Detection and Quantification of an Ecologically Important Marine

Total Page:16

File Type:pdf, Size:1020Kb

Detection and Quantification of an Ecologically Important Marine by Robyn Buchwald Submitted in partial fulfillment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia August 2016 © Copyright by Robyn Buchwald, 2016 TABLE OF CONTENTS List of Tables ................................................................................................................... vi List of Figures ................................................................................................................ viii Abstract ............................................................................................................................ xi List of Abbreviations and Symbols Used ..................................................................... xii Acknowledgements ....................................................................................................... xiv Chapter 1. Introduction .................................................................................................. 1 Chapter 2. Development of a Species-Specific PCR/qPCR Assay for Detection and Quantification of Paramoeba invadens ................................................................... 4 2.1. Introduction ............................................................................................................. 4 2.2. Materials and Methods ............................................................................................ 8 2.2.1. Sequencing P. invadens and Parasome ITS Regions ....................................... 8 2.2.2. P. invadens-Specific PCR design .................................................................... 9 2.2.2.1. Primer Design ........................................................................................... 9 2.2.2.2. Primer Specificity Testing ........................................................................ 9 2.2.2.3. Primer Sensitivity Testing ....................................................................... 10 2.2.2.4. PCR Optimization of Selected Primer Sets ............................................ 11 2.2.3. Host Tissue and Environmental Sample Processing ...................................... 11 2.2.3.1. Sample Collection ................................................................................... 11 2.2.3.2. Culturing P. invadens .............................................................................. 12 2.2.3.3. Culturing versus Molecular Identification of Infection with P. invadens, and Radial Nerve DNA Extraction ...................................................... 13 2.2.3.4. Sediment DNA Extraction ...................................................................... 13 2.2.3.5. Seawater DNA Extraction ....................................................................... 14 ii 2.2.3.6. PCR Reaction Conditions for the Detection of P. invadens in Radial Nerve, Sediment and Seawater DNA Samples ......................................... 14 2.2.3.7. Confirmation of Amplicon Identity from Environmental DNA Samples ................................................................................................................ 15 2.2.4. Inferring PCR Assay Sensitivity for Environmental Samples ....................... 15 2.2.5. Quantitative Real-Time PCR with SYBR Green ........................................... 17 2.2.5.1. Quantitative PCR Reaction Conditions and Optimization ...................... 17 2.2.5.2. Calibration Curves for Quantification of P. invadens ............................ 17 2.2.5.3. Genomic Copy Number of 18S rRNA Gene in P. invadens ................... 18 2.2.5.4. Reliability of Cell Number Estimates Obtained using qPCR ................. 18 2.3. Results ................................................................................................................... 19 2.3.1. Sequencing P. invadens and Parasome ITS Regions ..................................... 19 2.3.2. P. invadens-Specific PCR: Design and Optimization .................................... 20 2.3.2.1. Primer Design ......................................................................................... 20 2.3.2.2. Testing Primer Specificity ...................................................................... 21 2.3.2.3. Testing Primer Sensitivity ....................................................................... 23 2.3.2.4. PCR Optimization of Selected Primer Sets ............................................ 24 2.3.3. Host Tissue and Environmental Sample Processing ...................................... 25 2.3.3.1. Culturing versus Molecular Identification of P. invadens Infection ....... 25 2.3.3.2. Confirmation of Amplicon Identity from Environmental DNA Samples ................................................................................................................ 27 2.3.4. Inferring PCR Assay Sensitivity for Environmental Samples ....................... 27 2.3.4.1. Radial Nerve DNA .................................................................................. 27 2.3.4.2. Sediment DNA ........................................................................................ 30 2.3.4.3. Seawater DNA ........................................................................................ 31 2.3.5. Quantitative Real-Time PCR ......................................................................... 33 iii 2.3.5.1. qPCR Optimization ................................................................................. 33 2.3.5.2. Estimation of Copy Number in P. invadens Cells .................................. 36 2.3.5.3. Reliability of Cell Number Estimates Obtained using qPCR ................. 