Modeling and Prediction of Ionospheric Characteristics Using Nonlinear Autoregression and Neural Network by Hendy Santosa Submit

Total Page:16

File Type:pdf, Size:1020Kb

Modeling and Prediction of Ionospheric Characteristics Using Nonlinear Autoregression and Neural Network by Hendy Santosa Submit Modeling and prediction of ionospheric characteristics using nonlinear autoregression and neural network by Hendy Santosa Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF ENGINEERING at The University of Electro-Communications 非線形同定手法を用いた電離層特性のモデリングおよび予測に関する研究 ヘンデイサントーサ 論文の和文要旨 地球を取り巻く電離層は,その中を通過,反射する電磁波の伝搬特性に多大な影響 を及ぼすことが知られている。電離層の継続的な特性の観測には,電磁波による遠 隔探査(リモートセンシング)が広く用いられている。例えば,電離層中で最大の 電子密度をもつ F 層の観測には,電磁波の鉛直打ち上げ(イオノゾンデ)が用いら れ,電子密度の高度分布が得られる。一方,MLT (Mesosphere-Lower Thermosphere) 領域である電離層下端の D 層は,その電子密度の小ささゆえ,VLF 帯送信電波の受 信振幅,位相の変化がほぼ唯一の観測方法である。電離層は,その上層及び下層起 源の様々な要因(外因)により,時間空間的に複雑に変動する。例えば,上層から の外因として太陽活動の影響が挙げられる一方で,下層からの外因として大気の影 響が挙げられる。しかしながら,外因別の電離層の変動への定量的評価は,現在ま でにほとんど行われていない。そこで本研究では,非線形システム同定手法を用い て,D 層および F2層における,電離層の時間変化の予測モデルを構築し,外因別の 貢献度を導出した。特に,D 層の電離層状態を表す VLF 送信電波振幅の時間変動予 測モデルの構築は初の試みである。さらに,D 層,F 層ともに,外因別の貢献度の導 出も初めてである。今後これらの研究成果は,電離層のダイナミクスの理解,太陽 活動や大気パラメータの監視,通信障害の予測,さらには地震に関連する異常値検 出等に貢献する可能性がある。D 層に関しては,電通大 VLF 帯送信電波観測ネット ワークにより受信された様々な緯度を通過する国内外からの送信電波の電界振幅の 長期時系列観測データを解析した。まず,電界振幅データに非線形システム同定手 法の一つである NARXNN(Nonlinear AutoRegressive with eXogenous input Neural Network)を適用して,プロセスモデルを生成し,電界振幅の時間変化に対する支配 的な外因を同定した。次に,これらの支配的な外因を用いて,予測を行い構築され たモデルの評価を実施した。その結果,予測値と観測値の間に非常に高い相関係数 が得られた。また,緯度の異なる伝搬経路において支配的な外因に違いが見られ, その理由に対する物理的考察を行った。さらに,F 層に関しては,中緯度帯である 日本国内で観測された,イオノゾンデのデータを用いて,D 層と同様の解析を実施 し,予測モデルを構築するとともに,D 層と F 層間の特性の相違を調査した. Modeling and prediction of ionospheric characteristics using nonlinear autoregression and neural network Hendy Santosa Abstract The terrestrial ionosphere from D-region (60 km) to F-region (500 km) plays an important role in radio wave propagation between the Earth and ionosphere. During the last half-century, a considerable experimental, theoretical, and modeling efforts have been made to understand the physical process occurred in the ionosphere at different altitudes. Radio sensing techniques is widely used to continuously monitor the ionospheric conditions. For example, the ionospheric property in the F2 layer is obtained by a vertical sounding so-called Ionosonde. Properties of the D layer (the lower end of the ionosphere) is effectively obtained by receiving VLF/LF transmitter signals. Although, the ionospheric condition varies both in time and space due to various external forcings from the atmosphere and space weather parameters, quantitative information of contributions influencing the ionosphere from every external forcing have not understood well. In this thesis nonlinear autoregressive with exogenous input and neural network is applied first time to identify the ionospheric characteristics based on the VLF radio wave propagation and ionosonde. One step ahead prediction of the daily nighttime means of VLF electric amplitude in three different latitude paths and two receiving stations by using NARXNN has been carried out. The relative contribution to the ionospheric conditions (VLF electric amplitude variability) from every external forcing has been revealed. Moreover, the proposed model extends for multi-step ahead prediction to evaluate the performance of prediction accuracy for five and ten days ahead. The temporal dependence of F2-region critical frequency (foF2) has been predicted by using the same approach as used for the VLF signals. Physical interpretation of relative contribution to the ionospheric conditions from major external forcing parameters have been made. The results of this thesis can be used to detect anomalies in relation with severe weather, major seismic activity, and space weather to mitigate damages and human victims. Furthermore, we investigate the coupling from external sources between the D- and F-region in the middle-latitude path. Acknowledgements I am very grateful to my supervisor, Prof. Yasuhide Hobara, for his indispensable advice at every step helping me to make my work conceptually sound and also to draw my attention to even the smallest mistakes to improve my academic writing. With his great enthusiasm and efforts to explain things clearly and simply, he has guided me to the point where I have been able to complete the work of my thesis. I will remain in debt to both my co-supervisors Prof. Yanagisawa and Prof. Yoshiaki Ando, Prof. Balikhin and my laboratory assistant professor Dr. Takuo Tsuda for their priceless advice that I have progressed towards becoming a professional researcher. I would like to thank my friends, Dr. Sujay Pal, Dr. Tamal Basak, Dr. Satya Vemuri Srinivas, Mr. Tomoki Kawano, Mr. Yuma Matsui, Mr. Katsunori Suzuki and Mrs. Emiko Takahashi, for assisting me in preparing a gold standard for the evaluation of my results. I would