internet of things devices Accepted on 13th January 2018 E-First on 16th February 2018 doi: 10.1049/iet-sen.2017.0048 www.ietdl.org Rafael Raymundo Belleza1 , Edison Pignaton de Freitas1 1Institute of Informatics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CP 15064, Porto Alegre CEP: 91501-970, Brazil E-mail: [email protected] Abstract: The development of constrained devices for the internet of things (IoT) presents lots of challenges to software developers who build applications on top of these devices. Many applications in this domain have severe non-functional requirements related to timing properties, which are important concerns that have to be handled. By using real-time operating systems (RTOSs), developers have greater productivity, as they provide native support for real-time properties handling. Some of the key points in the software development for IoT in these constrained devices, like task synchronisation and network communications, are already solved by this provided real-time support. However, different RTOSs offer different degrees of support to the different demanded real-time properties. Observing this aspect, this study presents a set of benchmark tests on the selected open source and proprietary RTOSs focused on the IoT. The benchmark results show that there is no clear winner, as each RTOS performs well at least on some criteria, but general conclusions can be drawn on the suitability of each of them according to their performance evaluation in the obtained results.
    [Show full text]
  • Building Machine Learning Inference Pipelines at Scale
    Building Machine Learning inference pipelines at scale Julien Simon Global Evangelist, AI & Machine Learning @julsimon © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Problem statement • Real-life Machine Learning applications require more than a single model. • Data may need pre-processing: normalization, feature engineering, dimensionality reduction, etc. • Predictions may need post-processing: filtering, sorting, combining, etc. Our goal: build scalable ML pipelines with open source (Spark, Scikit-learn, XGBoost) and managed services (Amazon EMR, AWS Glue, Amazon SageMaker) © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Apache Spark https://spark.apache.org/ • Open-source, distributed processing system • In-memory caching and optimized execution for fast performance (typically 100x faster than Hadoop) • Batch processing, streaming analytics, machine learning, graph databases and ad hoc queries • API for Java, Scala, Python, R, and SQL • Available in Amazon EMR and AWS Glue © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. MLlib – Machine learning library https://spark.apache.org/docs/latest/ml-guide.html • Algorithms: classification, regression, clustering, collaborative filtering. • Featurization: feature extraction, transformation, dimensionality reduction. • Tools for constructing, evaluating and tuning pipelines • Transformer – a transform function that maps a DataFrame into a new
    [Show full text]