37 2.4. Discussion ............................................................................................................. 37 2.4.1. Contributions of the Present Study ................................................................ 37 2.4.2. Selection of DNA Extraction Techniques ...................................................... 38 2.4.3. PCR Sensitivity in Radial Nerve, Sediment, and Seawater DNA ................. 38 2.4.4. Reliability of Cell Estimates Obtained using qPCR ...................................... 40 2.4.5. qPCR Inhibition and Optimization ................................................................ 40 2.4.6. Limitations of qPCR using SYBR Green and Recommendations ................. 41 2.4.7. Suggestions for Future Research ................................................................... 42 Chapter 3. Detection and Quantification of Paramoeba invadens Along the Atlantic Coast of Nova Scotia ....................................................................................... 44 3.1. Introduction ........................................................................................................... 44 3.2. Materials and Methods .......................................................................................... 46 3.2.1. Sampling Design ............................................................................................ 46 3.2.2. Sample Analysis ............................................................................................. 48 3.2.2.1. Radial Nerve Plating and Radial Nerve, Sediment, and Seawater DNA Extraction ................................................................................................... 48 3.2.2.2. Detection of P. invadens by PCR ........................................................... 49 3.2.2.3. Quantification of P. invadens in Radial Nerve Tissue and Seawater ..... 49 3.3. Results ................................................................................................................... 50 3.3.1. Detection of P. invadens in Sea Urchins, Sediments and Seawater using PCR ................................................................................................................ 50 3.3.2. Quantification of P. invadens in Sea Urchins and Seawater using qPCR ........................................................................................................................ 54 iv 3.3.2.1. Sea Urchins ............................................................................................. 54 3.3.2.2. Seawater .................................................................................................. 55 3.4. Discussion ............................................................................................................. 59 3.4.1. Detection of Paramoeba invadens in Sea Urchins and Sediment ................. 59 3.4.2. Detection of Paramoeba invadens in Seawater ............................................. 62 3.4.3. Conclusions and Prospects for Future Research ............................................ 63 Chapter 4. Discussion .................................................................................................... 65 4.1. The Utility of Molecular Tools for Understanding the Epizootiology of Paramoeba invadens .................................................................................................... 65 4.2. Perspectives on the Mechanisms of Introduction of Paramoeba invadens to Nova Scotia .................................................................................................................. 66 Appendix A: Supplementary Materials ....................................................................... 68 Bibliography ................................................................................................................... 82 v LIST OF TABLES Table 2.1. Paramoeba invadens isolates used to sequence
Recommended publications
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Protistology Mitochondrial Genomes of Amoebozoa
    Protistology 13 (4), 179–191 (2019) Protistology Mitochondrial genomes of Amoebozoa Natalya Bondarenko1, Alexey Smirnov1, Elena Nassonova1,2, Anna Glotova1,2 and Anna Maria Fiore-Donno3 1 Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia 2 Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, 194064 Saint Petersburg, Russia 3 University of Cologne, Institute of Zoology, Terrestrial Ecology, 50674 Cologne, Germany | Submitted November 28, 2019 | Accepted December 10, 2019 | Summary In this mini-review, we summarize the current knowledge on mitochondrial genomes of Amoebozoa. Amoebozoa is a major, early-diverging lineage of eukaryotes, containing at least 2,400 species. At present, 32 mitochondrial genomes belonging to 18 amoebozoan species are publicly available. A dearth of information is particularly obvious for two major amoebozoan clades, Variosea and Tubulinea, with just one mitochondrial genome sequenced for each. The main focus of this review is to summarize features such as mitochondrial gene content, mitochondrial genome size variation, and presence or absence of RNA editing, showing if they are unique or shared among amoebozoan lineages. In addition, we underline the potential of mitochondrial genomes for multigene phylogenetic reconstruction in Amoebozoa, where the relationships among lineages are not fully resolved yet. With the increasing application of next-generation sequencing techniques and reliable protocols, we advocate mitochondrial
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • A Revised Classification of Naked Lobose Amoebae (Amoebozoa
    Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility.
