Effects of Corticotropin Releasing Hormone And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Kisspeptin-13 on the Hypothalamic-Pituitary-Adrenal Axis, Thermoregulation, Anxiety and Locomotor Activity in Rats
Effects of kisspeptin-13 on the hypothalamic-pituitary-adrenal axis, thermoregulation, anxiety and locomotor activity in rats Krisztina Csabafiª, Miklós Jászberényiª, Zsolt Bagosiª, Nándor Liptáka, Gyula Telegdyª,b a Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701Szeged, Hungary b Neuroscience Research Group of the Hungarian Academy of Sciences, P.O. Box 521, H- 6701Szeged, Hungary Corresponding author: Krisztina Csabafi MD Department of Pathophysiology, University of Szeged H-6701 Szeged, Semmelweis u. 1, PO Box: 427 Hungary Tel.:+ 36 62 545994 Fax: + 36 62 545710 E-mail: [email protected] 1 Abstract Kisspeptin is a mammalian amidated neurohormone, which belongs to the RF-amide peptide family and is known for its key role in reproduction. However, in contrast with the related members of the RF-amide family, little information is available regarding its role in the stress-response. With regard to the recent data suggesting kisspeptin neuronal projections to the paraventricular nucleus, in the present experiments we investigated the effect of kisspeptin-13 (KP-13), an endogenous derivative of kisspeptin, on the hypothalamus- pituitary-adrenal (HPA) axis, motor behavior and thermoregulatory function. The peptide was administered intracerebroventricularly (icv.) in different doses (0.5-2 µg) to adult male Sprague-Dawley rats, the behavior of which was then observed by means of telemetry, open field and elevated plus maze tests. Additionally, plasma concentrations of corticosterone were measured in order to assess the influence of KP-13 on the HPA system. The effects on core temperature were monitored continuously via telemetry. The results demonstrated that KP-13 stimulated the horizontal locomotion (square crossing) in the open field test and decreased the number of entries into and the time spent in the open arms during the elevated plus maze tests. -
The Role of Kisspeptin Neurons in Reproduction and Metabolism
238 3 Journal of C J L Harter, G S Kavanagh Kisspeptin, reproduction and 238:3 R173–R183 Endocrinology et al. metabolism REVIEW The role of kisspeptin neurons in reproduction and metabolism Campbell J L Harter*, Georgia S Kavanagh* and Jeremy T Smith School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia Correspondence should be addressed to J T Smith: [email protected] *(C J L Harter and G S Kavanagh contributed equally to this work) Abstract Kisspeptin is a neuropeptide with a critical role in the function of the hypothalamic– Key Words pituitary–gonadal (HPG) axis. Kisspeptin is produced by two major populations of f Kiss1 neurons located in the hypothalamus, the rostral periventricular region of the third f hypothalamus ventricle (RP3V) and arcuate nucleus (ARC). These neurons project to and activate f fertility gonadotrophin-releasing hormone (GnRH) neurons (acting via the kisspeptin receptor, f energy homeostasis Kiss1r) in the hypothalamus and stimulate the secretion of GnRH. Gonadal sex steroids f glucose metabolism stimulate kisspeptin neurons in the RP3V, but inhibit kisspeptin neurons in the ARC, which is the underlying mechanism for positive- and negative feedback respectively, and it is now commonly accepted that the ARC kisspeptin neurons act as the GnRH pulse generator. Due to kisspeptin’s profound effect on the HPG axis, a focus of recent research has been on afferent inputs to kisspeptin neurons and one specific area of interest has been energy balance, which is thought to facilitate effects such as suppressing fertility in those with under- or severe over-nutrition. -
Kisspeptin and Testicular Function—Is It Necessary?
