4. Efficacy of Breast Cancer Screening

Total Page:16

File Type:pdf, Size:1020Kb

4. Efficacy of Breast Cancer Screening 4. EFFICACY OF BREAST CANCER SCREENING 4.1 Methodological and analytical control arm. Hence, an intention-to-treat anal- issues ysis of RCTs, i.e. an analysis in which the data are analysed according to the original random- To evaluate the efficacy of screening, it is ized design, may actually have a limited ability to important to consider the definitions of efficacy address efficacy, due to non-ideal circumstances and effectiveness for an intervention, to define (Gulati et al., 2012). outcome measures, and to consider potential This section focuses primarily on the assess- biases. ment of efficacy; methodological issues in the assessment of effectiveness are addressed in 4.1.1 Efficacy versus effectiveness Section 5.1. The term “efficacy” should be distinguished 4.1.2 Primary outcome measures from the term “effectiveness”. Efficacy is “the extent to which a specific intervention, proce- The primary outcome measure is reduction dure, regimen, or service produces a beneficial in breast cancer mortality, although increasing result under ideal conditions” (Porta, 2014), life expectancy or reduction of metastatic disease whereas effectiveness is “a measure of the extent can also be considered efficacy measures. Given to which a specific intervention, procedure, the natural history of the disease, a minimum regimen, or service, when deployed in the field in requirement in addressing efficacy is a sufficiently the usual circumstances, does what it is intended long follow-up (Hanley, 2011). Some authors have to do for a specified population” Porta,( 2014). In suggested that the use of breast cancer mortality practice, true efficacy [under ideal conditions] as the end-point of a trial may have led to unre- can rarely be estimated. Randomized controlled liable estimates of the relative risk reduction, trials (RCTs), which are conducted to initially due to possible uncertainties surrounding the assess whether screening works, assess efficacy determination of breast cancer death (leading by estimating a primary outcome, such as reduc- to misclassification of deaths), and that the tion in breast cancer mortality in the study arm use of all-cause mortality as the end-point of a compared with the control arm. However, the trial would resolve this bias (Black et al., 2002; measure of efficacy is limited by the implementa- Gøtzsche & Jørgensen, 2013). However, others tion of the intervention and other practical issues have argued that all-cause mortality is not an – for instance, less than 100% compliance in appropriate end-point for screening trials for a the study arm and unintended screening in the specific disease Tabár( et al., 2002; Marmot et al., 237 IARC HANDBOOKS OF CANCER PREVENTION – 15 2013; Weiss, 2014). Although using all-cause including slower-growing tumours, which mortality avoids the need to determine cause are generally thought to be associated with a of death precisely, breast cancer deaths reflect a better prognosis and therefore longer survival. small fraction of all-cause mortality, and trials of This again leads to bias apparently in favour of the size needed to have sufficient statistical power screening. The most extreme form of length bias to detect the expected small effects of screening is referred to as overdiagnosis. Some ductal carci- on all-cause mortality would be logistically and noma in situ (DCIS) may never progress to inva- financially impracticable. A Swedish review, sive cancer or present clinically (in the absence of which incorporated all Swedish RCTs of breast screening) (Yen et al., 2003), and some invasive cancer screening, showed a 2% non-significant cancers may be sufficiently indolent that they reduction in all-cause mortality (Nyström et al., would never have presented clinically during the 2002a), which is in line with the expected 0.94% woman’s lifetime if they had not been detected by (Nyström et al., 2002b). screening (see Section 4.2.3c). The last important bias in evaluating 4.1.3 Biases screening is selection bias. Women attend screening voluntarily, and participants might Several sources of bias have important effects therefore generally be more health-conscious on the estimation of screening efficacy. and have a lower baseline risk of breast cancer The first important bias is lead-time bias. than non-participants, although in practice this The general concept of screening is that by early assumption may not hold true (Paap et al., 2011). detection of disease and subsequent treatment, The decision to attend screening may also be prognosis is improved and the probability of influenced by certain demographic and social death from the disease is reduced. The time factors (see Section 3.1) that affect disease prog- between screen detection and the point at which nosis, for example familial risk. In RCTs with a tumour would have presented and been clin- mortality as the end-point, such a selection may ically diagnosed (in the absence of screening) hamper the generalizability of the results. is referred to as “lead time” (Cole & Morrison, Evaluations of efficacy