    [Show full text]
  • Host-Parasite Interaction of Atlantic Salmon (Salmo Salar) and the Ectoparasite Neoparamoeba Perurans in Amoebic Gill Disease
    ORIGINAL RESEARCH published: 31 May 2021 doi: 10.3389/fimmu.2021.672700 Host-Parasite Interaction of Atlantic salmon (Salmo salar) and the Ectoparasite Neoparamoeba perurans in Amoebic Gill Disease † Natasha A. Botwright 1*, Amin R. Mohamed 1 , Joel Slinger 2, Paula C. Lima 1 and James W. Wynne 3 1 Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia, 2 Livestock and Aquaculture, CSIRO Agriculture and Food, Woorim, QLD, Australia, 3 Livestock and Aquaculture, CSIRO Agriculture and Food, Hobart, TAS, Australia Marine farmed Atlantic salmon (Salmo salar) are susceptible to recurrent amoebic gill disease Edited by: (AGD) caused by the ectoparasite Neoparamoeba perurans over the growout production Samuel A. M. Martin, University of Aberdeen, cycle. The parasite elicits a highly localized response within the gill epithelium resulting in United Kingdom multifocal mucoid patches at the site of parasite attachment. This host-parasite response Reviewed by: drives a complex immune reaction, which remains poorly understood. To generate a model Diego Robledo, for host-parasite interaction during pathogenesis of AGD in Atlantic salmon the local (gill) and University of Edinburgh, United Kingdom systemic transcriptomic response in the host, and the parasite during AGD pathogenesis was Maria K. Dahle, explored. A dual RNA-seq approach together with differential gene expression and system- Norwegian Veterinary Institute (NVI), Norway wide statistical analyses of gene and transcription factor networks was employed. A multi- *Correspondence: tissue transcriptomic data set was generated from the gill (including both lesioned and non- Natasha A. Botwright lesioned tissue), head kidney and spleen tissues naïve and AGD-affected Atlantic salmon [email protected] sourced from an in vivo AGD challenge trial.
    [Show full text]
  • Paramoeba Pemaquidensis (Sarcomastigophora: Paramoebidae) Infestation of the Gills of Coho Salmon Oncorhynchus Kisutch Reared in Sea Water
    Vol. 5: 163-169, 1988 DISEASES OF AQUATIC ORGANISMS Published December 2 Dis. aquat. Org. Paramoeba pemaquidensis (Sarcomastigophora: Paramoebidae) infestation of the gills of coho salmon Oncorhynchus kisutch reared in sea water Michael L. ~ent'l*,T. K. Sawyer2,R. P. ~edrick~ 'Battelle Marine Research Laboratory, 439 West Sequim Bay Rd, Sequim, Washington 98382, USA '~esconAssociates, Inc., Box 206, Turtle Cove, Royal Oak, Maryland 21662, USA 3~epartmentof Medicine, School of Veterinary Medicine, University of California, Davis, California 95616, USA ABSTRACT: Gill disease associated with Paramoeba pemaquidensis Page 1970 (Sarcomastigophora: Paramoebidae) infestations was observed in coho salmon Oncorhynchus lasutch reared in sea water Fish reared in net pens in Washington and in land-based tanks in California were affected. Approxi- mately 25 O/O mortality was observed in the net pens in 1985, and the disease recurred in 1986 and 1987. Amoeba infesting the gill surfaces elicited prominent epithelia1 hyperplasia. Typical of Paramoeba spp., the parasite had a Feulgen positive parasome (Nebenkorper) adjacent to the nucleus and floatlng and transitional forms had digitiform pseudopodia. We have established cultures of the organism from coho gills; it grows rapidly on Malt-yeast extract sea water medium supplemented with Klebsiella bacteria. Ultrastructural characteristics and nuclear, parasome and overall size of the organism in study indicated it is most closely related to the free-living paramoeba P. pemaquidensis. The plasmalemma of the amoeba from coho gills has surface filaments. Measurements (in pm) of the amoeba under various conditions are as follows: transitional forms directly from gills 28 (24 to 30),locomotive forms from liquid culture 21 X 17 (15 to 35 X 11 to 25), and locomotive forms from agar culture 25 X 20 (15 to 38 X 15 to 25).
