Contents 1 Introduction (Martin Olsson)

Total Page:16

File Type:pdf, Size:1020Kb

Contents 1 Introduction (Martin Olsson) STAX Contents 1 Introduction (Martin Olsson) 1 2 Background: schemes as functors (Andrew Niles) 2 2.1 Category theory . .2 2.2 Schemes . .3 2.3 Sheaves . .3 3 Sites and sheaves (Slater Stich) 4 4 Fibered categories (Aaron Mazel-Gee) 6 4.1 Definitions and basic facts . .6 4.2 The 2-Yoneda lemma . .7 4.3 Categories fibered in groupoids . .8 4.3.1 ... coming from co/groupoid objects . .8 4.3.2 ... and 2-categorical fiber product thereof . .9 5 Faithfully flat descent (Andrew Dudzik) 10 6 Algebraic spaces (Yuhao Huang) 12 7 Coarse moduli spaces, part 1 (Shelly Manber) 13 8 Quasicoherent sheaves of modules on algebraic spaces (Jason Ferguson) 15 9 Algebraic stacks (Doosung Park) 17 10 Quasicoherent sheaves on algebraic stacks (Katrina Honigs) 19 10.1 Stacks and algebraic stacks . 19 10.2 Quasicoherent sheaves on stacks . 20 11 Mg is a Deligne-Mumford stack (Martin Olsson) 20 12 Coarse moduli spaces and the Keel-Mori theorem (Piotr Achinger) 22 12.1 Moduli problems . 22 12.2 The Keel-Mori theorem . 23 12.3 Tameness and quasicoherent sheaves . 24 13 Gerbes (Peter Mannisto) 24 13.1 Torsors . 24 13.2 Gerbes . 25 1 Introduction (Martin Olsson) Motivation for stacks comes from: • algebraic topology; 1 • moduli theory; • not working with one arm tied behind your back. In algebraic topology, we might like to talk about classifying spaces. But one quickly learns that algebraic varieties have such rigid structure that we can't make the same constructions. In topology, cohomology is a representable functor: for any abelian group A and nonnegative number n, there is a space K(A; n) such that Hn(X; A) ' [X; K(A; n)] (where the square brackets denote homotopy classes of maps). In algebraic geometry, H1(X; A) is defined in terms of torsors and H2(X; A) is defined in terms of gerbes, which are certain kinds of stacks. It is an extremely profitable business to think about cohomology classes in this way. However, the story of stacks really begins with moduli theory: the classification of algebraic varieties. For example, curves are classified by their genus (so at g = 0 we have only P1). But what about fX2+Y 2+Z2 = 0g ⊂ P2? If we're over the real numbers, we probably don't want to call this P1! To give the correct answer takes a lot of machinery involving Grothendieck topologies etc., but the final answer is that the moduli stack of P1 should be thought of as BP GL2. 1 Without going into details, we have the following picture. If S is a space, we can make a fiber bundle P ,! X S { each fiber is a copy of P1, but X =6∼ S × P1. For example, if S = S1 is the circle, we can cover S1 with two open intervals U1 and U2 over which the bundle is trivial, and then to specify such a bundle we must specify how the bundles are supposed to glue on U1 \ U2. These gluings can be nontrivial { indeed, P GL2 gives the automorphisms of P1 { and so we can get nontrivial bundles over S. To do this properly in algebraic geometry requires faithfully flat descent, ´etale topology, and other things. At g = 1, there are two interesting things that happen. First of all, we can look at pointed genus-1 curves (E; e) (i.e. elliptic curves) or unpointed genus-1 curves. As it turns out, one can make families of E ! S where all fibers 0 0 are genus-1 curves and there exists an ´etalesurjection S ! S so that E ×S S is a scheme but E is an algebraic space which is not a scheme. An ´etalemorphism should just be thought of as a local homeomorphism, so S0 ! S 0 0 0 ∗ 0 ∼ ∗ 0 should be thought of as something like a covering space. Then in S ×S S ⇒ S ! S, choices p1E ! p2E plus cocycle conditions should glue to an element E0 over S0. It is impossible to do this in the world of schemes. 