and effectiveness must 1980). The survival time, the time from breast control for the above-mentioned biases if they cancer diagnosis to death, of screen-detected are to provide credible estimates. To eliminate cases is increased because of this lead time, lead-time and length bias, differences in breast even for individuals who do not benefit from cancer mortality rates (between the trial arms or screening. Lead-time bias may therefore appear different populations) should be the end-point to act in favour of screening, if efficacy is evalu- of a study rather than survival, because survival ated by survival analyses. time in cancer patients is extended due to lead The second important bias is length bias time and is more favourable due to length-biased (Cole & Morrison, 1980) (sometimes referred sampling. Selection bias can partially be quanti- to as length-time bias). The probability of a fied by comparing non-participants with histor- tumour being detected at screening is (partially) ical or recent data on mortality or risk factors dependent on the growth rate of the tumour, and can, perhaps, be controlled for by adjusting because slow-growing tumours have a longer for risk factors or their surrogates (e.g. socioec- preclinical detectable phase (sojourn time) and onomic status; Allgood et al., 2008) or by the are therefore more likely to be detected than fast- application of an empirically derived adjust- growing tumours. Tumours detected at screening ment factor (Paap et al., 2014). In addition, it thus reflect a biased sample of preclinical lesions, has been argued that any bias due to selection 238 Breast cancer screening for screening is likely to be small in organized randomization by cluster is an alternative. Both programmes with invitation schemes based on types of randomization have been used in the population registries and with high attendance RCTs of breast cancer screening. Recruitment rates (van Schoor et al., 2011a, b). and randomization are less complex with cluster randomization, but an equal distribution of risk 4.1.4 Use of randomized controlled trials factors between the intervention group and the control group is less likely to be achieved than Reduction in breast cancer mortality in with individual randomization. Furthermore, women offered screening relative to women not subjects with a previous diagnosis of breast offered screening is the appropriate measure of cancer at the time of randomization are, ideally, benefit of an RCT. Lead-time and length bias excluded from the trial. Whereas a previous are then eliminated in the analyses. Women are diagnosis can be determined more easily in followed up from the time of randomization RCTs with individual randomization, this may instead of from the time of diagnosis, which be more difficult to achieve beforehand with avoids lead time, and all deaths from breast cluster randomization. An important advantage cancer that occur during the follow-up period of cluster randomization is that contamination of are included in the analysis. The RCTs of breast (screening in) the control group may be reduced. cancer screening are evaluated in accordance As mentioned above, the screening effect with the intention-to-screen principle, taking in RCTs is dependent on, among other things, into account in the intervention group both the compliance in the intervention group and women who accept the invitation to screening the limitation of contamination of the control and women who decline the invitation. The group. Low compliance reduces the estimate of resulting point estimate of reduction in breast effect and must therefore be reported. Screening cancer mortality therefore does not evaluate the of controls by services outside of the trial will screened groups of individuals only. also dilute the effect of screening on breast In RCTs, participants are randomly assigned cancer mortality. Possible contamination of to either the intervention group or the control the control group is often difficult to measure, group to prevent confounding at baseline, especially because mammography is also used accounting for both observable characteris- for clinical diagnosis of breast cancer and this tics and unknown confounders. However, even use may not be easily distinguished from use for well performed randomization schemes may opportunistic screening. Methods to adjust for not prevent potential imbalances completely. contamination and poor compliance have been To take into account possible differences in risk proposed (Cuzick et al., 1997; Baker et al., 2002). factors for death from breast cancer between Furthermore, unless the breast cancer mortality the intervention group and the control group, analysis is limited to those diagnosed with breast an assessment should preferably be made of the cancer during the screening phase of the trial distribution of risk factors in both groups at period, with longer follow-up, screening of the trial entry, which would permit adjustment in control group can influence the observed differ- the analysis (although most known risk factors ence between the intervention group and the for breast cancer seem to have limited predic- control group.