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • Culturing and Environmental DNA Sequencing Uncover Hidden Kinetoplastid Biodiversity and a Major Marine Clade Within Ancestrally Freshwater Neobodo Designis
    International Journal of Systematic and Evolutionary Microbiology (2005), 55, 2605–2621 DOI 10.1099/ijs.0.63606-0 Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis Sophie von der Heyden3 and Thomas Cavalier-Smith Correspondence Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Thomas Cavalier-Smith [email protected] Bodonid flagellates (class Kinetoplastea) are abundant, free-living protozoa in freshwater, soil and marine habitats, with undersampled global biodiversity. To investigate overall bodonid diversity, kinetoplastid-specific PCR primers were used to amplify and sequence 18S rRNA genes from DNA extracted from 16 diverse environmental samples; of 39 different kinetoplastid sequences, 35 belong to the subclass Metakinetoplastina, where most group with the genus Neobodo or the species Bodo saltans, whilst four group with the subclass Prokinetoplastina (Ichthyobodo). To study divergence between freshwater and marine members of the genus Neobodo, 26 new Neobodo designis strains were cultured and their 18S rRNA genes were sequenced. It is shown that the morphospecies N. designis is a remarkably ancient species complex with a major marine clade nested among older freshwater clades, suggesting that these lineages were constrained physiologically from moving between these environments for most of their long history. Other major bodonid clades show less-deep separation between marine and freshwater strains, but have extensive genetic diversity within all lineages and an apparently biogeographically distinct distribution of B. saltans subclades. Clade-specific 18S rRNA gene primers were used for two N. designis subclades to test their global distribution and genetic diversity.
    [Show full text]
  • Heme Pathway Evolution in Kinetoplastid Protists Ugo Cenci1,2, Daniel Moog1,2, Bruce A
    Cenci et al. BMC Evolutionary Biology (2016) 16:109 DOI 10.1186/s12862-016-0664-6 RESEARCH ARTICLE Open Access Heme pathway evolution in kinetoplastid protists Ugo Cenci1,2, Daniel Moog1,2, Bruce A. Curtis1,2, Goro Tanifuji3, Laura Eme1,2, Julius Lukeš4,5 and John M. Archibald1,2,5* Abstract Background: Kinetoplastea is a diverse protist lineage composed of several of the most successful parasites on Earth, organisms whose metabolisms have coevolved with those of the organisms they infect. Parasitic kinetoplastids have emerged from free-living, non-pathogenic ancestors on multiple occasions during the evolutionary history of the group. Interestingly, in both parasitic and free-living kinetoplastids, the heme pathway—a core metabolic pathway in a wide range of organisms—is incomplete or entirely absent. Indeed, Kinetoplastea investigated thus far seem to bypass the need for heme biosynthesis by acquiring heme or intermediate metabolites directly from their environment. Results: Here we report the existence of a near-complete heme biosynthetic pathway in Perkinsela spp., kinetoplastids that live as obligate endosymbionts inside amoebozoans belonging to the genus Paramoeba/Neoparamoeba.Wealso use phylogenetic analysis to infer the evolution of the heme pathway in Kinetoplastea. Conclusion: We show that Perkinsela spp. is a deep-branching kinetoplastid lineage, and that lateral gene transfer has played a role in the evolution of heme biosynthesis in Perkinsela spp. and other Kinetoplastea. We also discuss the significance of the presence of seven of eight heme pathway genes in the Perkinsela genome as it relates to its endosymbiotic relationship with Paramoeba. Keywords: Heme, Kinetoplastea, Paramoeba pemaquidensis, Perkinsela, Evolution, Endosymbiosis, Prokinetoplastina, Lateral gene transfer Background are poorly understood and the evolutionary relationship Kinetoplastea is a diverse group of unicellular flagellated amongst bodonids is still debated [8, 10, 12].
