A Model of Text for Experimentation in the Social Sciences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Equivalence Between Minimal Generative Model Graphs and Directed Information Graphs
Equivalence Between Minimal Generative Model Graphs and Directed Information Graphs Christopher J. Quinn Negar Kiyavash Todd P. Coleman Department of Electrical and Department of Industrial and Department of Electrical and Computer Engineering Enterprise Systems Engineering Computer Engineering University of Illinois University of Illinois University of Illinois Urbana, Illinois 61801 Urbana, Illinois 61801 Urbana, Illinois 61801 Email: [email protected] Email: [email protected] Email: [email protected] Abstract—We propose a new type of probabilistic graphical own past [4], [5]. This improvement is measured in terms of model, based on directed information, to represent the causal average reduction in the encoding length of the information. dynamics between processes in a stochastic system. We show the Clearly such a definition of causality has the notion of timing practical significance of such graphs by proving their equivalence to generative model graphs which succinctly summarize interde- ingrained in it. Therefore, we expect a graphical model defined pendencies for causal dynamical systems under mild assumptions. based on directed information to deal with processes as its This equivalence means that directed information graphs may be nodes. used for causal inference and learning tasks in the same manner In this work, we formally define directed information Bayesian networks are used for correlative statistical inference graphs, an alternative type of graphical model. In these graphs, and learning. nodes represent processes, and directed edges correspond to whether there is directed information from one process to I. INTRODUCTION another. To demonstrate the practical significance of directed Graphical models facilitate design and analysis of interact- information graphs, we validate their ability to capture causal ing multivariate probabilistic complex systems that arise in interdependencies for a class of interacting processes corre- numerous fields such as statistics, information theory, machine sponding to a causal dynamical system. -
WELDA: Enhancing Topic Models by Incorporating Local Word Context
WELDA: Enhancing Topic Models by Incorporating Local Word Context Stefan Bunk Ralf Krestel Hasso Plattner Institute Hasso Plattner Institute Potsdam, Germany Potsdam, Germany [email protected] [email protected] ABSTRACT The distributional hypothesis states that similar words tend to have similar contexts in which they occur. Word embedding models exploit this hypothesis by learning word vectors based on the local context of words. Probabilistic topic models on the other hand utilize word co-occurrences across documents to identify topically related words. Due to their complementary nature, these models define different notions of word similarity, which, when combined, can produce better topical representations. In this paper we propose WELDA, a new type of topic model, which combines word embeddings (WE) with latent Dirichlet allo- cation (LDA) to improve topic quality. We achieve this by estimating topic distributions in the word embedding space and exchanging selected topic words via Gibbs sampling from this space. We present an extensive evaluation showing that WELDA cuts runtime by at least 30% while outperforming other combined approaches with Figure 1: Illustration of an LDA topic in the word embed- respect to topic coherence and for solving word intrusion tasks. ding space. The gray isolines show the learned probability distribution for the topic. Exchanging topic words having CCS CONCEPTS low probability in the embedding space (red minuses) with • Information systems → Document topic models; Document high probability words (green pluses), leads to a superior collection models; • Applied computing → Document analysis; LDA topic. KEYWORDS word by the company it keeps” [11]. In other words, if two words topic models, word embeddings, document representations occur in similar contexts, they are similar. -
Generative Topic Embedding: a Continuous Representation of Documents
Generative Topic Embedding: a Continuous Representation of Documents Shaohua Li1,2 Tat-Seng Chua1 Jun Zhu3 Chunyan Miao2 [email protected] [email protected] [email protected] [email protected] 1. School of Computing, National University of Singapore 2. Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY) 3. Department of Computer Science and Technology, Tsinghua University Abstract as continuous vectors in a low-dimensional em- bedding space (Bengio et al., 2003; Mikolov et al., Word embedding maps words into a low- 2013; Pennington et al., 2014; Levy et al., 2015). dimensional continuous embedding space The learned embedding for a word encodes its by exploiting the local word collocation semantic/syntactic relatedness with other words, patterns in a small context window. On by utilizing local word collocation patterns. In the other hand, topic modeling maps docu- each method, one core component is the embed- ments onto a low-dimensional topic space, ding link function, which predicts a word’s distri- by utilizing the global word collocation bution given its context words, parameterized by patterns in the same document. These their embeddings. two types of patterns are complementary. When it comes to documents, we wish to find a In this paper, we propose a generative method to encode their overall semantics. Given topic embedding model to combine the the embeddings of each word in a document, we two types of patterns. In our model, topics can imagine the document as a “bag-of-vectors”. are represented by embedding vectors, and Related words in the document point in similar di- are shared across documents. -
