Dot Net Framework

Total Page:16

File Type:pdf, Size:1020Kb

Dot Net Framework Government Polytechnic Srinagar Garhwal Branch-Information Technology Semester-6 Subject- .NET Technology Unit-1 Introduction to .NET Framework Course Description: Introduction to .NET Framework, Components and Features. Course Duration: 08 hours Course Goals and Objectives: After completing this course, trainee will be able to understand the fundamentals of .NET Framework, Components like JIT Compilation, CTS, CLR, MSIL and CLS. NET Framework NET Framework is a technology that supports building and running Windows apps, Web Apps, Remoting and web services. .NET is a developer platform made up of tools, programming languages, and libraries for building many different types of applications. .NET Framework consists of the common language runtime (CLR) and the .NET Framework class library. .NET Framework is designed to fulfil the following objectives: 1. To provide a consistent object-oriented programming environment whether object code is stored and executed locally, executed locally but web-distributed or executed remotely. 2. To provide a code-execution environment that minimizes software deployment and versioning conflicts. 3. To provide a code-execution environment that promotes safe execution of code, including code created by an unknown or semi-trusted third party. 4. To provide a code-execution environment that eliminates the performance problems of scripted or interpreted environments. 5. To make the developer experience consistent across widely varying types of apps, such as Windows-based apps and Web-based apps. 6. To build all communication on industry standards to ensure that code based on .NET Framework integrates with any other code. You can use .NET Framework to develop the following types of apps and services: 1. Console apps. 2. Windows GUI apps. 3. Windows Presentation Foundation (WPF) apps. 4. ASP.NET Web apps. 5. Windows services. 6. Web Services Government Polytechnic Srinagar Garhwal Branch-Information Technology Semester-6 Subject- .NET Technology Unit-1 Introduction to .NET Framework 7. Remoting Services. 8. WCF (Windows Communication Foundation) Services. 9. ASP.NET Web API (REST Services). 10. Machine Learning App (ML .NET). Components of .NET Framework 1. CLR (Common Language Runtime) a. CTS (Common Type System) b. CLS (Common Language Specification) c. JIT (Just In Time) Compiler d. MSIL (Microsoft Intermediate Language) 2. Framework Class Library Languages Supported by .NET Framework 1. C#.NET 2. VB.NET 3. C++.NET 4. J#.NET 5. F#.NET 6. JSCRIPT.NET 7. IRON RUBY 8. IRON PYTHON CLR (Common Language Runtime) The common language runtime is the foundation of .NET Framework. CLR is an agent that manages code at execution time, providing core services such as memory management, thread management, and remoting, while also enforcing strict type safety and other forms of code accuracy that promote security and robustness. The common language runtime manages memory, thread execution, code execution, code safety verification, compilation, and other system services. These features are intrinsic to the managed code that runs on the common language runtime. The runtime also enforces code robustness by implementing a strict type- and-code-verification infrastructure called the common type system (CTS). The runtime is designed to enhance performance. Although the common language runtime provides many standard runtime services, managed code is never interpreted. Features of the Common Language Runtime Government Polytechnic Srinagar Garhwal Branch-Information Technology Semester-6 Subject- .NET Technology Unit-1 Introduction to .NET Framework 1. Memory Management. 2. Code Access security. 3. Garbage Collection. 4. JIT Compilation. 5. Thread Support. 6. Debug Engine. 7. Exception Handling. 8. Code robustness. 9. Enhance Performance NET Framework class library The class library is a comprehensive, object-oriented collection of reusable types that you use to develop apps ranging from traditional command-line or graphical user interface (GUI) apps to apps based on the latest innovations provided by ASP.NET, such as Web Forms and XML web services. The .NET Framework class library is a collection of reusable types that tightly integrate with the common language runtime. The class library is object oriented, providing types from which your own managed code derives functionality. This not only makes the .NET Framework types easy to use but also reduces the time associated with learning new features of the .NET Framework. In addition, third-party components integrate seamlessly with classes in the .NET Framework. Features of .NET Framework 1. Rich Functionality. 2. Easy development of web applications. 3. OOPs Support. 4. Multi-Language Support. 5. Automatic memory management. 6. Compatibility with COM and COM+. 7. Strong XML and JSON support. 8. Ease of deployment and configuration. 