International Journal of Molecular Sciences Review Kisspeptin and Testicular Function—Is It Necessary? Aditi Sharma 1 , Thilipan Thaventhiran 1, Suks Minhas 2, Waljit S. Dhillo 1 and Channa N. Jayasena 1,* 1 Section of Investigative Medicine, Imperial College, 6th Floor, Commonwealth Building, Hammersmith Hospital, 150 Du Cane Road, London W12 0NN, UK; [email protected] (A.S.); [email protected] (T.T.); [email protected] (W.S.D.) 2 Department of Urology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, Fulham Palace Road, Hammersmith, London W6 8RF, UK; [email protected] * Correspondence: [email protected] Received: 12 March 2020; Accepted: 21 April 2020; Published: 22 April 2020 Abstract: The role of kisspeptin in stimulating hypothalamic GnRH is undisputed. However, the role of kisspeptin signaling in testicular function is less clear. The testes are essential for male reproduction through their functions of spermatogenesis and steroidogenesis. Our review focused on the current literature investigating the distribution, regulation and effects of kisspeptin and its receptor (KISS1/KISS1R) within the testes of species studied to date. There is substantial evidence of localised KISS1/KISS1R expression and peptide distribution in the testes. However, variability is observed in the testicular cell types expressing KISS1/KISS1R. Evidence is presented for modulation of steroidogenesis and sperm function by kisspeptin signaling. However, the physiological importance of such effects, and whether these are paracrine or endocrine manifestations, remain unclear. Keywords: kisspeptin; kisspeptin receptor; spermatozoa; Leydig cells; Sertoli cells; testes; testosterone; LH; FSH; spermatogenesis 1. Introduction Kisspeptin is an established regulator of puberty onset [1,2], sexual maturation and adult reproductive activity [3]. -
A Comparative Survey of the RF-Amide Peptide Superfamily
EDITORIAL published: 10 August 2015 doi: 10.3389/fendo.2015.00120 Editorial: A comparative survey of the RF-amide peptide superfamily Karine Rousseau 1*, Sylvie Dufour 1 and Hubert Vaudry 2 1 Laboratory of Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS 7208, IRD 207, Université Pierre and Marie Curie, UCBN, Paris, France, 2 Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, International Associated Laboratory Samuel de Champlain, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Mont-Saint-Aignan, France Keywords: RF-amide peptides, receptors, evolution, functions, deuterostomes, protostomes The first member of the RF-amide peptide superfamily to be characterized, in 1977, was the cardioexcitatory peptide, FMRFamide, isolated from the ganglia of the clam Macrocallista nimbosa (1). Since then, a large number of such peptides, designated after their C-terminal arginine (R) and amidated phenylalanine (F) residues, have been identified in representative species of all major phyla. The discovery, 12 years ago, that the RF-amide peptide kisspeptin, acting via GPR54, was essential for the onset of puberty and reproduction, has been a major breakthrough in reproductive physiology (2–4). It has also put in front of the spotlights RF-amide peptides and has invigo- rated research on this superfamily of regulatory neuropeptides. The present Research Topic aims at illustrating major advances achieved, through comparative studies in (mammalian and non- mammalian) vertebrates and invertebrates, in the knowledge of RF-amide peptides in terms of evolutionary history and physiological significance. Since 2006, by means of phylogenetic analyses, the superfamily of RFamide peptides has been divided into five families/groups in vertebrates (5, 6): kisspeptin, 26RFa/QRFP, GnIH (including LPXRFa and RFRP), NPFF, and PrRP. -
Serum Levels of Spexin and Kisspeptin Negatively Correlate with Obesity and Insulin Resistance in Women
Physiol. Res. 67: 45-56, 2018 https://doi.org/10.33549/physiolres.933467 Serum Levels of Spexin and Kisspeptin Negatively Correlate With Obesity and Insulin Resistance in Women P. A. KOŁODZIEJSKI1, E. PRUSZYŃSKA-OSZMAŁEK1, E. KOREK4, M. SASSEK1, D. SZCZEPANKIEWICZ1, P. KACZMAREK1, L. NOGOWSKI1, P. MAĆKOWIAK1, K. W. NOWAK1, H. KRAUSS4, M. Z. STROWSKI2,3 1Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland, 2Department of Hepatology and Gastroenterology & The Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany, 3Department of Internal Medicine, Park-Klinik Weissensee, Berlin, Germany, 4Department of Physiology, Karol Marcinkowski University of Medical Science, Poznan, Poland