Effect of Temperature on Some Biological Parameters of an Iranian Population of the Rose Aphid, Macrosiphum Rosae (Hemiptera: Aphididae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kansas Insect Newsletter
Kansas Insect Newsletter For Agribusinesses, Applicators, Consultants and Extension Personnel Department of Entomology 123 West Waters Hall K-State Research and Extension Manhattan, Kansas 66506 785-532-5891 http://www.entomology.ksu.edu/extension __________________________________________________________________________________________________ April 13, 2012 No. 6 Aphids on Roses Aphids are “out-and-about” on a variety of plants including chrysanthemum, oak, and rose. Although roses are one of the most beautiful plants grown in landscapes and gardens they are susceptible to attack from a multitude of arthropod (insect and mite) pests. In fact, roses may be attacked by different aphid species such as the potato aphid (Macrosiphum euphorbiae) and the cotton aphid (Aphis gossypii); however, the predominant species that feeds on cultivated roses is the rose aphid (Macrosiphum rosae). Rose aphids are soft-bodied, pear-shaped insects approximately 1/4 inches long. They may vary in color from green to pink to red. There are two tubes, called cornicles that protrude out from the end of the abdomen. Rose aphids overwinter as eggs on rose canes. Rose aphids typically start feeding on roses in early spring (RIGHT NOW!) as the new flush of growth emerges. They cluster on leaves, stems, and developing buds. Rose aphids feed on plant fluids (e.g., phloem) with their piercing-sucking mouthparts, and tend to congregate in large numbers, feeding on terminal growth such as leaves and developing flower buds, and on leaf undersides. Their feeding causes leaves to curl upward and deforms flower buds. Flower buds may abort or fall prematurely before opening. In addition, rose aphids produce copious amounts of honeydew, which is a clear, sticky liquid exudate produced during feeding. -
Aphid Species (Hemiptera: Aphididae) Infesting Medicinal and Aromatic Plants in the Poonch Division of Azad Jammu and Kashmir, Pakistan
Amin et al., The Journal of Animal & Plant Sciences, 27(4): 2017, Page:The J.1377 Anim.-1385 Plant Sci. 27(4):2017 ISSN: 1018-7081 APHID SPECIES (HEMIPTERA: APHIDIDAE) INFESTING MEDICINAL AND AROMATIC PLANTS IN THE POONCH DIVISION OF AZAD JAMMU AND KASHMIR, PAKISTAN M. Amin1, K. Mahmood1 and I. Bodlah 2 1 Faculty of Agriculture, Department of Entomology, University of Poonch, 12350 Rawalakot, Azad Jammu and Kashmir, Pakistan 2Department of Entomology, PMAS-Arid Agriculture University, 46000 Rawalpindi, Pakistan Corresponding Author Email: [email protected] ABSTRACT This study conducted during 2015-2016 presents first systematic account of the aphids infesting therapeutic herbs used to cure human and veterinary ailments in the Poonch Division of Azad Jammu and Kashmir, Pakistan. In total 20 aphid species, representing 12 genera, were found infesting 35 medicinal and aromatic plant species under 31 genera encompassing 19 families. Aphis gossypii with 17 host plant species was the most polyphagous species followed by Myzus persicae and Aphis fabae that infested 15 and 12 host plant species respectively. Twenty-two host plant species had multiple aphid species infestation. Sonchus asper was infested by eight aphid species and was followed by Tagetes minuta, Galinosoga perviflora and Chenopodium album that were infested by 7, 6 and 5 aphid species respectively. Asteraceae with 11 host plant species under 10 genera, carrying 13 aphid species under 8 genera was the most aphid- prone plant family. A preliminary systematic checklist of studied aphids and list of host plant species are provided. Key words: Aphids, Medicinal/Aromatic plants, checklist, Poonch, Kashmir, Pakistan. -
The Debate on Plant and Crop Biodiversity and Biotechnology
The Debate on Plant and Crop Biodiversity and Biotechnology Klaus Ammann, [email protected] Version from December 15, 2017, 480 full text references, 117 pp. ASK-FORCE contribution No. 11 Nearly 470 references on biodiversity and Agriculture need still to be screened and selected. Contents: 1. Summary ........................................................................................................................................................................... 3 2. The needs for biodiversity – the general case ................................................................................................................ 3 3. Relationship between biodiversity and ecological parameters ..................................................................................... 5 4. A new concept of sustainability ....................................................................................................................................... 6 4.1. Revisiting the original Brundtland definition of sustainable development ...............................................................................................................7 4.2. Redefining Sustainability for Agriculture and Technology, see fig. 1 .........................................................................................................................8 5. The Issue: unnecessary stigmatization of GMOs .......................................................................................................... 12 6. Types of Biodiversity ...................................................................................................................................................... -