9. Security. MSIL (Microsoft Intermediate Language) Microsoft intermediate language (MSIL) is a CPU-independent set of instructions that can be efficiently converted to native code. MSIL includes instructions for loading, storing, initializing, and calling methods on objects, as well as instructions for arithmetic and logical operations, control flow, direct memory access, exception handling, and other operations. Before code can be run, MSIL must be converted to CPU-specific code, usually by a Government Polytechnic Srinagar Garhwal Branch-Information Technology Semester-6 Subject- .NET Technology Unit-1 Introduction to .NET Framework just-in-time (JIT) compiler. Because the common language runtime (CLR) supplies one or more JIT compilers for each computer architecture it supports, the same set of MSIL can be JIT-compiled and run on any supported architecture. Before you can run Microsoft intermediate language (MSIL), it must be compiled against the common language runtime to native code for the target machine architecture. The .NET Framework provides two ways to perform this conversion: 1. A .NET Framework just-in-time (JIT) compiler. 2. The .NET Framework Ngen.exe (Native Image Generator). Compilation by the JIT Compiler JIT compilation converts MSIL to native code on demand at application run time, when the contents of an assembly are loaded and executed. Because the common language runtime supplies a JIT compiler for each supported CPU architecture, developers can build a set of MSIL assemblies that can be JIT-compiled and run on different computers with different machine architectures. However, if your managed code calls platform-specific native APIs or a platform-specific class library, it will run only on that operating system. Just-in-time (JIT) compiling enables all managed code to run in the native machine language of the system on which it's executing. Meanwhile, the memory manager removes the possibilities of fragmented memory and increases memory locality-of-reference to further increase performance. (CLS) Common Language Specification To enable full interoperability scenarios, all objects that are created in code must rely on some commonality in the languages that are consuming them (are their callers). Since there are numerous different languages, .NET has specified those commonalities in something called the Common Language Specification (CLS). CLS defines a set of features that are needed by many common applications. It also provides a sort of recipe for any language that is implemented on top of .NET on what it needs to support. CLS is a subset of the CTS. This means that all of the rules in the CTS also apply to the CLS, unless the CLS rules are more strict. If a component is built using only the rules in the CLS, that is, it exposes only the CLS features in its API, it is said to be CLS-compliant. CTS (Common Type System) Government Polytechnic Srinagar Garhwal Branch-Information Technology Semester-6 Subject- .NET Technology Unit-1 Introduction to .NET Framework The common type system defines how types are declared, used, and managed in the common language runtime, and is also an important part of the runtime's support for cross-language integration. The CTS ensures that all managed code is self-describing. The various Microsoft and third-party language compilers generate managed code that conforms to the CTS. The common type system performs the following functions: 1. Establish a framework for cross-language execution. 2. Provide an object-oriented model to support implementing various languages on a .NET implementation. 3. Define a set of rules that all languages must follow when it comes to working with types. 4. Provide a library that contains the basic primitive types that are used in application development (such as, Boolean, Byte, Char etc.) 5. Establishes a framework that helps enable cross-language integration, type safety, and high-performance code execution. 6. Provides an object-oriented model that supports the complete implementation of many programming languages. 7. Defines rules that languages must follow, which helps ensure that objects written in different languages can interact with each other. 8. Provides a library that contains the primitive data types (such as Boolean, Byte, Char, Int32, and UInt64) used in application development. Types in .NET All types in .NET are either value types or reference types. Value types are data types whose objects are represented by the object's actual value. If an instance of a value type is assigned to a variable, that variable is given a fresh copy of the value. Reference types are data types whose objects are represented by a reference (similar to a pointer) to the object's actual value. If a reference type is assigned to a variable, that variable references (points to) the original value. No copy is made. The common type system in .NET supports the following five categories of types: 1. Classes 2. Structures 3. Enumerations 4. Interfaces 5. Delegates .
