Fire-Resistive Coatings

Total Page:16

File Type:pdf, Size:1020Kb

Fire-Resistive Coatings + + DD A D+D eResource FIRE-RESISTIVE COATINGS Photo courtesy of The© Gallery 2011-2014 at Westbury Technology Plaza, Publishing Garden Co. City, NY i + FIRE-RESISTIVE COATINGS Copyright 2011 by Technology Publishing Company 2100 Wharton Street, Suite 310 Pittsburgh, PA 15203 All Rights Reserved This eBook may not be copied or redistributed without the written permission of the publisher. © 2011-2014 Technology Publishing Co. ii Contents iv Introduction 1 Fighting Fire with Fire Protectives by Allen Zielnik, Atlas Material Technology LLC 7 Intumescent Coatings in Interior Spaces: Functional Aesthetics by Allen Zielnik, Atlas Material Technology LLC 11 Intumescent Casting Technology Takes the Heat D+D, June 2013, Bill Dempster, International Paint 15 Fire Test Methods D+D, September/October 2012, Terry Viness & Tom Remmele, Sto Corp. 17 Sentinels of Safety: Fire-Resistive Systems Stand Ready to Serve A D+D Online Feature published September 12 2011, Walter Scarborough, HALL Building Information Group © 2011-2014 Technology Publishing Co. iv Introduction This eBook features articles from Durability and Design (D+D) about fire-resistive coatings and includes topics such as intumescent coatings in interior spaces, fire test methods and more. All information about the articles is based on the original dates of publication of these materials in D+D. Please visit www.durabilityanddesign.com for more articles on these and other topics. © 2011-2014 Technology Publishing Co. 1 Fighting Fire Spray-applied fire-resistive materials, or SFRMs, insulate steel during fires, helping to delay temperature rise with Fire Protectives and the resulting decrease in structural strength. Here, Modern intumescents have advanced a gypsum-based SFRM has significantly in both fire performance been applied to steel ceiling beams at the “Red Building” and aesthetics. in West Hollywood. Photo courtesy of Isolatek By Allen Zielnik, Atlas Material Testing Technology LLC International. hemical flame retardants have been used since the may have had some appearance issues such as orange peel, time of the Romans, who reportedly used solutions modern intumescent coatings, which insulate the underlying of alum and vinegar to prevent warships and siege materials from temperature rises by forming a solid-phase towers from catching fire. The search for and use char, have significantly advanced in both fire performance and of fire-protective materials, chemicals and coatings aesthetics. Ccontinues to this day. While some of the chemicals used over Advances in intumescent coatings systems mean that the years have since proven harmful to health or the envi- today’s modern architectural design and color palette are no ronment, today’s products, particularly the non-halogenated longer limited by fireproofing requirements. flame retardants, are considered essential for helping to protect lives. Parsing Fire-Retardant vs. Fire-Resistant Coatings Especially in large public buildings, building codes increas- Two classes of fire-protective products are in use today, and ingly require fire-retardant coatings, particularly intumes- the distinction is worth noting: cents. They can significantly reduce flame spread and toxic • A fire retardant is a chemical that endows a treated material smoke generation while extending the performance of steel with the ability to slow the spread of flames, particularly verti- reinforcements in a fire situation, to allow additional egress cal fire spread, and to delay flashover, thus allowing more time time and emergency first response. While early products for evacuation and firefighting. © 2011-2014 Technology Publishing Co. 2 Most thin-film intumescent coatings are made for interior use only. Here, a certified applicator installs a thin-film intumescent coating to wooden first-floor framing on a residential project. Photo courtesy of No-Burn Inc. Many classes of chemicals are used as fire protectives, but the prime considerations are the properties. If one were A painter uses an airless sprayer to apply a thin-film intumescent to make a “top 10” list of desirable fire-protective coatings coating to the steel beams of a manufacturing facility. Intumescent properties (or, in this case, a “top 9” list), it might include the coatings generally can be applied during construction. following: Photo courtesy of Shield Industries Inc. • Provide long-term thermal and ignition protection from heat and flame; • A fire resistant is a material that is inherently resistant to • Have a low flame spread rate; fire penetration; they are commonly used in wall and ceiling • Produce little or reduced amounts of smoke and toxic gases; assemblies. • Be durable under normal environmental exposures; Both are considered passive fire protection and are usually • Have good wear