like to thank all my colleagues for sharing their valuable experience to guide me through writing the thesis. I cannot end without thanking my parents, my wife (Fauziah Yaman) and all my family for being so patient all these years I have worked on the Ph.D. Not only have they provided constant encouragement but also compromised on several ends to allow me to complete my thesis. I would like to thank Directorate General of Resources for Science, Technology and Higher Education (DG-RSTHE) of Ministry of Research, Technology, and Higher Education of Indonesia for supporting financial expenses during my Ph.D. program. Contents 論文の和文要旨 ........................................................................................................................ 2 Abstract ..................................................................................................................................... 4 Acknowledgements .................................................................................................................. 5 Contents ..................................................................................................................................... i 1. Introduction .................................................................................................................... 1 1.1 Background ............................................................................................................. 1 1.2 Space Weather and Ionospheric Research .............................................................. 4 1.3 Nonlinear System Identification ............................................................................. 6 1.4 Objectives................................................................................................................ 8 1.5 Outline ..................................................................................................................... 9 1.6 Significance ........................................................................................................... 10 2. Radio Waves Propagating in the Ionosphere ............................................................. 12 2.1 Investigating the Ionosphere ................................................................................. 13 2.1.1 Very Low Frequency (VLF) Measurement ............................................ 13 2.1.1.1 VLF Wave Propagation in the Earth’s Ionosphere Waveguide 14 2.1.1.2 VLF Transmitter ....................................................................... 16 2.1.1.3 VLF Receiver ........................................................................... 17 2.1.1.4 VLF Technical Architecture ..................................................... 19 2.1.2 Ionosonde ................................................................................................ 19 2.2 Solar Disturbances ................................................................................................ 21 2.2.1 Ionospheric Disturbances ........................................................................ 22 2.2.2 Traveling Ionospheric Disturbances ....................................................... 22 2.3 Non-Solar Disturbances ........................................................................................ 23 2.3.1 Lightning -Induced Electron Precipitation (LEP) ................................... 23 2.3.2 Early Events ............................................................................................ 23 2.3.3 Atmospheric Gravity Waves ................................................................... 24 3. Nonlinear Autoregressive with Exogenous Input Neural Network (NARXNN) .... 26 3.1 The Concept of an Artificial Neural Networks (ANNs) ....................................... 26 i 3.2 Recurrent Neural Networks .................................................................................. 27 3.3 NARXNN Structure .............................................................................................. 30 3.4 Training a Neural Network ................................................................................... 32 3.4.1 Avoid Overfitting .................................................................................... 32 3.4.2 Training Classification ............................................................................ 34 3.4.2.1 Supervised training ................................................................... 35 3.4.2.2 Unsupervised training ............................................................... 35 3.4.2.3 Reinforcement training ............................................................. 35 3.4.3 Training Algorithm ................................................................................. 35 3.4.3.1 Bayesian regulation training algorithm .................................... 36 3.4.3.2 Levenberg-Marquardt training algorithm ................................