Recommended publications
  • Non-Invasive Software Transactional Memory on Top of the Common Language Runtime
    University of Neuchâtel Computer Science Department (IIUN) Master of Science in Computer Science Non-Invasive Software Transactional Memory on top of the Common Language Runtime Florian George Supervised by Prof. Pascal Felber Assisted by Patrick Marlier August 16, 2010 This page is intentionally left blank Table of contents 1 Abstract ................................................................................................................................................. 3 2 Introduction ........................................................................................................................................ 4 3 State of the art .................................................................................................................................... 6 4 The Common Language Infrastructure .................................................................................. 7 4.1 Overview of the Common Language Infrastructure ................................... 8 4.2 Common Language Runtime.................................................................................. 9 4.3 Virtual Execution System ........................................................................................ 9 4.4 Common Type System ........................................................................................... 10 4.5 Common Intermediate Language ..................................................................... 12 4.6 Common Language Specification.....................................................................
    [Show full text]
  • Ironpython in Action
    IronPytho IN ACTION Michael J. Foord Christian Muirhead FOREWORD BY JIM HUGUNIN MANNING IronPython in Action Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> IronPython in Action MICHAEL J. FOORD CHRISTIAN MUIRHEAD MANNING Greenwich (74° w. long.) Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact Special Sales Department Manning Publications Co. Sound View Court 3B fax: (609) 877-8256 Greenwich, CT 06830 email: [email protected] ©2009 by Manning Publications Co. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps. Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.
    [Show full text]
  • Executable Code Is Not the Proper Subject of Copyright Law a Retrospective Criticism of Technical and Legal Naivete in the Apple V
    Executable Code is Not the Proper Subject of Copyright Law A retrospective criticism of technical and legal naivete in the Apple V. Franklin case Matthew M. Swann, Clark S. Turner, Ph.D., Department of Computer Science Cal Poly State University November 18, 2004 Abstract: Copyright was created by government for a purpose. Its purpose was to be an incentive to produce and disseminate new and useful knowledge to society. Source code is written to express its underlying ideas and is clearly included as a copyrightable artifact. However, since Apple v. Franklin, copyright has been extended to protect an opaque software executable that does not express its underlying ideas. Common commercial practice involves keeping the source code secret, hiding any innovative ideas expressed there, while copyrighting the executable, where the underlying ideas are not exposed. By examining copyright’s historical heritage we can determine whether software copyright for an opaque artifact upholds the bargain between authors and society as intended by our Founding Fathers. This paper first describes the origins of copyright, the nature of software, and the unique problems involved. It then determines whether current copyright protection for the opaque executable realizes the economic model underpinning copyright law. Having found the current legal interpretation insufficient to protect software without compromising its principles, we suggest new legislation which would respect the philosophy on which copyright in this nation was founded. Table of Contents INTRODUCTION................................................................................................. 1 THE ORIGIN OF COPYRIGHT ........................................................................... 1 The Idea is Born 1 A New Beginning 2 The Social Bargain 3 Copyright and the Constitution 4 THE BASICS OF SOFTWARE ..........................................................................
    [Show full text]
  • The LLVM Instruction Set and Compilation Strategy
    The LLVM Instruction Set and Compilation Strategy Chris Lattner Vikram Adve University of Illinois at Urbana-Champaign lattner,vadve ¡ @cs.uiuc.edu Abstract This document introduces the LLVM compiler infrastructure and instruction set, a simple approach that enables sophisticated code transformations at link time, runtime, and in the field. It is a pragmatic approach to compilation, interfering with programmers and tools as little as possible, while still retaining extensive high-level information from source-level compilers for later stages of an application’s lifetime. We describe the LLVM instruction set, the design of the LLVM system, and some of its key components. 1 Introduction Modern programming languages and software practices aim to support more reliable, flexible, and powerful software applications, increase programmer productivity, and provide higher level semantic information to the compiler. Un- fortunately, traditional approaches to compilation either fail to extract sufficient performance from the program (by not using interprocedural analysis or profile information) or interfere with the build process substantially (by requiring build scripts to be modified for either profiling or interprocedural optimization). Furthermore, they do not support optimization either at runtime or after an application has been installed at an end-user’s site, when the most relevant information about actual usage patterns would be available. The LLVM Compilation Strategy is designed to enable effective multi-stage optimization (at compile-time, link-time, runtime, and offline) and more effective profile-driven optimization, and to do so without changes to the traditional build process or programmer intervention. LLVM (Low Level Virtual Machine) is a compilation strategy that uses a low-level virtual instruction set with rich type information as a common code representation for all phases of compilation.