resistance and maintainability; used in combination with active protection, such as sprinkler • Have and retain good aesthetic properties (for exposed systems. In either case, the primary purpose is to prevent the surfaces); passage and spread of smoke and flame from one area of the • Be easy to apply, maintain and repair; building to another and to allow building occupants a safe • Be low in VOCs and odor; and escape. Secondarily, they prevent or reduce the amount of • Be cost-effective. damage to the building and neighboring structures, and they reduce the risk of structural collapse to give more time for Protecting Steelwork with SFRMs emergency response. Most modern office, multi-unit residential and large construc- Fire retardants can act by any of several methods. First, they tion projects, such as airport terminals, convention centers, can act chemically to interfere with the free radical reactions public buildings and sports venues, use steel frame construc- that occur during combustion or, as intumescents do, to tion. Structural steel weakens when exposed to temperatures insulate the underlying materials from temperature rises by 750 to 1,100 F (400 to 600 C). Therefore it is important to forming a solid-phase char. Secondly, they can act physical- protect the steel to help prevent or delay structural collapse. ly to lower the temperature through heat-releasing (endo- This steel framework typically is concealed behind walls and thermic) reactions, or to slow the fire spread by diluting the ceilings, where good appearance is not a factor. Designers oxygen with non-combustible gases. Lastly, they can provide often protect this framework during construction by covering an impervious surface layer to keep oxygen from reaching a it with an economical fire-resistant cementitious or similar ma- flammable substrate. terial, known as a spray-applied fire-resistive material (SFRM). © 2011-2014 Technology Publishing Co. 3 Intumescent coatings generally require three components: a source of carbon, a blowing agent and an acid catalyst. The resulting char is a low-density cellular insulating structure with low thermal conductivity. Binder chemistry formulation is especially critical with intu- mescent coatings. In addition to the usual coating functions, the binder must contribute to the formation of a uniform char structure, since the molten binder helps trap gases emitted by the decomposing blowing agents. That helps to provide an even expansion of the char. The binder must help resist abrasion and damage during construction and in-service use by providing the necessary hardness, and provide any nec- essary protection from UV and moisture, which can damage the intumescent ingredients. The binder also must provide the desired gloss level and flow-leveling to resist orange peel On contact with flames, here 1,000 F to 1,200 F (538 C to 649 C), a wa- appearance. ter-based intumescent paint forms a dense, protective layer, or “char.” Low- or zero-VOC waterborne acrylic systems comprise Photo courtesy of Paul Pisarski of Flame Control Coatings. a large segment of the market, although polyurethane, two-component epoxy and other products are available. The SFRMs typically include ingredients such as mineral wool, epoxies are sometimes perceived as better than water-based cement and gypsum. These are viscous products that are products in terms of aesthetics and durability. Intumescent spray-applied at least a half-inch thick. This coating helps coatings do need a high film build, and many products require insulate the steel, delaying temperature rise and the resulting two coatings; the water-based products will have a longer dry structural weakness. One drawback is that these coatings are time for installation. As the proper film thickness is critical sensitive to damage during construction. for functionality, certified installers often must perform field application or the application must be inspected for compli- Protecting Exposed Surfaces ance. The application method is product-specific, with most with Intumescents Modern architectural design, however, often includes large expanses of exposed steel where a thick, lumpy and unattractive cementitious material is not aesthetically acceptable. In many cases, the exposed steel is itself a major decorative design el- ement. In these cases a “thin film” intumes- cent coating, first commercialized in the 1960s, is the go-to solution. Protection of structural steel remains the largest market for thin-film intumescents. They are also used for rising commercial, multifamily and residential markets that include combus- tible building components like structural insulated panels, spray foam insulation, engineered wood framing and architectural woodwork. Thin-film
Recommended publications
  • Firestopping Plastic Pipes