Recommended publications
  • Vertical Magnetic Noise in the Voice Frequency Band Within and Above Coal Mines
    Report of Investigations 8828 Vertical Magnetic Noise in the Voice Frequency Band Within and Above Coal Mines By John Durkin UNITED STATES DEPARTMENT OF THE INTERIOR William P. Clark, Secretary BUREAU OF MINES Robert C. Horton, Director Library of Congress Cataloging in Publication Data: Durkin, John Vertical magnetic noise in the voice frequency band within and above coal mines. (Report of investigations ; 8828) Bibliography: p. 21-22. Supt. of Docs. no.: I 28.23:8828. 1. Coal mines and mining-Communication systems. 2. Electromag- netic noise. 3. Voice frequency. I. Title. 11. Series: Report of in- vestigations (United States. Bureau of Mines) ; 8828. TN23.U43 [TN344] 622s [622] 83-600 164 CONTENTS Page Abstract ....................................................................... 1 Introduction ................................................................. 2 EM atmospheric noise ........................................................... 2 Noise source ................................................................. 2 Earth-ionosphere waveguide ................................................... 5 Prior atmospheric noise measurements ......................................... 8 Surface vertical magnetic noise .......................................... 9 Underground vertical magnetic noise ...................................... 11 EM vertical magnetic noise field tests ......................................... 12 Noise measuring instrumentation.............................................. 12 Noise data ..................................................................
    [Show full text]
  • Demodulation, Bit-Error Probability and Diversity Arrangements
    RADIO SYSTEMS – ETIN15 Lecture no: 6 Demodulation, bit-error probability and diversity arrangements Anders J Johansson, Department of Electrical and Information Technology [email protected] 5 April 2017 1 Contents • Receiver noise calculations [Covered briefly in Chapter 3 of textbook!] • Optimal receiver and bit error probability – Principle of maximum-likelihood receiver – Error probabilities in non-fading channels – Error probabilities in fading channels • Diversity arrangements – The diversity principle – Types of diversity – Spatial (antenna) diversity performance 5 April 2017 2 RECEIVER NOISE 5 April 2017 3 Receiver noise Noise sources The noise situation in a receiver depends on several noise sources Noise picked up Wanted by the antenna signal Output signal Analog Detector with requirement circuits on quality Thermal noise 5 April 2017 4 Receiver noise Equivalent noise source To simplify the situation, we replace all noise sources with a single equivalent noise source. Wanted How do we determine Noise free signal N from the other sources? N Output signal C Analog Detector with requirement circuits on quality Noise free Same “input quality”, signal-to-noise ratio, C/N in the whole chain. 5 April 2017 5 Receiver noise Examples • Thermal noise is caused by random movements of electrons in circuits. It is assumed to be Gaussian and the power is proportional to the temperature of the material, in Kelvin. • Atmospheric noise is caused by electrical activity in the atmosphere, e.g. lightning. This noise is impulsive in its nature and below 20 MHz it is a dominating. • Cosmic noise is caused by radiation from space and the sun is a major contributor.