Recommended publications
  • The Use of Rodent Tumors in Experimental Cancer Therapy Conclusions and Recommendations from an International Workshop1'2
    [CANCER RESEARCH 45, 6541-6545, December 1985] Meeting Report The Use of Rodent Tumors in Experimental Cancer Therapy Conclusions and Recommendations from an International Workshop1'2 This workshop was convened to address the question of how of a specific tumor cannot be predicted with any certainty. Virus- best to use animal models of solid tumors in cancer therapy induced rodent tumors almost always express common virus- research. The discussion among the 58 participants focused on coded antigens and are usually strongly immunogenic, but hosts the following topics: appropriate solid tumor models; xenografts neonatally infected with virus may be immunologically tolerant to of human tumors; assay systems such as local tumor control, virus-coded antigens. Chemically induced rodent tumors tend to clonogenic assays following tumor excision, and tumor regrowth express individually distinct antigens. Depending partially upon delay; and applications of such models in chemotherapy, radio the carcinogen and the target organ, the degree of immunoge therapy, and combined modalities studies. nicity is variable, but a large proportion of chemically induced A major goal of the meeting was to produce a set of guiding tumors are immunogenic. Spontaneous rodent tumors are usu principles for experiments on animal tumors. This report is largely ally nonimmunogenic, although a minority may be weakly to a statement of those guiding principles, with suggestions and moderately immunogenic (1, 2). comments concerning investigations using animal models in Because no tumor can be expected to be nonimmunogenic if cancer therapy research.3 The authors believe that this discus it is placed in an allogeneic environment, tumors should as a sion of "tricks of the trade" will be useful to research workers general rule only be transplanted syngeneically.
    [Show full text]
  • Radiotherapy: Seizing the Opportunity in Cancer Care
    RADIOTHERAPY: seizing the opportunity in cancer care November 2018 Foreword The incidence of cancer is increasing, resulting in a rising demand for high‑quality cancer care. In 2018, there were close to 4.23 million new cases of cancer in Europe, and this number is predicted to rise by almost a quarter to 5.2 million by 2040.1 This growing demand poses a major challenge to healthcare systems and highlights the need to ensure all cancer patients have access to high-quality, efficient cancer care. One critical component of cancer care is too often forgotten in these discussions: radiotherapy. Radiotherapy is recommended as part of treatment for more than 50% of cancer patients.2 3 However, at least one in four people needing radiotherapy does not receive it.3 This report aims to demonstrate the significant role of radiotherapy in achieving high‑quality cancer care and highlights what needs to be done to close the current gap in utilisation of radiotherapy across Europe. We call on all stakeholders, with policymakers at the helm, to help position radiotherapy appropriately within cancer policies and models of care – for the benefit of cancer patients today and tomorrow. 2 1 Governments and policymakers: Make radiotherapy a central component of cancer care in policies, planning and budgets Our 5 2 Patient groups, media five-point Professional societies working and other stakeholders: Help with national and EU‑level improve general awareness and plan decision‑makers: Achieve understanding of radiotherapy recognition of all radiotherapy to
    [Show full text]
  • The Future of Cancer Research: ACCELERATING SCIENTIFIC INNOVATION
    The Future Of Cancer Research: ACCELERATING SCIENTIFIC INNOVATION President’s Cancer Panel Annual Report 2010-2011 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Cancer Institute The President’s Cancer Panel LaSalle D. Leffall, Jr., M.D., F.A.C.S., Chair (through 12/31/11) Charles R. Drew Professor of Surgery Howard University College of Medicine Washington, DC 20059 Margaret L. Kripke, Ph.D. (through 12/31/11) Vivian L. Smith Chair and This report is submitted to the President of the United States Professor Emerita in fulfillment of the obligations of the President’s Cancer Panel The University of Texas to appraise the National Cancer Program as established in MD Anderson Cancer Center accordance with the National Cancer Act of 1971 (P.L. 92-218), Houston, TX 77030 the Health Research Extension Act of 1987 (P.L. 99-158), the National Institutes of Health Revitalization Act of 1993 (P.L. 103-43), and Title V, Part A, Public Health Service Act (42 U.S.C. 281 et seq.). Printed November 2012 For further information on the President’s Cancer Panel or additional copies of this report, please contact: Abby B. Sandler, Ph.D. Executive Secretary President’s Cancer Panel 9000 Rockville Pike Bld. 31/Rm B2B37 MSC 2590 Bethesda, MD 20892 301-451-9399 [email protected] http://pcp.cancer.gov The Future Of Cancer Research:: ACCELERATING SCIENTIFIC INNOVATION President’s Cancer Panel Annual Report 2010-2011 Suzanne H. Reuben Erin L. Milliken Lisa J. Paradis for The President’s Cancer Panel November 2012 U.S.