    Firestopping Plastic Pipes The Right Products With The Right Installation A Properly Designed Smoke Seal Stops All The Smoke! Designs And Methods Make Protection Of Combustible Penetrants Smoke Safe And Easy! Seal The use of plastic pipes in construction is increasing with each passing year. Most people are aware of the economies of using plastic pipes as well as some of the benefits... Plastic pipes are easier to install. They are significantly lighter in weight and they are durable in that they won’t Smoke Seals built into the collar may cut off This design places the seal at the top of the open- rust or corrode. The down side is smoke from the room below, but will not stop the ing, above the area of the pipe that is burning. smoke eminating from the burning pipe itself. This not only prevents the passage of smoke that these pipes are combustible from the room below, but also from the decom- and can pose a fire hazard if not position of the pipe itself! properly firestopped! Understanding The Hazards: Plastic pipes when How Intumescent Materials Work: It’s important to exposed to fire will react differently according to the type understand how intumescent materials function when of material they are made from. Some will soften and designing a firestop system. Intumescent materials then char as the fire progresses. Others will soften and contain ingredients that expand and increase in volume melt. If not properly firestopped, these pipes may burn as they are heated. This increase in volume is used to out and leave a passage for fire into adjoining rooms and exert pressure on surrounding surfaces to help fill voids cause a fire to quickly propagate.
    [Show full text]
  • Effect of Fire-Retardant Coatings and Accelerated-Weathering on the Flammability of Wood-Based Materials in Wildland-Urban Interface (WUI) Communities
    NIST Technical Note 2094 Effect of Fire-Retardant Coatings and Accelerated-Weathering on the Flammability of Wood-Based Materials in Wildland-Urban Interface (WUI) Communities Laura Dubrulle Mauro Zammarano Rick D. Davis This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2094 NIST Technical Note 2094 Effect of Fire-Retardant Coatings and Accelerated-Weathering on the Flammability of Wood-Based Materials in Wildland-Urban Interface (WUI) Communities Laura Dubrulle Mauro Zammarano Rick D. Davis Fire Research Division Engineering Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2094 May 2020 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Technical Note 2094 Natl. Inst. Stand. Technol. Tech. Note 2094, 30 pages (May 2020) CODEN: NTNOEF This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2094 Abstract A study of a limited number of commercial fire-retardant coatings (FRCs) designed for wood in outdoor applications, film-forming or non-film forming (stains), and top-coatings (used in combination with a FRC to increase its durability) were characterized by microscale combustion calorimetry (MCC) and cone calorimetry (50 kW/m2).
    [Show full text]
  • Passive Fire Protection Intumescent Vs
    Passive Fire Protection Intumescent Vs. Lightweight Cementitious Passive Fire Protection Intumescent Vs Lightweight Cementitious The refi nery environment exposes assets to highly fl ammable commodities, corrosive chemical attack, high pressure, and a broad range of operating temperatures from cryogenic to elevated. To mitigate the risk of loss of life, assets and production from a rapid rise hydrocarbon fi re, an investment in FIRETEX® epoxy intumescent fi reproofi ng will provide asset owners with long life protection with little or no maintenance, which is a business necessity. For decades, the standard approach to fi re protection has been with cementitious fi reproofi ng. Oil and gas processing facilities have recognised that this approach proves to be of high maintenance, short life cycle, provides little to no corrosion protection, and conceals corrosion under fi reproofi ng (CUF). Lightweight cementitious fi reproofi ng requires continued maintenance every three to fi ve years. The porosity of concrete and cracks provide avenues for moisture and contaminates to penetrate leading to degradation of the asset and a compromised fi reproofi ng system. Remove the unnecessary risks! There is a better, proven Lloyd’s Register, Det Norske Veritas, ABS and UL. You can be way to maintain your fi reproofi ng – one that prevents corrosion confi dent that FIRETEX® products meet the most stringent rather than contributing to it. Sherwin-Williams’ world-respected industry test standards for jet fi re, pool fi re, boiling liquid, FIRETEX® series of intumescent coatings is formulated with expanding vapour explosion, and blast resistance. high quality corrosion-resistant resins. The number one FIRETEX® epoxy coatings offer a high performance system that permanent solution for anti-corrosion passive fi re protection will last the design life of the asset with minimal maintenance.