    [Show full text]
  • Reliability of Atmospheric Radio Noise Predictions L
    JOURNAL OF RESEARCH of the National Bureau of Standards- D. Radio Propagation Vol. 650 , No.6, November- December 1961 Reliability of Atmospheric Radio Noise Predictions l John R. Herman Contribution from AVCO Corporation, Research and Advanced Development Division, Geophysics Section, 201 Lowell Street, Wilmington, Mass. (Received May 15, 1961) Measured radio noise values are compared with the corresponding International Radio Consultative Committee [C.C.I.R., 1957) predicted values at four noise measuring stations. Five freq uencies between 0.013 and 10.0 Mc/s are considered. The stations selected for this ~t ud y include Balboa, Panama, near t wo major radio noise centers, and Byrd Station, Antarctic, remote from. atmosp heric radio noise sources. It is fouod that the predicted and measured noise levels are in good agreement except at some places and times, where large discrepancies occur. :Most of the disagreements are found at places where the predi ctions are based on extrapolations of data measured at other stations. R easons for the disagree­ men ts are disc u sed. 1. Introduction Becausc the success or failure of communications by radio waves depends upon the signal-to-noise i ratio at the receiver, it has become necessary to obtain some knowledge of the noise levels to be expected. Atmospherically-generated radio noise levels vary with time of day, scason, and geographi­ cal lo cation. Prediction of tbe variations on a worldwide basis have been published in Radio Propagation Unit (R.P.U.) Technical R eport No.5 [1945 1947] and National Bureau of Standards Circular 462 [1948] in terms of t he minimum field stl' e ngth~ r ~ quir e ~ to maintain int ell i~ibl e.
    [Show full text]
  • Signal to Noise Ratio (SNR Or S/N) SNR Is the Ratio of the Signal Power to Noise Power
    JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 001 , ANDHRA PRADESH GATE Coaching Classes as per the Direction of Ministry of Education GOVERNMENT OF ANDHRA PRADESH Analog Communication 26-05-2020 to 06-07-2020 Prof. Ch. Srinivasa Rao Dept. of ECE, JNTUK-UCE Vizianagaram Analog Communication-Day 7, 01-06-2020 Presentation Outline Noise: • Noise and its types • Thermal Noise • Parameters of Noise • Noise in Baseband Communication systems • Gaussian process and NB Noise • Problems 02-06-2020 Prof.Ch.Srinivasa Rao, JNTUK UCEV 2 Learning Outcomes • At the end of this Session, Student will be able to: • LO 1 : Fundamental aspects of Noise • LO 2 : Different Noise types and its Paraneters • LO 3 : Gaussian Process and ND Noise 02-06-2020 Prof.Ch.Srinivasa Rao, JNTUK UCEV 3 Noise Definitions of Noise: • Noise is unwanted signal that affects wanted signal. • Noise can broadly be defined as any unknown signal that affects the recovery of the desired signal. • Noise is an unwanted signal, which interferes with the original message signal and corrupts the parameters of the message signal. This alteration in the communication process, leads to the message getting altered. It most likely enters at the channel or the receiver. Effect of noise • Degrades system performance (Analog and digital) • Receiver cannot distinguish signal from noise • Efficiency of communication system reduces Most common examples of noise are: • Hiss sound in radio receivers • Buzz sound amidst of telephone conversations • Flicker in television receivers, Noise Sources External Internal Noise Noise Atmospheric Industrial Extraterrestrial Solar Noise Cosmic Noise External Noise : • It is due to Man- made and natural resources • Sources over which we have no control such as thunders, snow fall, lightning etc.