Linked Data Triples Enhance Document Relevance Classification
applied sciences Article Linked Data Triples Enhance Document Relevance Classification Dinesh Nagumothu * , Peter W. Eklund , Bahadorreza Ofoghi and Mohamed Reda Bouadjenek School of Information Technology, Deakin University, Geelong, VIC 3220, Australia; [email protected] (P.W.E.); [email protected] (B.O.); [email protected] (M.R.B.) * Correspondence: [email protected] Abstract: Standardized approaches to relevance classification in information retrieval use generative statistical models to identify the presence or absence of certain topics that might make a document relevant to the searcher. These approaches have been used to better predict relevance on the basis of what the document is “about”, rather than a simple-minded analysis of the bag of words contained within the document. In more recent times, this idea has been extended by using pre-trained deep learning models and text representations, such as GloVe or BERT. These use an external corpus as a knowledge-base that conditions the model to help predict what a document is about. This paper adopts a hybrid approach that leverages the structure of knowledge embedded in a corpus. In particular, the paper reports on experiments where linked data triples (subject-predicate-object), constructed from natural language elements are derived from deep learning. These are evaluated as additional latent semantic features for a relevant document classifier in a customized news- feed website. The research is a synthesis of current thinking in deep learning models in NLP and information retrieval and the predicate structure used in semantic web research. Our experiments Citation: Nagumothu, D.; Eklund, indicate that linked data triples increased the F-score of the baseline GloVe representations by 6% P.W.; Ofoghi, B.; Bouadjenek, M.R. -
Document and Topic Models: Plsa
10/4/2018 Document and Topic Models: pLSA and LDA Andrew Levandoski and Jonathan Lobo CS 3750 Advanced Topics in Machine Learning 2 October 2018 Outline • Topic Models • pLSA • LSA • Model • Fitting via EM • pHITS: link analysis • LDA • Dirichlet distribution • Generative process • Model • Geometric Interpretation • Inference 2 1 10/4/2018 Topic Models: Visual Representation Topic proportions and Topics Documents assignments 3 Topic Models: Importance • For a given corpus, we learn two things: 1. Topic: from full vocabulary set, we learn important subsets 2. Topic proportion: we learn what each document is about • This can be viewed as a form of dimensionality reduction • From large vocabulary set, extract basis vectors (topics) • Represent document in topic space (topic proportions) 푁 퐾 • Dimensionality is reduced from 푤푖 ∈ ℤ푉 to 휃 ∈ ℝ • Topic proportion is useful for several applications including document classification, discovery of semantic structures, sentiment analysis, object localization in images, etc. 4 2 10/4/2018 Topic Models: Terminology • Document Model • Word: element in a vocabulary set • Document: collection of words • Corpus: collection of documents • Topic Model • Topic: collection of words (subset of vocabulary) • Document is represented by (latent) mixture of topics • 푝 푤 푑 = 푝 푤 푧 푝(푧|푑) (푧 : topic) • Note: document is a collection of words (not a sequence) • ‘Bag of words’ assumption • In probability, we call this the exchangeability assumption • 푝 푤1, … , 푤푁 = 푝(푤휎 1 , … , 푤휎 푁 ) (휎: permutation) 5 Topic Models: Terminology (cont’d) • Represent each document as a vector space • A word is an item from a vocabulary indexed by {1, … , 푉}. We represent words using unit‐basis vectors. -
A Hierarchical Generative Model of Electrocardiogram Records
A Hierarchical Generative Model of Electrocardiogram Records Andrew C. Miller ∗ Sendhil Mullainathan School of Engineering and Applied Sciences Department of Economics Harvard University Harvard University Cambridge, MA 02138 Cambridge, MA 02138 [email protected] [email protected] Ziad Obermeyer Brigham and Women’s Hospital Harvard Medical School Boston, MA 02115 [email protected] Abstract We develop a probabilistic generative model of electrocardiogram (EKG) tracings. Our model describes multiple sources of variation in EKGs, including patient- specific cardiac cycle morphology and between-cycle variation that leads to quasi- periodicity. We use a deep generative network as a flexible model component to describe variation in beat-specific morphology. We apply our model to a set of 549 EKG records, including over 4,600 unique beats, and show that it is able to discover interpretable information, such as patient similarity and meaningful physiological features (e.g., T wave inversion). 1 Introduction An electrocardiogram (EKG) is a common non-invasive medical test that measures the electrical activity of a patient’s heart by recording the time-varying potential difference between electrodes placed on the surface of the skin. The resulting data is a multivariate time-series that reflects the depolarization and repolarization of the heart muscle that occurs during each heartbeat. These raw waveforms are then inspected by a physician to detect irregular patterns that are evidence of an underlying physiological problem. In this paper, we build a hierarchical generative model of electrocardiogram signals that disentangles sources of variation. We are motivated to build a generative model of EKGs for multiple reasons. -
