Cython Cython Build Software That Combines Python’S Expressivity with the Performance “Cython Has Proven Itself and Control of C (And C++)

Total Page:16

File Type:pdf, Size:1020Kb

Cython Cython Build Software That Combines Python’S Expressivity with the Performance “Cython Has Proven Itself and Control of C (And C++) Cython Cython Build software that combines Python’s expressivity with the performance “Cython has proven itself and control of C (and C++). It’s possible with Cython, the compiler and in many foundational hybrid programming language used by foundational packages such as NumPy, and prominent in projects including Pandas, h5py, and scikits- Python projects where learn. In this practical guide, you’ll learn how to use Cython to improve performance is critical. Python’s performance—up to 3000x—and to wrap C and C++ libraries in In this book, Kurt Smith Python with ease. walks you through Author Kurt Smith takes you through Cython’s capabilities, with sample everything you need to code and in-depth practice exercises. If you’re just starting with Cython, or want to go deeper, you’ll learn how this language is an essential part of any know to tap into Cython's performance-oriented Python programmer’s arsenal. power for your own projects.” ■ Use Cython’s static typing to speed up Python code —Robert Bradshaw Cython ■ Gain hands-on experience using Cython features to boost your Lead Cython Developer numeric-heavy Python A GUIDE FOR PYTHON PROGRAMMERS ■ Create new types with Cython—and see how fast object- oriented programming in Python can be ■ Effectively organize Cython code into separate modules and packages without sacrificing performance ■ Use Cython to give Pythonic interfaces to C and C++ libraries ■ Optimize code with Cython’s runtime and compile-time profiling tools ■ Use Cython’s prange function to parallelize loops transparently with OpenMP Kurt W. Smith discovered Cython’s power during his graduate research in com- putational plasma physics. Today, he uses Cython extensively in his consulting work at Enthought, training scientists, engineers, and researchers in Python, NumPy, Cython, and parallel and high-performance computing. Smith PROGRAMMING/PYTHON Twitter: @oreillymedia facebook.com/oreilly US $29.99 CAN $34.99 ISBN: 978-1-491-90155-7 Kurt W. Smith Cython Cython Build software that combines Python’s expressivity with the performance “Cython has proven itself and control of C (and C++). It’s possible with Cython, the compiler and in many foundational hybrid programming language used by foundational packages such as NumPy, and prominent in projects including Pandas, h5py, and scikits- Python projects where learn. In this practical guide, you’ll learn how to use Cython to improve performance is critical. Python’s performance—up to 3000x—and to wrap C and C++ libraries in In this book, Kurt Smith Python with ease. walks you through Author Kurt Smith takes you through Cython’s capabilities, with sample everything you need to code and in-depth practice exercises. If you’re just starting with Cython, or want to go deeper, you’ll learn how this language is an essential part of any know to tap into Cython's performance-oriented Python programmer’s arsenal. power for your own projects.” ■ Use Cython’s static typing to speed up Python code —Robert Bradshaw Cython ■ Gain hands-on experience using Cython features to boost your Lead Cython Developer numeric-heavy Python A GUIDE FOR PYTHON PROGRAMMERS ■ Create new types with Cython—and see how fast object- oriented programming in Python can be ■ Effectively organize Cython code into separate modules and packages without sacrificing performance ■ Use Cython to give Pythonic interfaces to C and C++ libraries ■ Optimize code with Cython’s runtime and compile-time profiling tools ■ Use Cython’s prange function to parallelize loops transparently with OpenMP Kurt W. Smith discovered Cython’s power during his graduate research in com- putational plasma physics. Today, he uses Cython extensively in his consulting work at Enthought, training scientists, engineers, and researchers in Python, NumPy, Cython, and parallel and high-performance computing. Smith PROGRAMMING/PYTHON Twitter: @oreillymedia facebook.com/oreilly US $29.99 CAN $34.99 ISBN: 978-1-491-90155-7 Kurt W. Smith Cython Kurt W. Smith Cython by Kurt W. Smith Copyright © 2015 Kurt W. Smith, PhD. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/ institutional sales department: 800-998-9938 or [email protected]. Editors: Mike Loukides and Meghan Blanchette Indexer: Ellen Troutman Zaig Production Editor: Matthew Hacker Cover Designer: Ellie Volckhausen Copyeditor: Rachel Monaghan Interior Designer: David Futato Proofreader: Rachel Head Illustrator: Rebecca Demarest January 2015: First Edition Revision History for the First Edition: 2015-01-09: First release See http://oreilly.com/catalog/errata.csp?isbn=9781491901557 for release details. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Cython, the cover image of a South African python, and related trade dress are trademarks of O’Reilly Media, Inc. While the publisher and the author have used good faith efforts to ensure that the information and instruc‐ tions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intel‐ lectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights. ISBN: 978-1-491-90155-7 [LSI] For Ellen, Zélie, Leo, and Hugh—my muses. An inconvenience is only an adventure wrongly considered; an adventure is an inconvenience rightly considered. — GKC A dead thing can go with the stream, but only a living thing can go against it. — GKC Table of Contents Preface. xi 1. Cython Essentials. 1 Comparing Python, C, and Cython 2 Function Call Overhead 5 Looping 6 Math Operations 6 Stack Versus Heap Allocation 6 Tempering Our Enthusiasm 7 Wrapping C Code with Cython 8 Summary 10 2. Compiling and Running Cython Code. 11 The Cython Compilation Pipeline 12 Installing and Testing Our Setup 13 The Standard Way: Using distutils with cythonize 14 Our distutils Script 15 Compiling with distutils on Mac OS X and Linux 15 Compiling with distutils on Windows 16 Using Our Extension Module 17 Interactive Cython with IPython’s %%cython Magic 19 Compiling On-the-Fly with pyximport 21 Controlling pyximport and Managing Dependencies 22 pyximport Example with External Dependencies 23 Rolling Our Own and Compiling by Hand 24 Using Cython with Other Build Systems 26 CMake and Cython 26 SCons and Cython 26 Make and Cython 26 v Compiler Directives 28 Summary 29 3. Cython in Depth. 31 Interpreted Versus Compiled Execution 31 Dynamic Versus Static Typing 32 Static Type Declaration with cdef 34 Automatic Type Inference in Cython 36 C Pointers in Cython 37 Mixing Statically and Dynamically Typed Variables 39 Statically Declaring Variables with a Python Type 41 Static Typing for Speed 43 Reference Counting and Static String Types 45 Cython’s Three Kinds of Functions 46 Python Functions in Cython with the def Keyword 46 C Functions in Cython with the cdef Keyword 49 Combining def and cdef Functions with cpdef 50 Functions and Exception Handling 51 Functions and the embedsignature Compiler Directive 53 Type Coercion and Casting 55 Declaring and Using structs, unions, and enums 56 Type Aliasing with ctypedef 59 Cython for Loops and while Loops 61 Guidelines for Efficient Loops 61 Loop Example 62 The Cython Preprocessor 63 Bridging the Python 2 and Python 3 Divide 64 str, unicode, bytes, and All That 66 Summary 67 4. Cython in Practice: N-Body Simulation. 69 Overview of the N-Body Python Code 69 Converting to Cython 71 Python Data Structures and Organization 72 Converting Data Structures to structs 73 Running the Cythonized Version 75 Summary 76 5. Cython and Extension Types. 79 Comparing Python Classes and Extension Types 79 Extension Types in Cython 80 Type Attributes and Access Control 83 vi | Table of Contents C-Level Initialization and Finalization 85 cdef and cpdef Methods 86 Inheritance and Subclassing 89 Casting and Subclasses 90 Extension Type Objects and None 91 Extension Type Properties in Cython 92 Special Methods Are Even More Special 94 Arithmetic Methods 94 Rich Comparisons 96 Iterator Support 98 Summary 99 6. Organizing Cython Code. 101 Cython Implementation (.pyx) and Declaration (.pxd) Files 102 The cimport Statement 105 Predefined Definition Files 107 Include Files and the include Statement 109 Organizing and Compiling Cython Modules Inside Python Packages 110 Summary 113 7. Wrapping C Libraries with Cython. 115 Declaring External C Code in Cython 115 Cython Does Not Automate Wrapping 117 Declaring External C Functions and typedefs 118 Declaring and Wrapping C structs, unions, and enums 119 Wrapping C Functions 121 Wrapping C structs with Extension Types 122 Constants, Other Modifiers, and Controlling What Cython Generates 125 Error Checking and Raising Exceptions 128 Callbacks 128 Callbacks and Exception Propagation 133 Summary 134 8. Wrapping C++ Libraries with Cython. 