    [Show full text]
  • Rolling Bearings Fault Diagnosis and Classi Cation Based on Optimal Wavelet Subband Selection and Deep Neural Network
    Rolling bearings fault diagnosis and classication based on optimal wavelet subband selection and deep neural network Rakesh Kumar Jha ( [email protected] ) Rajiv Gandhi Proudyogiki Vishwavidyalaya https://orcid.org/0000-0002-6568-8083 Preety D Swami Rajiv Gandhi Proudyogiki Vishwavidyalaya Research Article Keywords: Autoencoder, fault diagnosis, Shannon entropy, softmax classier, stationary wavelet transform. Posted Date: March 23rd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-342393/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Rolling bearings fault diagnosis and classification based on optimal wavelet subband selection and deep neural network Rakesh Kumar Jha1, a *, Preety D Swami1,b 1 Department of Electronics & Communication Engineering, RGPV, Bhopal- 462033, India *a email-address: [email protected] b email-address: [email protected] Abstract Time-frequency analysis plays a vital role in fault diagnosis of nonstationary vibration signals acquired from mechanical systems. However, the practical applications face the challenges of continuous variation in speed and load. Apart from this, the disturbances introduced by noise are inevitable. This paper aims to develop a robust method for fault identification in bearings under varying speed, load and noisy conditions. An Optimal Wavelet Subband Deep Neural Network (OWS-DNN) technique is proposed that automatically extracts features from an optimal wavelet subband selected on the basis of Shannon entropy. After denoising the optimal subband, the optimal subbands are dimensionally reduced by the encoder section of an autoencoder. The output of the encoder can be considered as data features. Finally, softmax classifier is employed to classify the encoder output.
    [Show full text]
  • Dr. Dharmendra Kumar Assistant Professor Department of Electronics and Communication Engineering MMM University of Technology, Gorakhpur–273010
    Dr. Dharmendra Kumar Assistant Professor Department of Electronics and Communication Engineering MMM University of Technology, Gorakhpur–273010. Content of Unit-3 Noise: Source of Noise, Frequency domain, Representation of noise, Linear Filtering of noise, Noise in Amplitude modulation system, Noise in SSB-SC,DSB and DSB-C, Noise Ratio, Noise Comparison of FM and AM, Pre- emphasis and De-emphasis, Figure of Merit. Claude E. Shannon conceptualized the communication theory model in the late 1940s. It remains central to communication study today. Noise is random signal that exists in communication systems Channel is the main source of noise in communication systems Transmitter or Receiver may also induce noise in the system There are mainly 2-types of noise sources Internal noise source (are mainly internal to the communication system) External noise source Noise is an inconvenient feature which affects the system performance. Following are the effects of noise Degrade system performance for both analog and digital systems Noise limits the operating range of the systems Noise indirectly places a limit on the weakest signal that can be amplified by an amplifier. The oscillator in the mixer circuit may limit its frequency because of noise. A system’s operation depends on the operation of its circuits. Noise limits the smallest signal that a receiver is capable of processing The receiver can not understand the sender the receiver can not function as it should be. Noise affects the sensitivity of receivers: Sensitivity is the minimum amount of input signal necessary to obtain the specified quality output. Noise affects the sensitivity of a receiver system, which eventually affects the output.
    [Show full text]
  • The Response of an ENSO Model to Climate Noise, Weather Noise and Intraseasonal Forcing
    GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 22, PAGES 3723-3726, NOVEMBER 15, 2000 The Response of an ENSO Model to Climate Noise, Weather Noise and Intraseasonal Forcing Mark S. Roulston 1 Division of Geological and Planetary Sciences, Caltech 150-21, CA 91125 J. David Neelin Department of Atmospheric Sciences, UCLA, CA 90095-1565 Abstract. The response of an intermediate coupled model to distinguish between these two types of stochastic forcing. of the tropical Pacific to different forms of stochastic wind The term “weather noise” has been used in the ENSO liter- forcing is studied. An estimate of observed Pacific wind ature to refer to effects of atmospheric internal variability. variance that is unrelated to Pacific sea surface temperature The term “climate noise” has been used in some earlier liter- (SST) has a red spectrum, inconsistent with standard defini- ature [Leith, 1978] to refer to weather noise, but we propose tions of “weather noise”. The reddening is likely due to SST that it is more usefully reserved for noise effects that include outside the basin; we propose a definition of “climate noise” some reddening by oceanic or other slow components of the for such reddened variance. Effects are compared for (i) red climate system outside the domain of study. climate noise; (ii) the corresponding white weather noise This paper investigates the impact of these different types estimate; (iii) intraseasonal and interannual components of of noise on an intermediate coupled model (ICM) of the the white noise (to test frequency response); and (iv) a noise tropical Pacific. product with extra power in the 30-60 day range.