    [Show full text]
  • Localized Fire Protection Assessment for Vehicle Compressed Hydrogen Containers DISCLAIMER
    DOT HS 811 303 March 2010 Localized Fire Protection Assessment for Vehicle Compressed Hydrogen Containers DISCLAIMER This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade names, manufacturers’ names, or specific products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 811 303 4. Title and Subtitle 5. Report Date Localized Fire Protection Assessment for Vehicle Compressed Hydrogen Containers March 2010 6. Performing Organization Code NHTSA/NVS-321 7. Author(s) 8. Performing Organization Report No. Craig Webster – Powertech Labs, Inc. 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered National Highway Traffic Safety Administration Final 1200 New Jersey Avenue SE. 14. Sponsoring Agency Code Washington, DC 20590 15. Supplementary Notes 16. Abstract Industry has identified localized flame impingement on high pressure composite storage cylinders as an area requiring research due to several catastrophic failures in recent years involving compressed natural gas (CNG) vehicles. Current standards and regulations for CNG cylinders require an engulfing bonfire test to assess the performance of the temperature activated pressure relief device (TPRD).
    [Show full text]
  • Firestopping & Smoke Seals 1 General
    SPECIFICATION SECTION 07 84 00 FIRESTOPPING & SMOKE SEALS 1 GENERAL 1.1 SECTION INCLUDES 1.1.1 Comply with Division 1, General Requirements and Documents referred to therein. 1.1.2 It is the intent of this section of the specifications to establish a single, competent source to be responsible for providing all labour, materials, products, equipment and services, to supply and install the firestopping and smoke seal work for the entire project. 1.1.3 SUMMARY A. Provide firestop systems consisting of a material, or combination of materials installed to retain the integrity of fire-rated construction by maintaining an effective barrier against the spread of flame, smoke, and/or hot gases through penetrations, blank openings, construction joints, or at perimeter fire containment in or adjacent to fire-rated barriers in accordance with the requirements of the Building Code for this project. B. Firestop systems shall be used in locations including, but not limited to, the following: 1. Penetrations through fire-resistance-rated floor and roof assemblies requiring protected openings including both empty openings and openings that contain penetrations. 2. Penetrations through fire-resistance-rated wall assemblies including both empty openings and openings that contain penetrations. 3. Membrane penetrations in fire-resistance-rated wall assemblies where items penetrate one side of the barrier. 4. Joints in fire-resistance-rated assemblies to allow independent movement. 5. Perimeter Fire Barrier System between a rated floor/roof and an exterior wall assembly. 6. Joints, through penetrations and membrane penetrations in Smoke Barriers and Smoke Partitions. 1.2 RELATED SECTIONS 1.2.1 Related Sections to this Section include: 1.