135 Simple Example: MT_RNG Class 135 The Wrapper Extension Type 137 Compiling with C++ 138 Using Our Wrapper from Python 139 Overloaded Methods and Functions 140 Operator Overloading 142 C++ Exceptions 144 Stack and Heap Allocation of C++ Instances 145 Table of Contents | vii Working with C++ Class Hierarchies 146 C++ Templates 147 Templated Functions and Cython’s Fused Types 148 Templated Classes 149 Iterators and Nested Classes 150 Included STL Container Class Declarations 151 Memory Management and Smart Pointers 154 Summary 157 9. Cython Profiling Tools. 159 Cython Runtime Profiling 159 Performance Profiling and Annotations 164 Summary 170 10.
Recommended publications
  • How to Access Python for Doing Scientific Computing
    How to access Python for doing scientific computing1 Hans Petter Langtangen1,2 1Center for Biomedical Computing, Simula Research Laboratory 2Department of Informatics, University of Oslo Mar 23, 2015 A comprehensive eco system for scientific computing with Python used to be quite a challenge to install on a computer, especially for newcomers. This problem is more or less solved today. There are several options for getting easy access to Python and the most important packages for scientific computations, so the biggest issue for a newcomer is to make a proper choice. An overview of the possibilities together with my own recommendations appears next. Contents 1 Required software2 2 Installing software on your laptop: Mac OS X and Windows3 3 Anaconda and Spyder4 3.1 Spyder on Mac............................4 3.2 Installation of additional packages.................5 3.3 Installing SciTools on Mac......................5 3.4 Installing SciTools on Windows...................5 4 VMWare Fusion virtual machine5 4.1 Installing Ubuntu...........................6 4.2 Installing software on Ubuntu....................7 4.3 File sharing..............................7 5 Dual boot on Windows8 6 Vagrant virtual machine9 1The material in this document is taken from a chapter in the book A Primer on Scientific Programming with Python, 4th edition, by the same author, published by Springer, 2014. 7 How to write and run a Python program9 7.1 The need for a text editor......................9 7.2 Spyder................................. 10 7.3 Text editors.............................. 10 7.4 Terminal windows.......................... 11 7.5 Using a plain text editor and a terminal window......... 12 8 The SageMathCloud and Wakari web services 12 8.1 Basic intro to SageMathCloud...................
    [Show full text]
  • Goless Documentation Release 0.6.0
    goless Documentation Release 0.6.0 Rob Galanakis July 11, 2014 Contents 1 Intro 3 2 Goroutines 5 3 Channels 7 4 The select function 9 5 Exception Handling 11 6 Examples 13 7 Benchmarks 15 8 Backends 17 9 Compatibility Details 19 9.1 PyPy................................................... 19 9.2 Python 2 (CPython)........................................... 19 9.3 Python 3 (CPython)........................................... 19 9.4 Stackless Python............................................. 20 10 goless and the GIL 21 11 References 23 12 Contributing 25 13 Miscellany 27 14 Indices and tables 29 i ii goless Documentation, Release 0.6.0 • Intro • Goroutines • Channels • The select function • Exception Handling • Examples • Benchmarks • Backends • Compatibility Details • goless and the GIL • References • Contributing • Miscellany • Indices and tables Contents 1 goless Documentation, Release 0.6.0 2 Contents CHAPTER 1 Intro The goless library provides Go programming language semantics built on top of gevent, PyPy, or Stackless Python. For an example of what goless can do, here is the Go program at https://gobyexample.com/select reimplemented with goless: c1= goless.chan() c2= goless.chan() def func1(): time.sleep(1) c1.send(’one’) goless.go(func1) def func2(): time.sleep(2) c2.send(’two’) goless.go(func2) for i in range(2): case, val= goless.select([goless.rcase(c1), goless.rcase(c2)]) print(val) It is surely a testament to Go’s style that it isn’t much less Python code than Go code, but I quite like this. Don’t you? 3 goless Documentation, Release 0.6.0 4 Chapter 1. Intro CHAPTER 2 Goroutines The goless.go() function mimics Go’s goroutines by, unsurprisingly, running the routine in a tasklet/greenlet.