    [Show full text]
  • ECE 6640 Digital Communications
    ECE 6640 Digital Communications Dr. Bradley J. Bazuin Assistant Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Chapter 5 5. Communications Link Analysis. 1. What the System Link Budget Tells the System Engineer. 2. The Channel. 3. Received Signal Power and Noise Power. 4. Link Budget Analysis. 5. Noise Figure, Noise Temperature, and System Temperature. 6. Sample Link Analysis. 7. Satellite Repeaters. 8. System Trade-Offs. ECE 6640 2 Sklar’s Communications System Notes and figures are based on or taken from materials in the course textbook: ECE 6640 Bernard Sklar, Digital Communications, Fundamentals and Applications, 3 Prentice Hall PTR, Second Edition, 2001. What is a Link Budget • An analysis of the entire communications path – signal, noise, interference, ISI contributions, etc. – Include gains and losses • Link Budget – An estimate of the input to output system performance – Will the message get communicated? – What trade-offs can be made and what effect will they have? ECE 6640 4 The Channel • The propagation medium of the communicated signal • Between the transmitting device and the receiving device (e.g. RF antennas, cable modems, fiber optic transceivers) • For RF we think of “Free Space” – An ideal approximation for near-ground, atmospheric RF transmissions. – Non ideal atmospheric impairments include: absorption, reflection, diffraction, scattering. ECE 6640 5 Error-Performance Degradation • Established in Chapter 3 – Loss of SNR – Intersymbol interference • For Digital Communications E S W b N0 N R – The relationship between SNR and Eb/No – SNR relates the average signal power and average noise power – Eb/N0 relates the energy per bit to the noise energy – Loss: refers to a loss in signal energy – Noise: refers to an increase in noise or interference energy ECE 6640 6 Sources of Signal Loss and Noise 1.
    [Show full text]
  • TI-TRNG: Technology Independent True Random Number Generator
    TI-TRNG: Technology Independent True Random Number Generator Md. Tauhidur Rahman, Kan Xiao, Domenic Forte, Xuhei Zhang, Jerry Shi, and Mohammad Tehranipoor ECE Department, University of Connecticut {tauhid, kanxiao, forte, xuz09001, zshi, tehrani}@engr.uconn.edu ABSTRACT and customer-facing web access [1-8]. A quality RNG gen- True random number generators (TRNGs) are needed for erates statistically independent and unpredictable sequences a variety of security applications and protocols. The qual- of random numbers. Compromising an RNG often means ity (randomness) of TRNGs depends on sensitivity to ran- compromising an entire system. dom noise, environmental conditions, and aging. Random A true RNG (TRNG) translates random physical phenom- sources of noise improve TRNG quality. In older or more ena such as thermal noise, atmospheric noise, shot noise, ra- mature technologies, the random sources are limited result- dio noise, flicker noise, clock jitter, phase noise, noise in a ing in low TRNG quality. Prior work has also shown that compact memory etc. into random digits [1-8]. A TRNG attackers can manipulate voltage supply and temperature must have uniform statistics; non-uniform statistics due to to bias the TRNG output. In this paper, we propose bias biased random sequences help attackers to guess the ran- detection mechanisms and a technology independent TRNG dom numbers. Generally, random numbers are generated by (TI-TRNG) architecture. The TI-TRNG enhances power comparing two symmetric devices which possess some pro- supply noise for older technologies and uses a self-calibration cess variation (PV) and random inner noise. Variations in mechanism that reduces bias in TRNG output due to ag- the inherent process, operating temperature, VDD , and ag- ing and attacks.