    [Show full text]
  • Configure .NET Code-Access Security
    © 2002 Visual Studio Magazine Fawcette Technical Publications Issue VSM November 2002 Section Black Belt column Main file name VS0211BBt2.rtf Listing file name -- Sidebar file name -- Table file name VS0211BBtb1.rtf Screen capture file names VS0211BBfX.bmp Infographic/illustration file names VS0211BBf1,2.bmp Photos or book scans ISBN 0596003471 Special instructions for Art dept. Editor LT Status TE’d3 Spellchecked (set Language to English U.S.) * PM review Character count 15,093 + 1,162 online table Package length 3.5 (I think, due to no inline code/listings) ToC blurb Learn how to safely grant assemblies permissions to perform operations with external entities such as the file system, registry, UIs, and more. ONLINE SLUGS Name of Magazine VSM November 2002 Name of feature/column/department Black Belt column 180-character blurb Learn how to safely grant assemblies permissions to perform operations with external entities such as the file system, registry, UIs, and more. 90-character blurb Learn how to safely grant assemblies permissions to perform operations with external entities. 90-character blurb describing download NA Locator+ code for article VS0211BB_T Photo (for columnists) location On file TITLE TAG & METATAGS <title> Visual Studio Magazine – Black Belt - Secure Access to Your .NET Code Configure .NET Code-Access Security </title> <!-- Start META Tags --> <meta name="Category" content=" .NET "> <meta name="Subcategory" content=" C#, Visual Basic .NET "> <meta name="Keywords" content=" .NET, C#, Visual Basic .NET, security permission, security evidence, security policy, permission sets, evidence, security, security permission stack walk, custom permission set, code group "> [[ Please check these and add/subtract as you see fit .]] <meta name="DESCRIPTION" content=" Learn how to grant assemblies permissions to perform operations with external entities such as the file system, registry, UIs, and more.
    [Show full text]
  • Middleware in Action 2007
    Technology Assessment from Ken North Computing, LLC Middleware in Action Industrial Strength Data Access May 2007 Middleware in Action: Industrial Strength Data Access Table of Contents 1.0 Introduction ............................................................................................................. 2 Mature Technology .........................................................................................................3 Scalability, Interoperability, High Availability ...................................................................5 Components, XML and Services-Oriented Architecture..................................................6 Best-of-Breed Middleware...............................................................................................7 Pay Now or Pay Later .....................................................................................................7 2.0 Architectures for Distributed Computing.................................................................. 8 2.1 Leveraging Infrastructure ........................................................................................ 8 2.2 Multi-Tier, N-Tier Architecture ................................................................................. 9 2.3 Persistence, Client-Server Databases, Distributed Data ....................................... 10 Client-Server SQL Processing ......................................................................................10 Client Libraries ..............................................................................................................
    [Show full text]
  • Design and Implementation of Generics for the .NET Common Language Runtime
    Design and Implementation of Generics for the .NET Common Language Runtime Andrew Kennedy Don Syme Microsoft Research, Cambridge, U.K. fakeÒÒ¸d×ÝÑeg@ÑicÖÓ×ÓfغcÓÑ Abstract cally through an interface definition language, or IDL) that is nec- essary for language interoperation. The Microsoft .NET Common Language Runtime provides a This paper describes the design and implementation of support shared type system, intermediate language and dynamic execution for parametric polymorphism in the CLR. In its initial release, the environment for the implementation and inter-operation of multiple CLR has no support for polymorphism, an omission shared by the source languages. In this paper we extend it with direct support for JVM. Of course, it is always possible to “compile away” polymor- parametric polymorphism (also known as generics), describing the phism by translation, as has been demonstrated in a number of ex- design through examples written in an extended version of the C# tensions to Java [14, 4, 6, 13, 2, 16] that require no change to the programming language, and explaining aspects of implementation JVM, and in compilers for polymorphic languages that target the by reference to a prototype extension to the runtime. JVM or CLR (MLj [3], Haskell, Eiffel, Mercury). However, such Our design is very expressive, supporting parameterized types, systems inevitably suffer drawbacks of some kind, whether through polymorphic static, instance and virtual methods, “F-bounded” source language restrictions (disallowing primitive type instanti- type parameters, instantiation at pointer and value types, polymor- ations to enable a simple erasure-based translation, as in GJ and phic recursion, and exact run-time types.