    [Show full text]
  • WF300 Intumescent Firestop Caulk
    WF300 INTUMESCENT FIRESTOP CAULK Designed for use in sealing through- penetrations and gaps in fire resistance- rated wood frame construction. Type WF300 Caulk is a latex based, high solids firestop caulk. This material, when properly installed, effectively seals penetration openings in wood frame construction against the spread of fire, smoke and combustion by-products. Type WF300 Caulk is a single stage intumescent. When exposed to elevated temperatures, WF300 expands rapidly to seal off voids left by the burning or melting of combustible materials. Type WF300 Caulk is storage stable (when stored according to manufacturer’s recommendations) and will not separate or shrink when dried. WF300 adheres tenaciously to common construc- tion materials such as lumber and gypsum board as well as typi- cal penetrant materials. Features & Benefits • Economical – delivers maximum fire protection at the right price. • Water-Based – easy installation, clean-up and disposal. • Water-Resistant – will not re-emulsify. • Intumescent – expansion fills gaps or voids caused by wood shrinkage, or burning or melting of combustible materials. • Meets ASTM E814 (ANSI/UL 1479). • Acoustically tested – reduces noise transmission. APPLICATIONS Type WF300 Caulk is used to seal through penetrations and gaps in fire resistance rated wood frame construction such as floor/ceilings and walls or partitions. Most common penetrating items were successfully tested with WF300. • Through-penetrations and gaps in wood frame construction. FILL, VOID, OR CAVITY MATERIALS FOR USE IN JOINT SYSTEMS & THROUGH-PENETRATION FIRESTOP SYSTEMS SEE UL DIRECTORY OF PRODUCTS FOR THE U.S. AND CANADA; UL FIRE RESISTANCE DIRECTORY PERFORMANCE Type WF300 Caulk is the basis for systems that meet the exacting criteria of ASTM E 814 (ANSI/UL1479) as well as the time/temperature requirements of ASTM E 119 (ANSI/UL263).
    [Show full text]
  • Outlet Putty Pads Specifications Section 07840 - Firestopping Part 1 - General
    OUTLET PUTTY PADS SPECIFICATIONS SECTION 07840 - FIRESTOPPING PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. 1.2 SUMMARY A. This Section includes: Through penetration firestops and smoke-stops for all fire-rated bearing and non- bearing wall and floor assemblies, both blank (empty) and those accommodating penetrating items such as cables, conduits, pipes, ducts, etc. not covered in Division 15 and 16 Sections. Membrane penetration protection for fire-rated walls. Architectural/Construction joint firestops within walls, floors, or the intersection of floors to exterior walls, or the intersection of top of walls to ceilings. Top of wall firestopping in all fire-rated partitions. Top of wall and construction joint smoke-stopping in all smoke partitions. B. Related Sections include the following: Division 15 Sections specifying duct and pipe penetrations and firestopping for those penetrations. Division 16 Sections specifying cable and conduit penetrations and firestopping for those penetrations. 1.3 REFERENCES: A. American Society For Testing and Materials Standards (ASTM): ASTM E84: Standard Test Method For Surface Burning Characteristics of Building Materials. ASTM E814: Standard Test Method For Fire Tests of Through-Penetration Sales and support: (800) 397-8791 | www.soundproofingcompany.com | [email protected] Firestops. ASTM E1966: Test Method For Resistance of Building Joint Systems. ASTM E1399: Test Method for Cyclic Movement and Measuring Minimum and Maximum Joint Width. ASTM E119: Methods of Fire Tests of Building Construction and Materials. B. Underwriters Laboratories Inc.: UL 263: Fire Tests of Building Construction and Materials.
    [Show full text]
  • Technical Committee on Liquefied Petroleum Gases
    Technical Committee on Liquefied Petroleum Gases Date: July 2, 2015 To: Technical Committee on Liquefied Petroleum Gases From: Eric Nette, P.E. Staff Liaison/Engineer Re: Agenda Package – NFPA 58 A2016 Second Draft Meeting – August 4-5, 2015 Enclosed is the agenda package for the August 4-5, 2015 meeting for the NFPA 58 Second Draft Meeting. Please ensure that you have reviewed the public input and the other agenda items in advance to prepare for discussion. The agenda and public comments will be posted on the document information pages (www.nfpa.org/58). Some items to have available during the meeting include: Agenda package with public comments A copy of NFPA 58 (visit the NFPA 58 Document information pages for your free committee copy) Any previous copies of the technical committees standard A laptop Optional items that are sometimes useful include: Review of NFPA’s Process, www.nfpa.org/regs If you have any questions or comments, please feel free to reach me at (617) 984-7434 or by e-mail at [email protected]. I look forward to our meeting to continue the revision cycle! Technical Committee on Liquefied Petroleum Gases AGENDA NFPA 58 A2016 First Draft Meeting August 4-5, 2015 Doubletree Suites Minneapolis http://nfpa.adobeconnect.com/nette/ 8:00 a.m. to 5:00 p.m. (Central Time Zone) 1. Meeting opening, introduction and attendance 2. Approval of First Draft Meeting Minutes of September 30-October 2, 2014 (Attachment A. September 30-October 2 2014 Meeting Minutes). 3. Chair's remarks, Richard Hoffman 4. Staff Liaison update: a.