    [Show full text]
  • Cancer Treatment and Survivorship Facts & Figures 2019-2021
    Cancer Treatment & Survivorship Facts & Figures 2019-2021 Estimated Numbers of Cancer Survivors by State as of January 1, 2019 WA 386,540 NH MT VT 84,080 ME ND 95,540 59,970 38,430 34,360 OR MN 213,620 300,980 MA ID 434,230 77,860 SD WI NY 42,810 313,370 1,105,550 WY MI 33,310 RI 570,760 67,900 IA PA NE CT 243,410 NV 185,720 771,120 108,500 OH 132,950 NJ 543,190 UT IL IN 581,350 115,840 651,810 296,940 DE 55,460 CA CO WV 225,470 1,888,480 KS 117,070 VA MO MD 275,420 151,950 408,060 300,200 KY 254,780 DC 18,750 NC TN 470,120 AZ OK 326,530 NM 207,260 AR 392,530 111,620 SC 143,320 280,890 GA AL MS 446,900 135,260 244,320 TX 1,140,170 LA 232,100 AK 36,550 FL 1,482,090 US 16,920,370 HI 84,960 States estimates do not sum to US total due to rounding. Source: Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute. Contents Introduction 1 Long-term Survivorship 24 Who Are Cancer Survivors? 1 Quality of Life 24 How Many People Have a History of Cancer? 2 Financial Hardship among Cancer Survivors 26 Cancer Treatment and Common Side Effects 4 Regaining and Improving Health through Healthy Behaviors 26 Cancer Survival and Access to Care 5 Concerns of Caregivers and Families 28 Selected Cancers 6 The Future of Cancer Survivorship in Breast (Female) 6 the United States 28 Cancers in Children and Adolescents 9 The American Cancer Society 30 Colon and Rectum 10 How the American Cancer Society Saves Lives 30 Leukemia and Lymphoma 12 Research 34 Lung and Bronchus 15 Advocacy 34 Melanoma of the Skin 16 Prostate 16 Sources of Statistics 36 Testis 17 References 37 Thyroid 19 Acknowledgments 45 Urinary Bladder 19 Uterine Corpus 21 Navigating the Cancer Experience: Treatment and Supportive Care 22 Making Decisions about Cancer Care 22 Cancer Rehabilitation 22 Psychosocial Care 23 Palliative Care 23 Transitioning to Long-term Survivorship 23 This publication attempts to summarize current scientific information about Global Headquarters: American Cancer Society Inc.