Improving Distributed Word Representation and Topic Model by Word-Topic Mixture Model
JMLR: Workshop and Conference Proceedings 63:190–205, 2016 ACML 2016 Improving Distributed Word Representation and Topic Model by Word-Topic Mixture Model Xianghua Fu [email protected] Ting Wang [email protected] Jing Li [email protected] Chong Yu [email protected] Wangwang Liu [email protected] College of Computer Science and Software Engineering, Shenzhen University, Guangdong China Editors: Robert J. Durrant and Kee-Eung Kim Abstract We propose a Word-Topic Mixture(WTM) model to improve word representation and topic model simultaneously. Firstly, it introduces the initial external word embeddings into the Topical Word Embeddings(TWE) model based on Latent Dirichlet Allocation(LDA) model to learn word embeddings and topic vectors. Then the results learned from TWE are inte- grated in the LDA by defining the probability distribution of topic vectors-word embeddings according to the idea of latent feature model with LDA (LFLDA), meanwhile minimizing the KL divergence of the new topic-word distribution function and the original one. The experimental results prove that the WTM model performs better on word representation and topic detection compared with some state-of-the-art models. Keywords: topic model, distributed word representation, word embedding, Word-Topic Mixture model 1. Introduction Probabilistic topic model is one of the most common topic detection methods. Topic mod- eling algorithms, such as LDA(Latent Dirichlet Allocation) Blei et al. (2003) and related methods Blei (2011), infer probability distributions from frequency statistic, which can only reflect the co-occurrence relationships of words. The semantic information is less considered. Recently, distributed word representations with NNLM(neural network language model) Bengio et al. -
Bias Correction of Learned Generative Models Using Likelihood-Free Importance Weighting
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting Aditya Grover1, Jiaming Song1, Alekh Agarwal2, Kenneth Tran2, Ashish Kapoor2, Eric Horvitz2, Stefano Ermon1 1Stanford University, 2Microsoft Research, Redmond Abstract A learned generative model often produces biased statistics relative to the under- lying data distribution. A standard technique to correct this bias is importance sampling, where samples from the model are weighted by the likelihood ratio under model and true distributions. When the likelihood ratio is unknown, it can be estimated by training a probabilistic classifier to distinguish samples from the two distributions. We show that this likelihood-free importance weighting method induces a new energy-based model and employ it to correct for the bias in existing models. We find that this technique consistently improves standard goodness-of-fit metrics for evaluating the sample quality of state-of-the-art deep generative mod- els, suggesting reduced bias. Finally, we demonstrate its utility on representative applications in a) data augmentation for classification using generative adversarial networks, and b) model-based policy evaluation using off-policy data. 1 Introduction Learning generative models of complex environments from high-dimensional observations is a long- standing challenge in machine learning. Once learned, these models are used to draw inferences and to plan future actions. For example, in data augmentation, samples from a learned model are used to enrich a dataset for supervised learning [1]. In model-based off-policy policy evaluation (henceforth MBOPE), a learned dynamics model is used to simulate and evaluate a target policy without real-world deployment [2], which is especially valuable for risk-sensitive applications [3]. -
Probabilistic PCA and Factor Analysis
Generative Models for Dimensionality Reduction: Probabilistic PCA and Factor Analysis Piyush Rai Machine Learning (CS771A) Oct 5, 2016 Machine Learning (CS771A) Generative Models for Dimensionality Reduction: Probabilistic PCA and Factor Analysis 1 K Generate latent variables z n 2 R (K D) as z n ∼ N (0; IK ) Generate data x n conditioned on z n as 2 x n ∼ N (Wz n; σ ID ) where W is the D × K \factor loading matrix" or \dictionary" z n is K-dim latent features or latent factors or \coding" of x n w.r.t. W Note: Can also write x n as a linear transformation of z n, plus Gaussian noise 2 x n = Wz n + n (where n ∼ N (0; σ ID )) This is \Probabilistic PCA" (PPCA) with Gaussian observation model 2 N Want to learn model parameters W; σ and latent factors fz ngn=1 When n ∼ N (0; Ψ), Ψ is diagonal, it is called \Factor Analysis" (FA) Generative Model for Dimensionality Reduction D Assume the following generative story for each x n 2 R Machine Learning (CS771A) Generative Models for Dimensionality Reduction: Probabilistic PCA and Factor Analysis 2 Generate data x n conditioned on z n as 2 x n ∼ N (Wz n; σ ID ) where W is the D × K \factor loading matrix" or \dictionary" z n is K-dim latent features or latent factors or \coding" of x n w.r.t. W Note: Can also write x n as a linear transformation of z n, plus Gaussian noise 2 x n = Wz n + n (where n ∼ N (0; σ ID )) This is \Probabilistic PCA" (PPCA) with Gaussian observation model 2 N Want to learn model parameters W; σ and latent factors fz ngn=1 When n ∼ N (0; Ψ), Ψ is diagonal, it is called \Factor Analysis" (FA) Generative Model for Dimensionality Reduction D Assume the following generative story for each x n 2 R K Generate latent variables z n 2 R (K D) as z n ∼ N (0; IK ) Machine Learning (CS771A) Generative Models for Dimensionality Reduction: Probabilistic PCA and Factor Analysis 2 where W is the D × K \factor loading matrix" or \dictionary" z n is K-dim latent features or latent factors or \coding" of x n w.r.t. -