    [Show full text]
  • Detecting Ground Deformation in the Built Environment Using Sparse Satellite Insar Data with a Convolutional Neural Network
    This is a repository copy of Detecting Ground Deformation in the Built Environment Using Sparse Satellite InSAR Data With a Convolutional Neural Network. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/165027/ Version: Accepted Version Article: Anantrasirichai, N, Biggs, J, Kelevitz, K et al. (5 more authors) (2020) Detecting Ground Deformation in the Built Environment Using Sparse Satellite InSAR Data With a Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing. ISSN 0196-2892 https://doi.org/10.1109/tgrs.2020.3018315 © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including
    [Show full text]
  • Implications of Increasing Man Made Noise Floor Levels on Radio Broadcasting
    Implications Of Increasing Man Made Noise Floor Levels On Radio Broadcasting Charles W. Kelly, Jr. Nautel Limited Halifax, NS Canada 1 Noise is Everywhere • Noise has been a fact of life since Marconi first complained about ignition noise from early cars. • With the state of the art of receivers, the ambient noise floor, rather than the receiver sensitivity determines the receiving threshold in the AM & FM bands. • There are three basic types of radio noise: Natural, Unintentional, and Intentional. 2 Natural Noise: Atmospheric • Atmospheric Noise: Atmospheric noise is primarily caused by lightning, and as such, varies due to the proximity to storms, and the time of the year. The noise amplitude caused declines roughly 50 dB per frequency decade from 10 kHz to 10 MHz. • Atmospheric noise is the dominant natural noise source in the AM band. Atmospheric noise is more problematic in the night time hours because distant lightning storms can propagate long distances via sky wave. 3 Natural Noise: Thermal • Thermal Noise: Also known as Johnson–Nyquist noise. Caused by thermal agitation of electrons, and is roughly linear with respect to frequency. • Because atmospheric noise declines so dramatically with frequency, thermal noise is the dominant natural noise source on the FM broadcast band. 4 Man Made: Power Line Noise • Power line noise often is caused by arcing across power line equipment. It declines in amplitude with frequency, and is typically more troublesome in rainy and windy conditions. • Affects AM and FM but is most often noticed on AM as the recognizable buzz is demodulated in an AM receiver more readily than on FM.
    [Show full text]
  • Evolution of the Soundscape Following the Traffic Closure on the Right Bank of the Seine in Paris
    Evolution of the soundscape following the traffic closure on the right bank of the Seine in Paris Fanny Mietlicki Bruitparif, France. Matthieu Sineau Bruitparif, France.. Summary Since September 2016, by decision of the City of Paris, the right bank of the Seine river is closed to traffic along 3.3 km. Bruitparif has put in place a system for assessment of the modifications on the sound environment brought by this closure. This system was based on the implementation of noise measurements at 90 sites in and around Paris as well as modeling. At the end of a year of follow-up, it was possible to establish the following observations: 1. Partial traffic shifts to the lanes located above the banks have generated an increase in traffic noise for residents. This is more pronounced at night (up to 4 dB (A) in some areas) than during the day (less than 2 dB (A) increase). However, during daytime there is an increase of noise peaks (horns, sirens of emergency vehicles ...) related to rising congestion. 2. Other axes in Paris have also undergone a slight increase in noise likely related to the traffic reports, but in a more limited manner (of the order of 1 dB (A)). 3. Outside Paris, especially on the ring road and major roads, no significant change has been noted. 4. At the end of a year of observation, there does not seem to have been an adaptation of the behavior of drivers. 5. On the other hand, traffic noise has clearly decreased on the bank which is now pedestrianized, as well as on the façades of the first buildings located opposite the right banks of the Seine river.
    [Show full text]