    [Show full text]
  • IMPLEMENTING OPTION PRICING MODELS USING PYTHON and CYTHON Sanjiv Dasa and Brian Grangerb
    JOURNAL OF INVESTMENT MANAGEMENT, Vol. 8, No. 4, (2010), pp. 1–12 © JOIM 2010 JOIM www.joim.com IMPLEMENTING OPTION PRICING MODELS USING PYTHON AND CYTHON Sanjiv Dasa and Brian Grangerb In this article we propose a new approach for implementing option pricing models in finance. Financial engineers typically prototype such models in an interactive language (such as Matlab) and then use a compiled language such as C/C++ for production systems. Code is therefore written twice. In this article we show that the Python programming language and the Cython compiler allows prototyping in a Matlab-like manner, followed by direct generation of optimized C code with very minor code modifications. The approach is able to call upon powerful scientific libraries, uses only open source tools, and is free of any licensing costs. We provide examples where Cython speeds up a prototype version by over 500 times. These performance gains in conjunction with vast savings in programmer time make the approach very promising. 1 Introduction production version in a compiled language like C, C++, or Fortran. This duplication of effort slows Computing in financial engineering needs to be fast the deployment of new algorithms and creates ongo- in two critical ways. First, the software development ing software maintenance problems, not to mention process must be fast for human developers; pro- added development costs. grams must be easy and time efficient to write and maintain. Second, the programs themselves must In this paper we describe an approach to tech- be fast when they are run. Traditionally, to meet nical software development that enables a single both of these requirements, at least two versions of version of a program to be written that is both easy a program have to be developed and maintained; a to develop and maintain and achieves high levels prototype in a high-level interactive language like of performance.
    [Show full text]
  • High-Performance Computation with Python | Python Academy | Training IT
    Training: Python Academy High-Performance Computation with Python Training: Python Academy High-Performance Computation with Python TRAINING GOALS: The requirement for extensive and challenging computations is far older than the computing industry. Today, software is a mere means to a specific end, it needs to be newly developed or adapted in countless places in order to achieve the special goals of the users and to run their specific calculations efficiently. Nothing is of more avail to this need than a programming language that is easy for users to learn and that enables them to actively follow and form the realisation of their requirements. Python is this programming language. It is easy to learn, to use and to read. The language makes it easy to write maintainable code and to use it as a basis for communication with other people. Moreover, it makes it easy to optimise and specialise this code in order to use it for challenging and time critical computations. This is the main subject of this course. CONSPECT: Optimizing Python programs Guidelines for optimization. Optimization strategies - Pystone benchmarking concept, CPU usage profiling with cProfile, memory measuring with Guppy_PE Framework. Participants are encouraged to bring their own programs for profiling to the course. Algorithms and anti-patterns - examples of algorithms that are especially slow or fast in Python. The right data structure - comparation of built-in data structures: lists, sets, deque and defaulddict - big-O notation will be exemplified. Caching - deterministic and non-deterministic look on caching and developing decorates for these purposes. The example - we will use a computionally demanding example and implement it first in pure Python.