Learning a Generative Model of Images by Factoring Appearance and Shape
1 Learning a generative model of images by factoring appearance and shape Nicolas Le Roux1, Nicolas Heess2, Jamie Shotton1, John Winn1 1Microsoft Research Cambridge 2University of Edinburgh Keywords: generative model of images, occlusion, segmentation, deep networks Abstract Computer vision has grown tremendously in the last two decades. Despite all efforts, existing attempts at matching parts of the human visual system’s extraordinary ability to understand visual scenes lack either scope or power. By combining the advantages of general low-level generative models and powerful layer-based and hierarchical models, this work aims at being a first step towards richer, more flexible models of images. After comparing various types of RBMs able to model continuous-valued data, we introduce our basic model, the masked RBM, which explicitly models occlusion boundaries in image patches by factoring the appearance of any patch region from its shape. We then propose a generative model of larger images using a field of such RBMs. Finally, we discuss how masked RBMs could be stacked to form a deep model able to generate more complicated structures and suitable for various tasks such as segmentation or object recognition. 1 Introduction Despite much progress in the field of computer vision in recent years, interpreting and modeling the bewildering structure of natural images remains a challenging problem. The limitations of even the most advanced systems become strikingly obvious when contrasted with the ease, flexibility, and robustness with which the human visual system analyzes and interprets an image. Computer vision is a problem domain where the structure that needs to be represented is complex and strongly task dependent, and the input data is often highly ambiguous. -
Topic Modeling: Beyond Bag-Of-Words
Topic Modeling: Beyond Bag-of-Words Hanna M. Wallach [email protected] Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK Abstract While such models may use conditioning contexts of arbitrary length, this paper deals only with bigram Some models of textual corpora employ text models—i.e., models that predict each word based on generation methods involving n-gram statis- the immediately preceding word. tics, while others use latent topic variables inferred using the “bag-of-words” assump- To develop a bigram language model, marginal and tion, in which word order is ignored. Pre- conditional word counts are determined from a corpus viously, these methods have not been com- w. The marginal count Ni is defined as the number bined. In this work, I explore a hierarchi- of times that word i has occurred in the corpus, while cal generative probabilistic model that in- the conditional count Ni|j is the number of times word corporates both n-gram statistics and latent i immediately follows word j. Given these counts, the topic variables by extending a unigram topic aim of bigram language modeling is to develop pre- model to include properties of a hierarchi- dictions of word wt given word wt−1, in any docu- cal Dirichlet bigram language model. The ment. Typically this is done by computing estimators model hyperparameters are inferred using a of both the marginal probability of word i and the con- Gibbs EM algorithm. On two data sets, each ditional probability of word i following word j, such as of 150 documents, the new model exhibits fi = Ni/N and fi|j = Ni|j/Nj, where N is the num- better predictive accuracy than either a hi- ber of words in the corpus. -
Semantic N-Gram Topic Modeling
EAI Endorsed Transactions on Scalable Information Systems Research Article Semantic N-Gram Topic Modeling Pooja Kherwa1,*, Poonam Bansal1 1Maharaja Surajmal Institute of Technology, C-4 Janak Puri. GGSIPU. New Delhi-110058, India. Abstract In this paper a novel approach for effective topic modeling is presented. The approach is different from traditional vector space model-based topic modeling, where the Bag of Words (BOW) approach is followed. The novelty of our approach is that in phrase-based vector space, where critical measure like point wise mutual information (PMI) and log frequency based mutual dependency (LGMD)is applied and phrase’s suitability for particular topic are calculated and best considerable semantic N-Gram phrases and terms are considered for further topic modeling. In this experiment the proposed semantic N-Gram topic modeling is compared with collocation Latent Dirichlet allocation(coll-LDA) and most appropriate state of the art topic modeling technique latent Dirichlet allocation (LDA). Results are evaluated and it was found that perplexity is drastically improved and found significant improvement in coherence score specifically for short text data set like movie reviews and political blogs. Keywords. Topic Modeling, Latent Dirichlet Allocation, Point wise Mutual Information, Bag of words, Coherence, Perplexity. Received on 16 November 2019, accepted on 10 0Februar20 y 2 , published on 11 February 2020 Copyright © 2020 Pooja Kherwa et al., licensed to EAI. T his is an open access article distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.