    [Show full text]
  • The Classification of Lower Organisms
    The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6.
    [Show full text]
  • Large-Scale Patterns in Biodiversity of Microbial Eukaryotes from the Abyssal Sea floor
    Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor Frank Scheckenbacha,1, Klaus Hausmannb, Claudia Wylezicha,c, Markus Weiterea, and Hartmut Arndta aDepartment of General Ecology and Limnology, Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany; bDivision of Protozoology, Institute of Biology/Zoology, Free University of Berlin, Berlin, Germany; and cDepartment of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved November 4, 2009 (received for review August 6, 2009) Eukaryotic microbial life at abyssal depths remains “uncharted ter- role of microbial eukaryotic communities is essential to under- ritory” in eukaryotic microbiology. No phylogenetic surveys have standing global biogeochemical cycles (18). focused on the largest benthic environment on this planet, the The perceived homogeneity of abyssal environments, with abyssal plains. Moreover, knowledge of the spatial patterns of little environmental variation, has led to the assumption that deep-sea community structure is scanty, and what little is known species have broad distribution ranges. This is in fact supported originates primarily from morphology-based studies of foramini- by studies of foraminiferans, which in some cases have ranges ferans. Here we report on the great phylogenetic diversity of mi- encompassing entire abyssal plains (19). But environmental crobial eukaryotic communities of all 3 abyssal plains of the gradients do shape the deep-sea community structure, especially southeastern Atlantic Ocean—the Angola, Cape, and Guinea Abys- in benthic environments (20). Except for the studies by Count- sal Plains—from depths of 5,000 m. A high percentage of retrieved way et al.
    [Show full text]
  • Molecular Characterisation of Neoparamoeba Strains Isolated from Gills of Scophthalmus Maximus
    DISEASES OF AQUATIC ORGANISMS Vol. 55: 11–16, 2003 Published June 20 Dis Aquat Org Molecular characterisation of Neoparamoeba strains isolated from gills of Scophthalmus maximus Ivan Fiala1, 2, Iva Dyková1, 2,* 1Institute of Parasitology, Academy of Sciences of the Czech Republic and 2Faculty of Biological Sciences, University of South Bohemia, Brani$ovská 31, 370 05 >eské Budeˇ jovice, Czech Republic ABSTRACT: Small subunit ribosomal RNA gene sequences were determined for 5 amoeba strains of the genus Neoparamoeba Page, 1987 that were isolated from gills of Scophthalmus maximus (Lin- naeus, 1758). Phylogenetic analyses revealed that 2 of 5 morphologically indistinguishable strains clustered with 6 strains identified previously as N. pemaquidensis (Page, 1970). Three strains branched as a clade separated from N. pemaquidenis and N. aestuarina (Page, 1970) clades. Our analyses suggest that these 3 strains could be representatives of an independent species. In a more comprehensive eukaryotic tree, strains belonging to Neoparamoeba spp. formed a monophyletic group with a sister-group relationship to Vannella anglica Page, 1980. They did not cluster with Gymnamoebae of the families Hartmannellidae, Flabellulidae, Leptomyxidae or Amoebidae presently available in GenBank. KEY WORDS: Paramoeba · Neoparamoeba · SSU rDNA · Phylogenetic position Resale or republication not permitted without written consent of the publisher INTRODUCTION Sequences of the SSU rRNA gene were made accessi- ble in GenBank in May 2002. Amoebic gill disease (AGD), repeatedly declared As a first step, aimed at unravelling the biology and one of the most serious diseases affecting farmed taxonomy of the agent of AGD in turbot Scophthalmus salmonids Salmo salar Linnaeus, 1758 and Oncorhyn- maximus, comparative light and transmission electron chus mykiss (Walbaum, 1792) in the last 2 decades microscopical studies of 6 Neoparamoeba strains indi- (Kent et al.
    [Show full text]