    [Show full text]
  • Python Guide Documentation 0.0.1
    Python Guide Documentation 0.0.1 Kenneth Reitz 2015 11 07 Contents 1 3 1.1......................................................3 1.2 Python..................................................5 1.3 Mac OS XPython.............................................5 1.4 WindowsPython.............................................6 1.5 LinuxPython...............................................8 2 9 2.1......................................................9 2.2...................................................... 15 2.3...................................................... 24 2.4...................................................... 25 2.5...................................................... 27 2.6 Logging.................................................. 31 2.7...................................................... 34 2.8...................................................... 37 3 / 39 3.1...................................................... 39 3.2 Web................................................... 40 3.3 HTML.................................................. 47 3.4...................................................... 48 3.5 GUI.................................................... 49 3.6...................................................... 51 3.7...................................................... 52 3.8...................................................... 53 3.9...................................................... 58 3.10...................................................... 59 3.11...................................................... 62
    [Show full text]
  • Python Guide Documentation Publicación 0.0.1
    Python Guide Documentation Publicación 0.0.1 Kenneth Reitz 17 de May de 2018 Índice general 1. Empezando con Python 3 1.1. Eligiendo un Interprete Python (3 vs. 2).................................3 1.2. Instalando Python Correctamente....................................5 1.3. Instalando Python 3 en Mac OS X....................................6 1.4. Instalando Python 3 en Windows....................................8 1.5. Instalando Python 3 en Linux......................................9 1.6. Installing Python 2 on Mac OS X.................................... 10 1.7. Instalando Python 2 en Windows.................................... 12 1.8. Installing Python 2 on Linux....................................... 13 1.9. Pipenv & Ambientes Virtuales...................................... 14 1.10. Un nivel más bajo: virtualenv...................................... 17 2. Ambientes de Desarrollo de Python 21 2.1. Your Development Environment..................................... 21 2.2. Further Configuration of Pip and Virtualenv............................... 26 3. Escribiendo Buen Código Python 29 3.1. Estructurando tu Proyecto........................................ 29 3.2. Code Style................................................ 40 3.3. Reading Great Code........................................... 49 3.4. Documentation.............................................. 50 3.5. Testing Your Code............................................ 53 3.6. Logging.................................................. 57 3.7. Common Gotchas...........................................
    [Show full text]
  • Introduction to Python (Or E7 in a Day ...Plus How to Install)
    What is \Python" Getting Started \Matrix Lab" How to Get it All Intricacies Introduction to Python (Or E7 in a Day ...plus how to install) Daniel Driver E177-Advanced MATLAB March 31, 2015 What is \Python" Getting Started \Matrix Lab" How to Get it All Intricacies Overview 1 What is \Python" 2 Getting Started 3 \Matrix Lab" 4 How to Get it All 5 Intricacies What is \Python" Getting Started \Matrix Lab" How to Get it All Intricacies What is \Python" What is "Python" What is \Python" Getting Started \Matrix Lab" How to Get it All Intricacies What is Python Interpreted Language Code Read at Run Time Dynamic Variables like MATLAB A='I am a string' A=3 Open Source Two Major Versions python 2.x -Older python 3.x -Newer Largely the Same for in Day to Figure : Python Logo Day use Will discuss differences later https://www.python.org/downloads/ What is \Python" Getting Started \Matrix Lab" How to Get it All Intricacies CPython-The \Python" You Think of CPython is Python implemented in C Generally when people say \Python" This is probably what they are referring to This is what we will be referring in this presentation. Python code interpreted at Run time Turns into byte code Byte code on Python Virtual Machine Not to be confused with Cython (which is a python library that compiles python into C code) http://www.thepythontree.in/python-vs-cython-vs-jython-vs- ironpython/ What is \Python" Getting Started \Matrix Lab" How to Get it All Intricacies Other Implementations of Python Python interface also implemented in Java:Jython-bytecode runs on Java
    [Show full text]
  • Using Python to Program LEGO MINDSTORMS Robots: the Pynxc Project