The Occurrence of Aphids on Sweet Maize in South-Eastern Poland
ISSN 1644-0692 www.acta.media.pl Acta Sci. Pol. Hortorum Cultus, 14(6) 2015, 39-54 THE OCCURRENCE OF APHIDS ON SWEET MAIZE IN SOUTH-EASTERN POLAND Paweł K. Bereś Institute of Plant Protection – National Research Institute in Poznań, Regional Experimental Station in Rzeszów Abstract. In Poland sweet maize is a small-acreage crop, and because of this no complex plan for the protection of this plant against pests and other harmful organisms has been developed. Since the enforcement of integrated pest management (IPM) in the EU in 2014 the use of chemical control methods has to be supported by relevant data on the biology of the controlled pest. A very limited number of studies have been carried out in Poland on the harmful entomofauna of sweet maize, including aphids. Studies were carried out in 2009–2014 on a field of sweet maize (Zea mays L. var. saccharata), ‘Candle’ cultivar, in south-eastern Poland. In the study years the infestation with aphids was from very low to moderately high. Seven aphid species were identified on sweet maize. The above-ground plant parts were infested with Rhopalosiphum padi L., Metopolophium dirhodum Walk., Sitobion avenae F., Rhopalosiphum maidis Fitch., Aphis fabae Scop. and Myzus persicae Sulz. A small number of individuals representing Tetraunera ulmi L. were found on the root systems of plants. R. padi was the dominant aphid species in all study years. M. dir- hodum and S. aveane occurred in lower numbers, while other aphid species formed single colonies. Aphids began to infest maize plants from the last ten days of April or from May, and ended feeding at the end of September or in the first half of October. -
Effects of Nitrogen Fertilization on the Life History of the Madeira Mealybug
Clemson University TigerPrints All Theses Theses 12-2015 Effects of Nitrogen Fertilization on the Life History of the Madeira Mealybug (Phenacoccus madeirensis) and the Molecular Composition of its Host Plant Stephanie Alliene Rhodes Clemson University Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Rhodes, Stephanie Alliene, "Effects of Nitrogen Fertilization on the Life History of the Madeira Mealybug (Phenacoccus madeirensis) and the Molecular Composition of its Host Plant" (2015). All Theses. 2584. https://tigerprints.clemson.edu/all_theses/2584 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. EFFECTS OF NITROGEN FERTILIZATION ON THE LIFE HISTORY OF THE MADEIRA MEALYBUG (PHENACOCCUS MADEIRENSIS) AND THE MOLECULAR COMPOSITION OF ITS HOST PLANT A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology by Stephanie Alliene Rhodes December 2015 Accepted by: Dr. Juang-Horng Chong, Committee Co-Chair Dr .Matthew Turnbull, Committee Co-Chair Dr. Peter Adler Dr. Dara Park ABSTRACT The aim of this study was to investigate how different nitrogen fertilization rates of host-plants influence the development, fecundity, and nutritional status of a pest insect, the Madeira mealybug (Phenococcus madeirensis Green, Hemiptera: Psuedococcidae). This study evaluated the effects of nitrogen fertilization (0, 75, 150 and 300 ppm N) on the growth, % nitrogen, % carbon, lipid, and protein contents of basil plants (Ocimum basilicum L., Lamiaceae), and the subsequent impacts of host-plant nutritional status on the life history and total lipid and protein contents of the Madeira mealybug. -
Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture. -
Classification of Aphid on the Basis of Their Taxonomic Features 3 1Aeman Afzal,2Kamran Jamil , Irfan Qadir,4Samiullah Khan,5Abdul Qayyum Zehri,6 Dad Muhammad
International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 4, Issue 4, April – 2020, Pages: 19-30 Classification of Aphid on The Basis of Their Taxonomic Features 3 1Aeman Afzal,2kamran Jamil , Irfan Qadir,4Samiullah khan,5Abdul Qayyum Zehri,6 Dad Muhammad. 7Muhammad Asif, 8Abdul Raziq. 1 Lab assistant Directorate Post harvest and food technology ARI Quetta. 2.Agriculture Officer Agriculture Extension Quetta Balochistan 3. Research Officer Directorate Agriculture Research Baghbana Khuzdar. 4. Lasbela University of Agriculture, water and marine sciences uthal. 5. Agriculture Officer Agriculture Extension khuzdar Balochistan. 6. Horticulturist Directorate Agriculture Research Panjgor. 7 Deputy Director Agriculture Extension Balochistan-Pakistan. 8. Agriculture officer Directorate of Procurement of supplies Extension Balochistan. Abstract: The experiment was conducted at Quetta to classification of different aphis and thiers host in Balochistan .Aphids were collected randomly from different localities of Quetta such as Baleli, Shaikhmanda, Sariab and Brewrey, etc., during year 2013-2014 and identified them up to the specific level by running the keys of R.L. Blackman and V.F. Eastop. In the whole 5 aphids were identified on the basis of their antennal tubercles, length of third antennal segment, the basal and terminal process of last antennal segment, length of hind tarsus & number of hairs on it, shape or size of cauda and siphunculi. Several host plants were found being attacked by these identified aphids. In view of the greater variation in characters of the specimens in this area, non-availability of detailed descriptions, the keys have been constructed in order to make the future identification easier. -