    [Show full text]
  • CLS Compliance Rules
    Language Independence and Language-Independent Components https://msdn.microsoft.com/en-us/library/12a7a7h3(d=printer,v=vs.110).aspx Language Independence and Language- Independent Components .NET Framework (current version) The .NET Framework is language independent. This means that, as a developer, you can develop in one of the many languages that target the .NET Framework, such as C#, C++/CLI, Eiffel, F#, IronPython, IronRuby, PowerBuilder, Visual Basic, Visual COBOL, and Windows PowerShell. You can access the types and members of class libraries developed for the .NET Framework without having to know the language in which they were originally written and without having to follow any of the original language's conventions. If you are a component developer, your component can be accessed by any .NET Framework app regardless of its language. Note This first part of this article discusses creating language-independent components—that is, components that can be consumed by apps that are written in any language. You can also create a single component or app from source code written in multiple languages; see Cross-Language Interoperability in the second part of this article. To fully interact with other objects written in any language, objects must expose to callers only those features that are common to all languages. This common set of features is defined by the Common Language Specification (CLS), which is a set of rules that apply to generated assemblies. The Common Language Specification is defined in Partition I, Clauses 7 through 11 of the ECMA-335 Standard: Common Language Infrastructure . If your component conforms to the Common Language Specification, it is guaranteed to be CLS-compliant and can be accessed from code in assemblies written in any programming language that supports the CLS.
    [Show full text]
  • Architectural Support for Scripting Languages
    Architectural Support for Scripting Languages By Dibakar Gope A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical and Computer Engineering) at the UNIVERSITY OF WISCONSIN–MADISON 2017 Date of final oral examination: 6/7/2017 The dissertation is approved by the following members of the Final Oral Committee: Mikko H. Lipasti, Professor, Electrical and Computer Engineering Gurindar S. Sohi, Professor, Computer Sciences Parameswaran Ramanathan, Professor, Electrical and Computer Engineering Jing Li, Assistant Professor, Electrical and Computer Engineering Aws Albarghouthi, Assistant Professor, Computer Sciences © Copyright by Dibakar Gope 2017 All Rights Reserved i This thesis is dedicated to my parents, Monoranjan Gope and Sati Gope. ii acknowledgments First and foremost, I would like to thank my parents, Sri Monoranjan Gope, and Smt. Sati Gope for their unwavering support and encouragement throughout my doctoral studies which I believe to be the single most important contribution towards achieving my goal of receiving a Ph.D. Second, I would like to express my deepest gratitude to my advisor Prof. Mikko Lipasti for his mentorship and continuous support throughout the course of my graduate studies. I am extremely grateful to him for guiding me with such dedication and consideration and never failing to pay attention to any details of my work. His insights, encouragement, and overall optimism have been instrumental in organizing my otherwise vague ideas into some meaningful contributions in this thesis. This thesis would never have been accomplished without his technical and editorial advice. I find myself fortunate to have met and had the opportunity to work with such an all-around nice person in addition to being a great professor.