Received August 18, 2016 Accepted June 19, 2017 On-line November 10, 2017 Summary Corresponding author Spexin (SPX) and kisspeptin (KISS) are novel peptides relevant in P. A. Kolodziejski, Department of Animal Physiology and the context of regulation of metabolism, food intake, puberty and Biochemistry, Poznan University of Life Sciences, Wolynska Street reproduction. Here, we studied changes of serum SPX and KISS 28, 60-637 Poznan, Poland. E-mail: [email protected] levels in female non-obese volunteers (BMI<25 kg/m2) and obese patients (BMI>35 kg/m2). Correlations between SPX or Introduction KISS with BMI, McAuley index, QUICKI, HOMA IR, serum levels of insulin, glucagon, leptin, adiponectin, orexin-A, obestatin, Kisspeptin (KISS) and spexin (SPX) are peptides ghrelin and GLP-1 were assessed. Obese patients had lower SPX involved in regulation of body weight, metabolism and and KISS levels as compared to non-obese volunteers (SPX: sexual functions. In 2014, Kim and coworkers showed that 4.48±0.19 ng/ml vs. -
Amygdala Kisspeptin Neurons: Putative Mediators of Olfactory Control of the Gonadotropic Axis
Amygdala kisspeptin neurons: putative mediators of olfactory control of the gonadotropic axis 1 1 1,2,3 1 Rafael Pineda , Fabrice Plaisier , Robert P. Millar and Mike Ludwig 1Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK 2Mammal Research Institute, Department of Zoology and Entomology, and Centre for Neuroendocrinology, University of Pretoria, Pretoria 0001, South Africa 3MRC/UCT Receptor Biology Unit, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa Abstract Kisspeptins and their receptors are potent regulators of the gonadotropic axis. Kisspeptin neurons are found mainly in the hypothalamic arcuate nucleus and the anteroventral periventricular nucleus. However, there is also a third population of kisspeptin neurons located in the amygdala. We used fluorescence immunohistochemistry to quantify and localize the amygdala kisspeptin neurons and to reveal close apposition and putative innervations by vasopressinergic and tyrosine hydroxylase positive dopaminergic neurons. Using microinjections of retro- and anterograde tracers, and viral transfection systems in rats and transgenic mice, we showed reciprocal connectivity between the accessory olfactory bulb and the amygdala kisspeptin neurons. In vitro recordings indicate an inhibitory action of kisspeptin on mitral cells in the accessory olfactory bulb. Using viral specific-cell gene expression in transgenic mice in combination with double immunofluorescence histochemistry we found that the amygdala kisspeptin neurons also project to gonadotropin-releasing hormone (GnRH) neurons in the preoptic area. Our neuroanatomical and electrophysiological data suggest that amygdala kisspeptin neurons integrate social behaviour and odour information to GnRH neurons in the preoptic area to coordinate the gonadotropic axis and the appropriate output behaviour to odour cues. -
Pulsatile Release of Bioactive Luteinizing Hormone in Prepubertal Girls: Discordance with Immunoreactive Luteinizing Hormone Pulses
003 I-399818712 104-0409$02.00/0 PEDIATRIC RESEARCH Vol. 21, No. 4, 1987 Copyright O 1987 International Pediatric Research Foundation, Inc I'rfnied in U.S. A. Pulsatile Release of Bioactive Luteinizing Hormone in Prepubertal Girls: Discordance with Immunoreactive Luteinizing Hormone Pulses EDWARD 0. REITER, DARLENE E. BIGGS, JOHANNES D. VELDHUIS, AND INESE Z. BEITINS Department of Pediatrics, Baystate Medical Center, SpringJield, Massachusetts 01 199 [E.O.R., D.E.B.]; Department of Medicine, University of Virginia Medical School, Charlottesville, Virginia 22908 [J.D.V.]; and Department qf Pediatrics of the University of Michigan Medical Center, Ann Arbor, Michigan 48109 [I.Z.B.] ABSTRACT. An assessment of pulsatile secretion of lu- the onset of puberty is an increase in the frequency, as well as teinizing hormone (LH), measured by both immunoassay amplitude, of GnRH pulses from the hypothalamus which is (I-LH) and rat interstitial cell testosterone production translated into gonadotropin secretory pulses from the pituitary. bioassay (B-LH), as well as of folicle-stimulating hormone Increased LH pulse frequency and amplitude, as measured by I- and glycoprotein hormone a-subunit was carried out in LH have been demonstrated in early pubertal children (1-4). In seven normal prepubertal and six normal premenarcheal addition, the mean I-LH levels have been shown to rise with pubertal girls. Samples were obtained at 20-min intervals advancement of puberty in both cross-sectional and longitudinal for a 6-h period. The hormone secretion profiles were studies (5, 6). analyzed by several computerized methods yielding pulse Pituitary gonadotropins are known to be heterogeneous. -