    [Show full text]
  • CANCE R RESEARCH Experimental Brain Tumors
    CANCE R RESEARCH A MONTHLY JOURNAL OF ARTICLES AND ABSTRACTS REPORTING CANCER RESEARCH VOLUME 1 DECEMBER, 1941 NUMBER 12 Experimental Brain Tumors I. Tumors Produced with Methylcholanthrene* H. M. Zimmerman, M.D., and Hildegarde Arnold, M.D. (Frorn the Laboratory o/Pathology, Yale University School o/ Medicine, New Haven, Conn.) (Received for publication October 9, I941) Efforts to produce intracranial neoplasia by various of 4 in pyrex glass jars having wire mesh covers. The chemical carcinogens have been attended with scant jars were sterilized weekly. Each group of animals was success prior to the work of Seligman and Shear (2). inspected at least twice daily for evidences of tumor By intracerebral implantation of pellets of 2o-methyl- development. cholanthrene, these workers produced ii gliomas and The diet consisted of Purina Fox Chow and oats. 2 fibrosarcomas in a series of 2o male mice of the C3H This and tap water were available to the animals at all strain. Seligman and Shear reported also successful times ad libitum. subcutaneous transplantation of several of these tumors, Carcinogen.--The carcinogen employed for intra- one of which was stated to be a glioma. cranial implantation was 2o-methylcholanthrene (Hoff- Utilizing the same technic, the present writers re- man-LaRoche, Inc., Nutley, N. J.) which was purified ported a preliminary experiment (3) in which they by chromatographic adsorption on A120:~.1 The speci- found u6 intracranial tumors in 51 C3H mice. These men used had a corrected melting point of i79.8- tumors, occurring during the first io months of the I8o.4 ~ C. Cylindrical pellets of this hydrocarbon were experiment, consisted of oligodendroglioma, glioblas- prepared with a diameter of about I mm.
    [Show full text]
  • Inclusion/Exclusion Criteria for National Cancer Institute (NCI) Sponsored Clinical Trials
    Inclusion/Exclusion Criteria for National Cancer Institute (NCI) Sponsored Clinical Trials NCI Recommended Protocol Text and Guidance based on Joint Recommendations of the American Society of Clinical Oncology (ASCO) and Friends of Cancer Research (Friends) The NCI’s Cancer Therapy Evaluation Program (CTEP) in the Division of Cancer Treatment and Diagnosis (DCTD) brought together NCI Divisions, Offices and Centers that sponsor NCI clinical trials to review the published recommendations by ASCO and Friends in October 2017 (https://www.asco.org/research-progress/clinical-trials/clinical-trial-eligibility-criteria). ASCO, Friends, and the US Food and Drug Administration (FDA) examined specific eligibility criteria (i.e., brain metastases, minimum age, HIV infection, and organ dysfunction and prior and concurrent malignancies) to determine whether to recommend definitions to extend trials to a broader population. The below table includes the ASCO/Friends recommendations and the modifications by the NCI after further review and additional input from pharmacology experts on the NCI’s Investigational Drug Steering Committee. NCI’s Experimental Therapeutics Clinical Trials Network (ETCTN) and NCI’s National Clinical Trials Network (NCTN) will utilize these broadened eligibility criteria in clinical trials going forward and active trials may be modified when feasible. CTEP has incorporated these criteria into the Generic Protocol Template updated September 4, 2018 posted on the CTEP website. To implement these inclusion criteria in NCI-sponsored
    [Show full text]
  • 2018 Annual Report to the Nation Indicating That Mortality Rates That Led to a Multimillion-Dollar Government Investment in Single- Due to Brain Tumors Are Increasing
    ANNUAL REPORT 2018 www.braintumor.org 1 TABLE OF CONTENTS 2018 Progress................................................................. 4 Brain Tumor Survivor: Matt Tifft.............................. 5 Signature and Community Events.......................... 6 Donor Honor Roll: Signature Events...................... 7 Donor Honor Roll: Community Events.................. 8 GBM Research: Dr. Paul Mischel............................. 9 2018 Financials.............................................................. 10 Volunteer: Chandri Navarro....................................... 11 Volunteer Leadership.................................................... 13 Advocate: Pati Urias...................................................... 14 Donor Honor Roll........................................................... 15 2019 Signature Events................................................ 23 Mission, Vision, and Values........................................ 24 CONTACT US www.braintumor.org | 617-924-9997 55 Chapel St., Suite 200, Newton, MA 02458 2 A Letter from NBTS Chief Executive Officer & Board Chair maintaining a standard for data-sharing that far exceeds most projects of this kind. Another significant victory includes the passing of the Childhood Cancer STAR Act on June 5th, 2018, which National Brain Tumor Society staff helped write and advance through our legislative advocacy work. This law is the most comprehensive childhood cancer legislation ever taken up by Congress, designed to advance pediatric cancer efforts including brain tumor
    [Show full text]
  • CANCE R RESEARCH a Cancerous Neoplasm of Plants