    [Show full text]
  • FIRETEX® M90 Series
    Protective & Marine Coatings Europe, Middle East, Africa & India ® FIRETEX M90 Series Hydrocarbon passive fire and cyrogenic spill protection solutions for oil & gas industries INTUMESCENT PASSIVE FIRE PROTECTION INTUMESCENT PASSIVE FIRETEX® FX Hydrocarbon passive fire and cyrogenic spill protection solutions for oil & gas industries #3 #6 Intumescent coat 1 Topcoats #2 #5 Thermal insulation Intumescent coat 2 and CSP coating #1 #4 Primers Scrim cloth TOP COAT PASSIVE FIRE PROTECTION FIRETEX M90/02 OR M93/02 TOP COAT TOP COAT TOP COAT THERMAL INSULATION / CSP THERMAL INSULATION / CSP PASSIVE FIRE PROTECTION PASSIVE FIRE PROTECTION FIRETEX M89/02 FIRETEX M89/02 FIRETEX M90/02 OR M93/02 FIRETEX M90/02 PRIMER PRIMER PRIMER PRIMER Thermal insulation or cryogenic spill protection. Thermal insulation or cryogenic spill protection Hydrocarbon pool fire protection. Hydrocarbon pool and jet fire protection. and hydrocarbon fire protection. Suitable for use in the most severe conditions, consult your Sherwin-Williams representative for specification advice and details of approved primers and topcoats. 2 www.protectiveemea.sherwin-williams.com FIRETEX® FX Hydrocarbon passive fire and cyrogenic spill protection solutions for oil & gas industries Thermal barrier/ Passive fire cryogenic spill protection for protection M89/02 hydrocarbon pool ■ Syntactic epoxy foam used as a thermal insulator and for and jet fire M90/02 cryogenic spill protection. It also allows intumescent products to be applied to surfaces operating at >80°C. ■ FIRETEX® M90/02 provides up to four hours of hydrocarbon ■ A seamless, 100% solids, epoxy resin based insulation fire protection. product that can be used at operating temperatures as low as ■ Provides a corrosion resistant protective coating for the design -75°C and as high as +150°C.
    [Show full text]
  • Shop-Applied Intumescent Fireproofing Cuts Schedule and Speeds Erection
    health care Shop-applied intumescent fireproofing cuts schedule and speeds erection. Fire Protection toBY CHRIS GRIFFITH Go THE BIOMED 21 initiative at Washington University School of The architect, Canon Design, St. Louis, designed a portion of Medicine in St. Louis was launched in 2003. The initiative has the 675,000 sq.-ft facility to be constructed as a canopy over the St. gained widespread recognition for its collaborative, interdisciplin- Louis MetroLink tracks that cross the campus property. To support ary research and subsequent advancements in treating some of the base floor of the 11-story structure, architects specified 45-ft society’s most prevalent health problems. By 2007, the program’s to 55-ft cellular SMARTBEAM® construction. They were selected success prompted BJC HealthCare, one of the largest nonprofit instead of standard wide-flange beams because of their light weight health care provider organizations in the U.S., to help fund the yet comparable strength and their excellent vibration control capa- Tconstruction of a new research center on campus to house labora- bility. The cellular design also allows for an easier installation of tories and support facilities for BioMed 21, which has since been the ductwork through the openings in the beam webs, as opposed renamed the BJC Institute of Health. to cutting custom penetrations in the solid steel webs. Above: A fireproofing system consisting of primer, a layer of carbon Opposite page: Because the new BJC Institute of Health facility fiberglass mesh between two layers of intumescent fireproofing mate- was designed to straddle the MetroLink rail lines in St.