    Bryant University Bryant Digital Repository Science and Technology Faculty Journal Science and Technology Faculty Publications Articles and Research 2010 Using Python to Program LEGO MINDSTORMS Robots: The PyNXC Project Brian S. Blais Bryant University Follow this and additional works at: https://digitalcommons.bryant.edu/sci_jou Part of the Programming Languages and Compilers Commons Recommended Citation Blais, Brian S., "Using Python to Program LEGO MINDSTORMS Robots: The PyNXC Project" (2010). Science and Technology Faculty Journal Articles. Paper 18. https://digitalcommons.bryant.edu/sci_jou/18 This Article is brought to you for free and open access by the Science and Technology Faculty Publications and Research at Bryant Digital Repository. It has been accepted for inclusion in Science and Technology Faculty Journal Articles by an authorized administrator of Bryant Digital Repository. For more information, please contact [email protected]. The Python Papers 5(2): 1 Using Python to Program LEGO MINDSTORMS® Robots: The PyNXC Project Brian S. Blais Bryant University, Smithfield RI [email protected] Abstract LEGO MINDSTORMS® NXT (Lego Group, 2006) is a perfect platform for introducing programming concepts, and is generally targeted toward children from age 8-14. The language which ships with the MINDSTORMS®, called NXTg, is a graphical language based on LabVIEW (Jeff Kodosky, 2010). Although there is much value in graphical languages, such as LabVIEW, a text-based alternative can be targeted at an older audiences and serve as part of a more general introduction to modern computing. Other languages, such as NXC (Not Exactly C) (Hansen, 2010) and PbLua (Hempel, 2010), fit this description. Here we introduce PyNXC, a subset of the Python language which can be used to program the NXT MINDSTORMS®.
    [Show full text]
  • Nuitka User Manual Contents
    Nuitka User Manual Contents Overview 1 Usage 1 Requirements 1 Command Line 3 Installation 3 License 3 Tutorial Setup and build on Windows 3 Setup 4 Install Python 4 Install Nuitka 4 Write some code and test 4 Create a folder for the Python code 4 Test your program 4 Build it using 4 Run it 5 Distribute 5 Use Cases 5 Use Case 1 - Program compilation with all modules embedded 5 Use Case 2 - Extension Module compilation 6 Use Case 3 - Package compilation 7 Use Case 4 - Program Distribution 7 Tweaks 8 Icons 8 Splash screen 9 Typical Problems 9 Memory issues and compiler bugs 9 Avoid 32 bit C compiler/assembler memory limits 9 Use LTO compilation or not 10 Switch the C compiler to clang 10 Add a larger swap file to your embedded Linux 10 Limit the amount of compilation jobs 10 Dynamic sys.path 10 Missing data files in standalone 10 Missing DLLs in standalone 10 Dependency creep in standalone 10 Onefile: Finding files 11 Windows Programs without console give no errors 11 Tips 11 Nuitka Options in the code 11 Python command line flags 12 Caching compilation results 12 Control where Caches live 12 Runners 12 Fastest C Compilers 12 Unexpected Slowdowns 13 Standalone executables and dependencies 13 Windows errors with resources 13 Windows standalone program redistribuation 13 Detecting Nuitka at run time 14 Performance 14 pystone results 14 Where to go next 14 Follow me on Twitter 14 Report issues or bugs 14 Word of Warning 15 Join Nuitka 15 Donations 15 Unsupported functionality 15 The co_code attribute of code objects 15 PDB 16 Optimization 16
    [Show full text]
  • Benchmarking Python Interpreters
    DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING 300 CREDITS, SECOND CYCLE STOCKHOLM, SWEDEN 2016 Benchmarking Python Interpreters MEASURING PERFORMANCE OF CPYTHON, CYTHON, JYTHON AND PYPY ALEXANDER ROGHULT KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION Benchmarking Python Interpreters Measuring Performance of CPython, Cython, Jython and PyPy ALEXANDER ROGHULT Master’s Thesis in Computer Science School of Computer Science and Communication(CSC) Royal Institute of Technology, Stockholm Supervisor: Douglas Wikström Examiner: Johan Håstad Abstract For the Python programming language there are several different interpreters and implementations. In this thesis project the performance regarding execution time is evalu- ated for four of these; CPython, Cython, Jython and PyPy. The performance was measured in a test suite, created dur- ing the project, comprised of tests for Python dictionaries, lists, tuples, generators and objects. Each test was run with both integers and objects as test data with varying prob- lem size. Each test was implemented using Python code. For Cython and Jython separate versions of the test were also implemented which contained syntax and data types specific for that interpreter. The results showed that Jython and PyPy were fastest for a majority of the tests when running code with only Python syntax and data types. Cython uses the Python C/API and is therefore dependent on CPython. The per- formance of Cython was therefore often similar to CPython. Cython did perform better on some of the tests when using Cython syntax and data types, as it could therefore de- crease its reliance to CPython. Each interpreter was able to perform fastest on at least one test, showing that there is not an interpreter that is best for all problems.