    CANCE R RESEARCH A MONTHLY IOURNAL OF ARTICLES AND ABSTRACTS REPORTING CANCER RESEARCH VOLUME 2 SEPTEMBER, 1942 NUMBER 9 A Cancerous Neoplasm of Plants Autonomous Bacteria-Free Crown-Gall Tissue Philip R. White, Ph.D., and Attain C. Braun, Ph.D. (From the Departmevt o/ Animal and Plant Pathology, The Roc/~e/eller Institute [or Medical Research, Princeton, N. l.) (Rcceivc(I for publication May' 2i, I942 ) Plants of a great many sorts, when infected with bacteria of Dcmonstration of bacteria in tumor strands has regularly the species, Phytomonas tume/adens (Smith and Townsend) proved much more difficult than in the case of the primary Bergey et al., develop tmnorous overgrowths or "crown galls" tmnors. This is doubly true of the secondary tumors which at the point of inoculation. These are characterized by a rapid, Smith found to be generally bacteria-free (8), an observation disorganized growth involving both hypertrophy and hyperplasia which one of us has confirmed (i, 2). of the affected cells. They are invasive, though this invasiveness is somewhat limited by the structural characteristics of plants in It is the purpose of this paper to present evidence general. They are frequently malignant, killing their hosts by that these secondary tumors are not only characteristi- gradual disruption and destruction of the vascular system and cally bacteria-free but that they possess, in the absence diversion of the food supply from the adjacent uninfected tissues. They are not, however, self-limiting and when developed on of any detectable tumor-inducing agent, a unique perennial plants and in positions where survival' of the host is capacity for unlimited, disorganized, autonomous possible they may reach enormous size.
    [Show full text]
  • Breast Self-Examination Practices in Women Who
    Breast self-examination practices in women who have had a mastectomy by Carole H Crowell A thesis submitted in partial fulfillment of the requirement for the degree of Master of Nursing Montana State University © Copyright by Carole H Crowell (1990) Abstract: Research findings indicate that breast cancer mortality has not decreased significantly in the past decade. While research continues on the development of more effective therapies, techniques for early detection are presently receiving greater attention. The use of breast self-examination (BSE) has been emphasized in the media and professional literature but little emphasis has been placed on BSE for women who have had a mastectomy. The purposes of this study were to determine if women who have had breast surgery do breast self-examination and to describe barriers that block this behavior. An assumption was made that women who have had surgery for breast cancer do not examine their remaining breast tissue and scar site. A qualitative study was conducted using a grounded theory approach to explore and describe behavior of women who have had a mastectomy. Analytic strategies used for data analysis were the constant comparative method, theoretical sampling, open coding, memo writing, and recoding. A convenience sample of twelve informants was selected from a mastectomy support group located in a rural community in Montana. BSE was viewed as a health-promoting behavior and was found to relate to certain variables of Penders (1987) Health Promotion Model. Findings of this study indicate a majority of women perform BSE after their mastectomy but most do not examine their scar site.
    [Show full text]
  • A Review on Cancer Immunotherapy and Applications of Nanotechnology to Chemoimmunotherapy of Different Cancers
    molecules Review A Review on Cancer Immunotherapy and Applications of Nanotechnology to Chemoimmunotherapy of Different Cancers Safiye Akkın 1 , Gamze Varan 2 and Erem Bilensoy 1,* 1 Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey; akkinsafi[email protected] 2 Department of Vaccine Technology, Hacettepe University Vaccine Institute, 06100 Ankara, Turkey; [email protected] * Correspondence: [email protected] Abstract: Clinically, different approaches are adopted worldwide for the treatment of cancer, which still ranks second among all causes of death. Immunotherapy for cancer treatment has been the focus of attention in recent years, aiming for an eventual antitumoral effect through the immune system response to cancer cells both prophylactically and therapeutically. The application of nanoparticulate delivery systems for cancer immunotherapy, which is defined as the use of immune system features in cancer treatment, is currently the focus of research. Nanomedicines and nanoparticulate macro- molecule delivery for cancer therapy is believed to facilitate selective cytotoxicity based on passive or active targeting to tumors resulting in improved therapeutic efficacy and reduced side effects. Today, with more than 55 different nanomedicines in the market, it is possible to provide more effective cancer diagnosis and treatment by using nanotechnology. Cancer immunotherapy uses the body’s immune system to respond to cancer cells; however, this may lead to increased immune response Citation: Akkın, S.; Varan, G.; and immunogenicity. Selectivity and targeting to cancer cells and tumors may lead the way to safer Bilensoy, E. A Review on Cancer immunotherapy and nanotechnology-based delivery approaches that can help achieve the desired Immunotherapy and Applications of success in cancer treatment.