Arcuate and Preoptic Kisspeptin Neurons Exhibit Differential
Research Article: New Research | Integrative Systems Arcuate and Preoptic Kisspeptin neurons exhibit differential projections to hypothalamic nuclei and exert opposite postsynaptic effects on hypothalamic paraventricular and dorsomedial nuclei in the female mouse https://doi.org/10.1523/ENEURO.0093-21.2021 Cite as: eNeuro 2021; 10.1523/ENEURO.0093-21.2021 Received: 10 March 2021 Revised: 21 June 2021 Accepted: 11 July 2021 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2021 Stincic et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 Title page 2 Manuscript Title: Arcuate and Preoptic Kisspeptin neurons exhibit differential projections to hypothalamic nuclei 3 and exert opposite postsynaptic effects on hypothalamic paraventricular and dorsomedial nuclei in the female 4 mouse 5 Abbreviated title: Projections and functions of kisspeptin neurons 6 Authors: Todd L. Stincic1, Jian Qiu1, Ashley M. Connors1a, Martin J. Kelly1,2, Oline K. Rønnekleiv1,2 7 1Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, 8 Oregon 97239; 2Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and 9 Science University, Beaverton, Oregon 97006. -
Signature Redacted May 14,2014 Certified By
System Identification of Cortisol Secretion: Characterizing Pulsatile Dynamics OF TECHNOLOGy by Rose Taj Faghih JUN 1 0 2014 B.S., Electrical Engineering (2008) University of Maryland, College Park LIBRARIES S.M., Electrical Engineering and Computer Science (2010), Massachusetts Institute of Technology Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2014 @ Massachusetts Institute of Technology 2014. All rights reserved. Signature redacted Author ........... ............................. Department of Electrical Engineering and Computer Science Signature redacted May 14,2014 Certified by........ .................................... Emery N. Brown Edward Hood Taplin Professor of Medical Engineering Professor of Computational Neuroscience Thesis Supervisor Certified by Si onRtIIm mdRctE~d Munther A. Dahleh Professor of Electrical Engineering and Computer Science Professor of Engineering Systems Division Thesis Supervisor b Signature redacted,; A cce;pte d Uy .... ....... 4, ..... ...... .. .... S/Prdsar Leslie A. Kolodziejski Chair, Department Committee on Graduate Students System Identification of Cortisol Secretion: Characterizing Pulsatile Dynamics by Rose Taj Faghih Submitted to the Department of Electrical Engineering and Computer Science on May 14, 2014, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Cortisol controls the body's metabolism and response to inflammation and stress. Cortisol is released in pulses from the adrenal glands in response to pulses of adreno- corticotropic hormone (ACTH) released from the anterior pituitary; in return, cortisol has a negative feedback effect on ACTH release. Modeling cortisol secretion and the interactions between ACTH and cortisol allows for quantifying normal and abnormal physiology and can potentially be used for diagnosis and optimal treatment of some cortisol disorders. -
An Optimization Formulation for Characterization of Pulsatile Cortisol Secretion
An optimization formulation for characterization of pulsatile cortisol secretion The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Faghih, Rose T. et al. "An optimization formulation for characterization of pulsatile cortisol secretion." Frontiers in Neuroscience 9 (August 2015): 228 © 2015 Faghih, Dahleh and Brown As Published http://dx.doi.org/10.3389/fnins.2015.00228 Publisher Frontiers Research Foundation Version Final published version Citable link http://hdl.handle.net/1721.1/112222 Terms of Use Creative Commons Attribution 4.0 International License Detailed Terms http://creativecommons.org/licenses/by/4.0/ ORIGINAL RESEARCH published: 11 August 2015 doi: 10.3389/fnins.2015.00228 An optimization formulation for characterization of pulsatile cortisol secretion Rose T. Faghih 1, 2, 3, 4*, Munther A. Dahleh 1, 4, 5, 6 and Emery N. Brown 2, 3, 7, 8 1 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA, 2 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA, 3 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA, 4 Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA, 5 Engineering Systems Division, Massachusetts Institute of Technology, Cambridge, MA, USA, 6 Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA, 7 Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA, 8 Department of Anesthesia, Harvard Medical School, Boston, MA, USA Edited by: Jason Ritt, Cortisol is released to relay information to cells to regulate metabolism and reaction Boston University, USA to stress and inflammation. -