2 3 2 3 Example 1. Consider the two (pointed) elliptic curves E1 : y = x −Dx and E2 : y = x +Dx over Q. These are isomorphic once we have a cube-root of D, but they are non-isomorphic over Q itself. This illustrates the fact that the statement \elliptic curves are classified by their j-invariant" really only holds over algebraically closed fields. Thus, the functor M1;1 which takes a scheme S to an elliptic curve E ! S over S (ie. each fiber is an elliptic curve, 1 with basepoints given by a section e : S ! E) has a map M1;1 ! Aj , which we call a coarse moduli space. Example 2. When g ≥ 2, we have a map Mg ! Mg; the first is a stack and the second is a singular space. If for example we'd like to study intersection theory, the correct place for defining cycles is Mg. 2 Background: schemes as functors (Andrew Niles) 2.1 Category theory op Let C be a (locally small) category. For any X 2 C, we have a functor hX = HomC(−;X): C ! Sets. op Lemma 1 (Yoneda). For any functor F : C ! Sets, the function HomF un(hX ;F ) ! F (X) defined by f 7! fx(idX ) is a bijection. op Corollary 1. The mapping X 7! hX defines a fully faithful functor C! F un(C ; catSets). Thus we will use X and hX interchangeably. We say that a functor F : Cop ! Sets is representable by an object X 2 C if there is an isomorphism of functors ∼ hX = F . We make the enormous abuse of notation and say that F \is" an object of C (since it's in the essential image of the Yoneda embedding). Let F; G : Cop ! Sets and let f : F ! G be a morphism of functors. We say that f is relatively representable if for every X 2 C and every morphism of functors hx ! G, the fiber product F ×G hX is representable. The fiber product is by definition computed pointwise, i.e. (F ×G hX )(Y ) = F (Y ) ×G(Y ) hX (Y ). 2 2.2 Schemes Let us fix C = AffS, the category whose objects are affine schemes Spec(R) with a fixed morphism Spec(R) ! S op and whose morphisms are just morphisms of S-schemes. (If S = Spec(A) is affine, then this is just (AlgA) .) Note op that for any S-scheme X, we still have a functor hX : AffS ! Sets. op Let F; G : AffS ! Sets be functors and let f : F ! G be a morphism of functors. We say that f is an affine open (resp. closed) immersion if • f is relatively representable, and • for all hX ! G, the morphism F ×G hX ! hX in the diagram - F ×G hX hX ? ? F - G \is" an open (resp. closed) immersion. ∼ That is, we choose an isomorphism hY = F ×G hX , and then the morphism hY ! hX corresponds to an open (resp. closed) immersion Y ! X of schemes. 2.3 Sheaves Recall the notion of a sheaf F (of sets) on a scheme X. This is a functor F : Op(X)op ! Sets with the property that for any open cover fUig of an open subset U ⊂ X, Y Y F(U) ! F(Ui) ⇒ F(Ui \ Uj) i i;j is an equalizer diagram (in Sets). op op Now, let F : AffS ! Sets be a functor. We say that F is a big Zariski sheaf if for all U 2 AffS and for all open affine covers fUig of U, Y Y F(U) ! F(Ui) ⇒ F(Ui \ Uj) i i;j is an equalizer diagram (in Sets). (Note that we actually take the intersection to be a fiber product in the category op AffS , so there's no worry that this won't be affine.) Of course this is very similar to the usual sheaf condition; the only difference is that U is no longer sitting inside a fixed scheme X. We will soon learn that this is nothing but a sheaf on a \Grothendieck topology". A morphism f : F ! G of big Zariski sheaves (which is by definition just a morphism of functors) is called op surjective if for all U 2 AffS and u 2 G(U), there is a covering fUig of U in AffS such that ujUi 2 Im(fUi : F (Ui) ! G(Ui)) for all i. op Proposition 1. Let F : AffS ! Sets be a functor. Then F is representable by a separated (not necessarily affine) S-scheme if and only if the following three conditions hold: 1. F is a big Zariski sheaf. 2. ∆ : F ! F × F is an affine closed immersion. ` 3. There is a surjection i hXi ! F of big Zariski sheaves, where each hXi ! F is an affine open immersion. op Also, the functor Sch=S ! F un(AffS ; Sets) given by X ! hX is fully faithful, and the above precisely describes this functor. This is nice because it can be a lot easier to describe a functor than to describe a scheme that represents it. Proof of ((). Let us begin with the Xi. Since each hXi ! F is an affine open immersion, then the fiber products ∼ hXi ×F hXj are affine, say hXi ×F hXj = hVij with open immersions Xi -Vij ,! Xj. Then we define X to be the Xi glued along the Vij. 3 If we want to talk about more general, not necessarily separated schemes, we need to make the following modification.