    [Show full text]
  • Safe Coat Later Intumescent Coating
    EAGLE SPECIALIZED COATINGS R AND has excellent ahesion and durabilitLya. tex may be tinted with a latex based "Universal Tint". PROTECTED Intumescentwill adhere to metal and actsCo as aa rust-inhibitotingr. ENVIRONMENTS is easy to use - may be brush, roller or spray A Division of DW Pearce Enterprises Ltd . (1979) applied PRODUCT DESCRIPTION TECHNICAL DATA and PROPERTIES SafeCoat Latex Intumescent Coating is a single Coating Type Latex component latex, intumescent fire retardant coating Finish White, flat finish ideally suited for interior applications on various Color Standard: White combustible substrates including SPF Plywood Optional: Black (Spruce/Pine/Fir), Oriented Strand Board (OSB), wood Tinting May be tinted (light colors only) trusses and rough stud construction, where Flame Use standard latex or universal Spread Ratings of 25 or less ("Class A" or Class 1) and colorants. Do not exceed 26 mL of low Smoke Developed Ratings are required. It limits tint per liter of SafeCoat Latex. flame spread by expanding to many times the original Specific Gravity 10.9 lbs/US Gallon or 1.30 g/mL dry film thickness when exposed to heat. This Solids by Weight 58% expanded material forms a char which insulates the Solids by Volume 47% substrate against heat, and reduces available oxygen VOC 25 g/l 0.2 lbs/USG to the surface. It provides a "Class A" Flame Spread Dry Time Touch: 30 min. to 1 hour (varies rating of 25 or less as tested under ASTM E84 and with temperature and humidity) CAN4-S102 standards and various Fire Resistance Recoat: 1 to 2 hours tested floor/ceiling/wall assemblies as tested under Full cure: 48 hours ASTM E-119 Floor/Ceiling, NFPA 251, Small Scale Film Thickness Wood Test, CAN4-S101.
    [Show full text]
  • Summaries of Center for Fire Research Grants and In-House Programs - 1984
    4 NAT'L INST. OF STAND & TECH NBS REFERENCE PUBLICATIONS AlllOb 0371LD NBSIR 85-3136 Summaries of Center for Fire Research Grants and In-House Prog rams - 19 8 Sonya M. Cherry, Editor U S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 April 1985 Final Report U S. DEPARTMENT OF COMMERCE -ATIONAL BUREAU OF STANDARDS 100 ,U56 85-3136 1985 NATIONAL BUREAU OF STANDARDS LIBRARY NBSIR 85-3136 SUMMARIES OF CENTER FOR FIRE RESEARCH GRANTS AND IN-HOUSE PROGRAMS - 1984 Sonya M. Cherry, Editor U S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 April 1985 Final Report U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS. Ernest Ambler. Director TABLE OF CONTENTS Page ABSTRACT 1 CENTER FOR FIRE RESEARCH PROGRAMS Ad Hoc Working Group of Mathematical Fire Modeling 2 Compartment Fire Modeling 3 Exploratory Fire Research 8 Fire Growth and Extinction 14 Fire Performance and Validation 20 Fire Safety Performance 24 Fire Toxicology 28 Furnishings Flammability 34 Smoke Hazard 37 GRANTS AND CONTRACTS American Institute of Architects A Computerized Model for the Simulation of General Fire Emergency Evacuations 40 Brown University Soot Dynamics in Flames 43 Brown University Study of Effects of Material Properties on Flaming Combustion of Charring Fuels 47 California Institute of Technology Experimental Study of Environment and Heat Transfer in a Room Fire 51 Case Western Reserve University Experimental and Analytical Study of Fire Sprinkler Scaling Laws 55 Case Western Reserve University Flame Spread and Spread Limits 58 l Page Clemson University Ternary Reactions Among Polymer Substrate- Organohalogen-Ant imony Oxides in the Condensed Phase Under Pyrolytic, Oxidative and Flaming Conditions 60 Colorado School of Mines Characterization of Aerosols from Fires 63 Factory Mutual Research Corp.
    [Show full text]