Gonadotropin-Releasing Hormone Secretion Into Third
BIOLOGY OF REPRODUCTION 59, 676±683 (1998) Gonadotropin-Releasing Hormone Secretion into Third-Ventricle Cerebrospinal Fluid of Cattle: Correspondence with the Tonic and Surge Release of Luteinizing Hormone and Its Tonic Inhibition by Suckling and Neuropeptide Y1 O.S. Gazal,3 L.S. Leshin,4 R.L. Stanko,3 M.G. Thomas,5 D.H. Keisler,6 L.L. Anderson,7 and G.L. Williams2,3 Animal Reproduction Laboratory,3 Texas A&M University Agricultural Research Station, Beeville, Texas 78102 USDA/ARS Russell Agricultural Research Center,4 Athens, Georgia 30613 Department of Animal and Range Sciences,5 New Mexico State University, Las Cruces, New Mexico 88003 Department of Animal Science,6 University of Missouri, Columbia, Missouri 65211 Department of Animal Science,7 Iowa State University, Ames, Iowa 50011 ABSTRACT [1]. Although a transnasal, transsphenoidal approach has been described for collecting mixed hypophyseal portal and Objectives of the current studies were to characterize the cavernous sinus blood in ewes and young calves to monitor pattern of GnRH secretion in the cerebrospinal ¯uid of the bo- vine third ventricle, determine its correspondence with the tonic GnRH release [2, 3], the complex anatomical architecture and surge release of LH in ovariectomized cows, and examine of the cranium presents a signi®cant barrier to the practical the dynamics of GnRH pulse generator activity in response to application of this method in adult cattle. Additionally, known modulators of LH release (suckling; neuropeptide Y push-pull perfusion techniques have been used to obtain [NPY]). In ovariectomized cows, both tonic release patterns and median eminence perfusates in the rat [4], rabbit [5], and estradiol-induced surges of GnRH and LH were highly correlat- sheep [6]; but these methods, to our knowledge, have not ed (0.95; p , 0.01). -
Neuroendocrine Signaling Pathways and the Nutritional Control of Puberty in Heifers
DOI: 10.21451/1984-3143-AR2018-0013 Proceedings of the 10th International Ruminant Reproduction Symposium (IRRS 2018); Foz do Iguaçu, PR, Brazil, September 16th to 20th, 2018. Neuroendocrine signaling pathways and the nutritional control of puberty in heifers Rodolfo C. Cardoso1,*, Bruna R.C. Alves2, Gary L. Williams1,3 1Texas A&M University, College Station, TX, USA. 2University of Nevada, Reno, NV,USA. 3Texas A&M AgriLife Research, Beeville, TX, USA. Abstract and behavioral changes associated with activation of the hypothalamic-pituitary-ovarian axis and subsequent Puberty is a complex physiological process in establishment of reproductive cyclicity (Sisk and Foster, females that requires maturation of the reproductive 2004). Reproductive maturation is initiated primarily at neuroendocrine system and subsequent initiation of high- the hypothalamic level by the acceleration of frequency, episodic release of gonadotropin-releasing gonadotropin-releasing hormone (GnRH) secretion from hormone (GnRH) and luteinizing hormone (LH). GnRH neurons. The increase in pulsatile release of Genetics and nutrition are two major factors controlling GnRH and subsequent rise in luteinizing hormone (LH) the timing of puberty in heifers. While nutrient restriction pulse frequency support the final maturation of ovarian during the juvenile period delays puberty, accelerated follicles and steroidogenesis that are required for first rates of body weight gain during this period have been ovulation (Ryan and Foster, 1980). The process of shown to facilitate pubertal development by pubertal development is largely controlled by genetic programming hypothalamic centers that underlie the and environmental factors, among which nutrition plays pubertal process. Among the different metabolic factors, a prominent role. Data in humans and animals leptin plays a critical role in conveying nutritional unequivocally demonstrate that increased nutrient intake information to the neuroendocrine axis and controlling during peripubertal development facilitates reproductive pubertal progression.