Recommended publications
  • Representation Stability, Configuration Spaces, and Deligne
    Representation Stability, Configurations Spaces, and Deligne–Mumford Compactifications by Philip Tosteson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan 2019 Doctoral Committee: Professor Andrew Snowden, Chair Professor Karen Smith Professor David Speyer Assistant Professor Jennifer Wilson Associate Professor Venky Nagar Philip Tosteson [email protected] orcid.org/0000-0002-8213-7857 © Philip Tosteson 2019 Dedication To Pete Angelos. ii Acknowledgments First and foremost, thanks to Andrew Snowden, for his help and mathematical guidance. Also thanks to my committee members Karen Smith, David Speyer, Jenny Wilson, and Venky Nagar. Thanks to Alyssa Kody, for the support she has given me throughout the past 4 years of graduate school. Thanks also to my family for encouraging me to pursue a PhD, even if it is outside of statistics. I would like to thank John Wiltshire-Gordon and Daniel Barter, whose conversations in the math common room are what got me involved in representation stability. John’s suggestions and point of view have influenced much of the work here. Daniel’s talk of Braids, TQFT’s, and higher categories has helped to expand my mathematical horizons. Thanks also to many other people who have helped me learn over the years, including, but not limited to Chris Fraser, Trevor Hyde, Jeremy Miller, Nir Gadish, Dan Petersen, Steven Sam, Bhargav Bhatt, Montek Gill. iii Table of Contents Dedication . ii Acknowledgements . iii Abstract . .v Chapters v 1 Introduction 1 1.1 Representation Stability . .1 1.2 Main Results . .2 1.2.1 Configuration spaces of non-Manifolds .
    [Show full text]
  • The Nori Fundamental Gerbe of Tame Stacks 3
    THE NORI FUNDAMENTAL GERBE OF TAME STACKS INDRANIL BISWAS AND NIELS BORNE Abstract. Given an algebraic stack, we compare its Nori fundamental group with that of its coarse moduli space. We also study conditions under which the stack can be uniformized by an algebraic space. 1. Introduction The aim here is to show that the results of [Noo04] concerning the ´etale fundamental group of algebraic stacks also hold for the Nori fundamental group. Let us start by recalling Noohi’s approach. Given a connected algebraic stack X, and a geometric point x : Spec Ω −→ X, Noohi generalizes the definition of Grothendieck’s ´etale fundamental group to get a profinite group π1(X, x) which classifies finite ´etale representable morphisms (coverings) to X. He then highlights a new feature specific to the stacky situation: for each geometric point x, there is a morphism ωx : Aut x −→ π1(X, x). Noohi first studies the situation where X admits a moduli space Y , and proceeds to show that if N is the closed normal subgroup of π1(X, x) generated by the images of ωx, for x varying in all geometric points, then π1(X, x) ≃ π1(Y,y) . N Noohi turns next to the issue of uniformizing algebraic stacks: he defines a Noetherian algebraic stack X as uniformizable if it admits a covering, in the above sense, that is an algebraic space. His main result is that this happens precisely when X is a Deligne– Mumford stack and for any geometric point x, the morphism ωx is injective. For our purpose, it turns out to be more convenient to use the Nori fundamental gerbe arXiv:1502.07023v3 [math.AG] 9 Sep 2015 defined in [BV12].