Identifying Aphid Resistance in the Ancestral Wheat Triticum Monococcum Under Feld Conditions Amma L
www.nature.com/scientificreports OPEN Identifying aphid resistance in the ancestral wheat Triticum monococcum under feld conditions Amma L. Simon1,2*, John C. Caulfeld1, Kim E. Hammond‑Kosack1, Linda M. Field1 & Gudbjorg I. Aradottir3 Wheat is an economically, socially, and nutritionally important crop, however, aphid infestation can often reduce wheat yield through feeding and virus transmission. Through feld phenotyping, we investigated aphid resistance in ancestral wheat Triticum monococcum (L.). Aphid (Rhopalosiphum padi (L.), Sitobion avenae (F.) and Metopolophium dirhodum (Wlk.)) populations and natural enemy presence (parasitised mummifed aphids, ladybird adults and larvae and lacewing eggs and larvae) on two naturally susceptible wheat varieties, Triticum aestivum (L.) var. Solstice and T. monococcum MDR037, and three potentially resistant genotypes T. monococcum MDR657, MDR045 and MDR049 were monitored across three years of feld trials. Triticum monococcum MDR045 and MDR049 had smaller aphid populations, whereas MDR657 showed no resistance. Overall, natural enemy presence was positively correlated with aphid populations; however, MDR049 had similar natural enemy presence to MDR037 which is susceptible to aphid infestation. It is hypothesised that alongside reducing aphid population growth, MDR049 also confers indirect resistance by attracting natural enemies. The observed resistance to aphids in MDR045 and MDR049 has strong potential for introgression into commercial wheat varieties, which could have an important role in Integrated Pest Management strategies to reduce aphid populations and virus transmission. Wheat Triticum aestivum (L.) is the third most important crop globally and is the main ingredient in many diets worldwide1,2 providing 20–29% of dietary calories and protein 3. In Europe, wheat is the main crop with 138.3 million tonnes produced in 2018 (FAO, 2020). -
Candidates for the Biological Control of Teasel, Dipsacus Spp
Candidates for the biological control of teasel, Dipsacus spp. René Sforza1 Summary Dipsacus fullonum L., wild teasel, and D. laciniatus L., cut-leaf teasel (Dipsacaceae), native to Eurasia, were introduced into North America in the 1700s. Primarily cultivated for its seedheads, D. fullonum escaped from cultivation and colonized waterways, waste ground, fallow fields and pastures, outcom- peting native plants. This study reports on foreign exploration for biological control agents against teasel in its native range. Countries from France to Russia were surveyed, with a particular emphasis on insects feeding either on rosettes or seedheads. Two potential candidates were collected, namely the checkerspot butterfly, Euphydryas aurinia (Lepidoptera: Nymphalidae), and the leaf beetle, Galeruca pomonae (Coleoptera: Chrysomelidae). This is the first report of these two insect species feeding on teasel. Both were collected in the same locations in northern Turkey, and may feed concurrently on the same plants. Galeruca pomonae was also collected from south-eastern Russia. Preliminary host-choice and no-choice test experiments showed that G. pomonae can complete its entire development on teasel but does not feed on carrot, radish, cabbage, or lettuce. Euphydryas aurinia populations from Turkey were parasitized by a tachinid fly, Erycia furibunda. Ecological considerations and host specificity are discussed for potential biological control programs. Keywords: Biocontrol, Chrysomelidae, Dipsacaceae, Endothenia, Euphydryas, Galeruca, invasion, Nymphalidae, teasel, Tortricidae, weeds. Introduction 1975b). This plant belongs to the Dipsacaceae family (300 species worldwide) divided into three tribes, Teasel is an invasive species in North America. which comprise only 12 North American species Research on herbivores of Dipsacus fullonum and among the genera Dipsacus, Knautia, Succisella, closely related species has been conducted since 2000. -
Coccinella Transversalis Fabricius on Different Aphid Species