    [Show full text]
  • NET Tutorial for Beginners
    India Community Initiative .NET Tutorial for Beginners Special thanks to the following who have put in sincere efforts to write and bring this tutorial together. Akila Manian (MVP) | Ajay Varghese (MVP) | Amit Kukreja | Anand M (MVP) | Aravind Corera (MVP) | Arvind Rangan | Balachandran | Bipin Joshi (MVP) | C S Rajagopalan | G Gokulraj | G Arun Prakash | Gurneet Singh (MVP) | Kunal Cheda (MVP) | Manish Mehta (MVP) | Narayana Rao Surapaneni (MVP) | Pradeep | Saurabh Nandu (MVP) | Shankar N.S. | Swati Panhale | Reshmi Nair Content 1. Getting Ready .......................................................................................... 4 1.1 Tracing the .NET History..............................................................................4 1.2 Flavors of .NET...........................................................................................5 1.3 Features of .NET.......................................................................................10 1.4 Installing the .NET Framework SDK.............................................................12 2. Introduction to the .NET Initiative and the .NET Platform...................... 15 2.1 Understanding the Existing Development Scenario........................................15 2.2 Challenges faced by developers..................................................................18 2.3 NET Philosophy / Where does .NET fit in? ....................................................21 2.4 Understanding the .NET Platform and its layers ............................................25 2.5
    [Show full text]
  • NET Framework
    Advanced Windows Programming .NET Framework based on: A. Troelsen, Pro C# 2005 and .NET 2.0 Platform, 3rd Ed., 2005, Apress J. Richter, Applied .NET Frameworks Programming, 2002, MS Press D. Watkins et al., Programming in the .NET Environment, 2002, Addison Wesley T. Thai, H. Lam, .NET Framework Essentials, 2001, O’Reilly D. Beyer, C# COM+ Programming, M&T Books, 2001, chapter 1 Krzysztof Mossakowski Faculty of Mathematics and Information Science http://www.mini.pw.edu.pl/~mossakow Advanced Windows Programming .NET Framework - 2 Contents The most important features of .NET Assemblies Metadata Common Type System Common Intermediate Language Common Language Runtime Deploying .NET Runtime Garbage Collection Serialization Krzysztof Mossakowski Faculty of Mathematics and Information Science http://www.mini.pw.edu.pl/~mossakow Advanced Windows Programming .NET Framework - 3 .NET Benefits In comparison with previous Microsoft’s technologies: Consistent programming model – common OO programming model Simplified programming model – no error codes, GUIDs, IUnknown, etc. Run once, run always – no "DLL hell" Simplified deployment – easy to use installation projects Wide platform reach Programming language integration Simplified code reuse Automatic memory management (garbage collection) Type-safe verification Rich debugging support – CLR debugging, language independent Consistent method failure paradigm – exceptions Security – code access security Interoperability – using existing COM components, calling Win32 functions Krzysztof
    [Show full text]
  • CNT6008 Network Programming Module - 11 Objectives
    CNT6008 Network Programming Module - 11 Objectives Skills/Concepts/Assignments Objectives ASP.NET Overview • Learn the Framework • Understand the different platforms • Compare to Java Platform Final Project Define your final project requirements Section 21 – Web App Read Sections 21 and 27, pages 649 to 694 and 854 Development and ASP.NET to 878. Section 27 – Web App Development with ASP.NET Overview of ASP.NET Section Goals Goal Course Presentation Understanding Windows Understanding .NET Framework Foundation Project Concepts Creating a ASP.NET Client and Server Application Understanding the Visual Creating a ASP Project Studio Development Environment .NET – What Is It? • Software platform • Language neutral • In other words: • .NET is not a language (Runtime and a library for writing and executing written programs in any compliant language) What Is .NET • .Net is a new framework for developing web-based and windows-based applications within the Microsoft environment. • The framework offers a fundamental shift in Microsoft strategy: it moves application development from client-centric to server- centric. .NET – What Is It? .NET Application .NET Framework Operating System + Hardware Framework, Languages, And Tools VB VC++ VC# JScript … Common Language Specification Visual Studio.NET Visual ASP.NET: Web Services Windows and Web Forms Forms ADO.NET: Data and XML Base Class Library Common Language Runtime The .NET Framework .NET Framework Services • Common Language Runtime • Windows Communication Framework (WCF) • Windows® Forms • ASP.NET (Active Server Pages) • Web Forms • Web Services • ADO.NET, evolution of ADO • Visual Studio.NET Common Language Runtime (CLR) • CLR works like a virtual machine in executing all languages. • All .NET languages must obey the rules and standards imposed by CLR.
    [Show full text]