    [Show full text]
  • 5. Effectiveness of Breast Cancer Screening
    5. EFFECTIVENESS OF BREAST CANCER SCREENING This section considers measures of screening Nevertheless, the performance of a screening quality and major beneficial and harmful programme should be monitored to identify and outcomes. Beneficial outcomes include reduc- remedy shortcomings before enough time has tions in deaths from breast cancer and in elapsed to enable observation of mortality effects. advanced-stage disease, and the main example of a harmful outcome is overdiagnosis of breast (a) Screening standards cancer. The absolute reduction in breast cancer The randomized trials performed during mortality achieved by a particular screening the past 30 years have enabled the suggestion programme is the most crucial indicator of of several indicators of quality assurance for a programme’s effectiveness. This may vary screening services (Day et al., 1989; Tabár et according to the risk of breast cancer death in al., 1992; Feig, 2007; Perry et al., 2008; Wilson the target population, the rate of participation & Liston, 2011), including screening participa- in screening programmes, and the time scale tion rates, rates of recall for assessment, rates observed (Duffy et al., 2013). The technical quality of percutaneous and surgical biopsy, and breast of the screening, in both radiographic and radio- cancer detection rates. Detection rates are often logical terms, also has an impact on breast cancer classified by invasive/in situ status, tumour size, mortality. The observational analysis of breast lymph-node status, and histological grade. cancer mortality and of a screening programme’s Table 5.1 and Table 5.2 show selected quality performance may be assessed against several standards developed in England by the National process indicators.
    [Show full text]
  • Precision Oncology Advances in 2020- Looking Ahead to 2021!
    AACR VIRTUAL PATIENT ADVOCATE FORUM PRECISION ONCOLOGY ADVANCES IN 2020- LOOKING AHEAD TO 2021! SPEAKER BIOS -IN ORDER OF APPEARANCE ANTONI RIBAS, MD, PHD, FAACR President, American Association for Cancer Research Jonsson Comprehensive Cancer Center University of California Los Angeles Antoni Ribas, MD, PhD, is professor of medicine, surgery, and molecular and medical pharmacology at the University of California Los Angeles (UCLA). He serves as director of the Tumor Immunology Program at the Jonsson Comprehensive Cancer Center and director of the Parker Institute for Cancer Immunotherapy Center at UCLA. His research has focused on the use of immunotherapy to treat melanoma, the deadliest form of skin cancer. He led the clinical program that demonstrated the effectiveness of the immunotherapeutic pembrolizumab (Keytruda), which has been a significant advancement in the treatment of melanoma. Recent work includes laboratory and clinical translational research in adoptive cell transfer therapy with T-cell receptor engineered lymphocytes; examining the antitumor activity of PD-1-blocking antibodies; testing novel targeted therapies blocking oncogenic events in melanoma; and studying primary and acquired resistance to melanoma therapies. From 2001 to 2010, Dr. Ribas was the assistant director for Clinical Programs at the UCLA Human Gene Medicine Program. He led the Jonsson Cancer Center’s Cell and Gene Therapy Core Facility from 2004 to 2010. Outside his roles at UCLA, he co-led the Stand Up to Cancer-Cancer Research Institute-AACR Immunotherapy Dream Team with Nobel Laureate James Allison. Dr. Ribas has been a member of the AACR Board of Directors since 2016. In addition to his role as president, Ribas served as Program Chair for the AACR Annual Meeting 2020, the preeminent international meeting in cancer research.
    [Show full text]