1. Bioi. Control, 17(1): 35-41, 2003 Comparative prey consumption and searching efficiency of Coccinella septempunctata Linnaeus and Coccinella transversalis Fabricius on different aphid species OMKAR and SHEFALISRIVASTAVA Department of Zoology, University ofLucknow Lucknow 226007. Utter Pradesh, India E-mail: [email protected] ABSTRACT: The comparative prey consumption and searching efficiency of fourth instar gruhs of Coccinella septempllnctata Linnaeus and Coccinella transversalis Fabricius against three aphid species, viz. Rhopalosiphum maidis (Fitch), Myzus persicae (Sulzer) and Macrosiphmn rosae (Linnaeus) were evaluated to assess the efficiency of these predators in aphid biocontroI. The larvae of C. septempunctata consumed maximum number (245.60±1.92) of M. persicae at prey density of 800 and minimum (18.S0±0.88) of R. maidis at prey density of 25 in 24 hours. Fourth instar of C. transversalis consumed maximum number (224.80±1.93) of M. persicae at the prey density of 800 and minimum number (17.40±0.58) of M. rosae at the prey density of 25 in 24 hours. Area of discovery of C. septempunctata and C. transversalis was maximum at the lowest predator (1) and prey-densities (25) of M. persicae. The same was minimum in the case of C. septempunctata and C. transversalis at highest predator (8) and prey- densities (800) of R. maidis and M. rosae, respectively. Prey consumption hy hoth coccinellids increased but their searching efficiency decreased with increase of either prey or predator density. The predatory potential and searching efficiency of C. septempunctata was relatively higher than that of C. transversalis. KEY WORDS: Aphids, Coccil/ella septempullctata, Coccinella transversalis, functional response, numerical response, searching efficiency Aphids are economically important insects Coccinella transversalis Fabricius are locally causing severe damage to a number of crop plants. -
Rapid Screening of Invertebrate Predators for Multiple Prey DNA
Molecular Ecology (2005) 14, 819–827 doi: 10.1111/j.1365-294x.2005.02442.x RapidBlackwell Publishing, Ltd. screening of invertebrate predators for multiple prey DNA targets G. L. HARPER,*¶ R. A. KING,* C. S. DODD,* J. D. HARWOOD,*§ D. M. GLEN,†‡ M. W. BRUFORD* and W. O. C. SYMONDSON* *Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff, CF10 3TL, UK, †IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol, BS41 9AF, UK, ‡Styloma Research & Consulting, Phoebe, The Lippiatt, Cheddar, BS27 3QP, UK Abstract DNA-based techniques are providing valuable new approaches to tracking predator–prey interactions. The gut contents of invertebrate predators can be analysed using species-specific primers to amplify prey DNA to confirm trophic links. The problem is that each predator needs to be analysed with primers for the tens of potential prey available at a field site, even though the mean number of species detected in each gut may be as few as one or two. Con- ducting all these PCRs (polymerase chain reactions) is a lengthy process, and effectively precludes the analysis of the hundreds of predators that might be required for a meaningful ecological study. We report a rapid, more sensitive and practical approach. Multiplex PCRs, incorporating fluorescent markers, were found to be effective at amplifying degraded DNA from predators’ guts and could amplify mitochondrial DNA fragments from 10+ species simultaneously without ‘drop outs’. The combined PCR products were then separated by size on polyacrylamide gels on an ABI377 sequencer. New primers to detect the remains of aphids, earthworms, weevils and molluscs in the guts of carabid predators were developed and characterized. -
Predicting Aphid Abundance on Winter Wheat Using Suction Trap Catches
Plant Protection Science, 56, 2020 (1): 35–45 Original Paper https://doi.org/10.17221/53/2019-PPS Predicting aphid abundance on winter wheat using suction trap catches Alois Honěk1*, Zdenka Martinková1, Marek Brabec2, Pavel Saska1 1Crop Research Institute, Prague-Ruzyně, Czech Republic 2Department of Statistical Modelling, Institute of Computer Science AS CR, Prague, Czech Republic *Corresponding author: [email protected] Citation: Honěk A., Martinková Z., Brabec M., Saska P. (2020): Predicting aphid abundance on winter wheat using suction trap catches. Plant Protect. Sci., 56: 35–45. Abstract: The relationship between the number of cereal aphids in flight (recorded by a national grid of suc- tion traps in the Czech Republic) and their occurrence on winter wheat (in Prague) was established between 1999–2015. The flight of all the species was bimodal. Except for Rhopalosiphum padi, whose flight activity peaked in autumn, > 80% of individuals were trapped during April to mid-August. The species frequency was different between the winter wheat and aerial populations. R. padi, the dominant species in the trap catches, formed a small proportion of the aphids on the winter wheat, while Sitobion avenae and Metopolophium dirhodum, which were underrepresented in the suction traps, alternately dominated the populations on the wheat. The aphid abundance in the wheat stands was correlated with the suction trap catches in the “spring” peak (April to mid-August), and the maximum flight activity occurred 4–10 days after the peak in the number of aphids on the wheat. In contrast, the prediction of the aphid abundance in the wheat stands using the total suction trap catches until the 15th of June (the final date for the application of crop protection actions) was reliable only for M.