    [Show full text]
  • A Multi-Core Python HTTP Server (Much) Faster Than Go (Spoiler: Cython)
    A multi-core Python HTTP server (much) faster than Go (spoiler: Cython) Jean-Paul Smets jp (at) nexedi (dot) com Bryton Lacquement bryton (dot) lacquement (at) nexedi (dot) com Details This presentation how various progress which Nexedi made in bringing Python language closer to its corporate goals in terms of performance and concurrency. QR Code Details You may find this presentation online by scanning the QR Code above. Agenda Nexedi Conclusion Rationale Code Details The presentation has four parts. First we provide some information about Nexedi. Then we reach to the conclusions, so that those who are in a hurry can leave. Then we take some time to explain the rational behind our efforts. And last we show some code. Nexedi Nexedi - Profile Largest Free Software Publisher in Europe Founded in 2001 in Lille (France) - 35 engineers worldwide Enterprise Software for mission critical applications Build, deploy, train and run services Profitable since day 1, long term organic growth Details Nexedi is probably the largest Free Software publisher with more than 10 products and 15 million lines of code. Nexedi does not depend on any investor and is a profitable company since day 1. Nexedi - Clients nexedi.com/success Details Nexedi clients are mainly large companies and governments looking for scalable enterprise solutions such as ERP, CRM, DMS, data lake, big data cloud, etc. Nexedi - a Python Shop Nexedi Software Stack stack.nexedi.com Details Nexedi software is primarily developed in Python, with some parts in Javascript. Rapid.Space: ERP5, buildout, re6st, etc. https://rapid.space Details One of the recent services launched by Nexedi is a Big Data cloud entirely based on Open Hardware and entirely running on Free Software that anyone can contribute to.
    [Show full text]
  • Using Cython to Speed up Numerical Python Programs
    Using Cython to Speed up Numerical Python Programs Ilmar M. Wilbers1, Hans Petter Langtangen1,3, and Åsmund Ødegård2 1Center for Biomedical Computing, Simula Research Laboratory, Oslo 2Simula Research Laboratory, Oslo 3Department of Informatics, University of Oslo, Oslo Abstract The present study addresses a series of techniques for speeding up numerical calculations in Python programs. The techniques are evaluated in a benchmark problem involving finite difference solution of a wave equation. Our aim is to find the optimal mix of user-friendly, high-level, and safe programming in Python with more detailed and more error-prone low-level programming in compiled languages. In particular, we present and evaluate Cython, which is a new software tool that combines high- and low-level programming in an attractive way with promising performance. Cython is compared to more well-known tools such as F2PY, Weave, and Instant. With the mentioned tools, Python has a significant potential as programming platform in computational mechanics. Keywords: Python, compiled languages, numerical algorithms INTRODUCTION Development of scientific software often consumes large portions of research budgets in compu- tational mechanics. Using human-efficient programming tools and techniques to save code de- velopment time is therefore of paramount importance. Python [13] has in recent years attracted significant attention as a potential language for writing numerical codes in a human-efficient way. There are several reasons for this interest. First, many of the features that have made MAT- LAB so popular are also present in Python. Second, Python is a free, open source, powerful, and very flexible modern programming language that supports all major programming styles (proce- dural, object-oriented, generic, and functional programming).
    [Show full text]