    [Show full text]
  • CHARACTERIZING ALGEBRAIC STACKS 1. Introduction Stacks
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 4, April 2008, Pages 1465–1476 S 0002-9939(07)08832-6 Article electronically published on December 6, 2007 CHARACTERIZING ALGEBRAIC STACKS SHARON HOLLANDER (Communicated by Paul Goerss) Abstract. We extend the notion of algebraic stack to an arbitrary subcanon- ical site C. If the topology on C is local on the target and satisfies descent for morphisms, we show that algebraic stacks are precisely those which are weakly equivalent to representable presheaves of groupoids whose domain map is a cover. This leads naturally to a definition of algebraic n-stacks. We also compare different sites naturally associated to a stack. 1. Introduction Stacks arise naturally in the study of moduli problems in geometry. They were in- troduced by Giraud [Gi] and Grothendieck and were used by Deligne and Mumford [DM] to study the moduli spaces of curves. They have recently become important also in differential geometry [Bry] and homotopy theory [G]. Higher-order general- izations of stacks are also receiving much attention from algebraic geometers and homotopy theorists. In this paper, we continue the study of stacks from the point of view of homotopy theory started in [H, H2]. The aim of these papers is to show that many properties of stacks and classical constructions with stacks are homotopy theoretic in nature. This homotopy-theoretical understanding gives rise to a simpler and more powerful general theory. In [H] we introduced model category structures on different am- bient categories in which stacks are the fibrant objects and showed that they are all Quillen equivalent.
    [Show full text]
  • The Orbifold Chow Ring of Toric Deligne-Mumford Stacks
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 18, Number 1, Pages 193–215 S 0894-0347(04)00471-0 Article electronically published on November 3, 2004 THE ORBIFOLD CHOW RING OF TORIC DELIGNE-MUMFORD STACKS LEVA.BORISOV,LINDACHEN,ANDGREGORYG.SMITH 1. Introduction The orbifold Chow ring of a Deligne-Mumford stack, defined by Abramovich, Graber and Vistoli [2], is the algebraic version of the orbifold cohomology ring in- troduced by W. Chen and Ruan [7], [8]. By design, this ring incorporates numerical invariants, such as the orbifold Euler characteristic and the orbifold Hodge num- bers, of the underlying variety. The product structure is induced by the degree zero part of the quantum product; in particular, it involves Gromov-Witten invariants. Inspired by string theory and results in Batyrev [3] and Yasuda [28], one expects that, in nice situations, the orbifold Chow ring coincides with the Chow ring of a resolution of singularities. Fantechi and G¨ottsche [14] and Uribe [25] verify this conjecture when the orbifold is Symn(S)whereS is a smooth projective surface n with KS = 0 and the resolution is Hilb (S). The initial motivation for this project was to compare the orbifold Chow ring of a simplicial toric variety with the Chow ring of a crepant resolution. To achieve this goal, we first develop the theory of toric Deligne-Mumford stacks. Modeled on simplicial toric varieties, a toric Deligne-Mumford stack corresponds to a combinatorial object called a stacky fan. As a first approximation, this object is a simplicial fan with a distinguished lattice point on each ray in the fan.
    [Show full text]
  • Handbook of Moduli
    Equivariant geometry and the cohomology of the moduli space of curves Dan Edidin Abstract. In this chapter we give a categorical definition of the integral cohomology ring of a stack. For quotient stacks [X=G] the categorical co- ∗ homology ring may be identified with the equivariant cohomology HG(X). Identifying the stack cohomology ring with equivariant cohomology allows us to prove that the cohomology ring of a quotient Deligne-Mumford stack is rationally isomorphic to the cohomology ring of its coarse moduli space. The theory is presented with a focus on the stacks Mg and Mg of smooth and stable curves respectively. Contents 1 Introduction2 2 Categories fibred in groupoids (CFGs)3 2.1 CFGs of curves4 2.2 Representable CFGs5 2.3 Curves and quotient CFGs6 2.4 Fiber products of CFGs and universal curves 10 3 Cohomology of CFGs and equivariant cohomology 13 3.1 Motivation and definition 14 3.2 Quotient CFGs and equivariant cohomology 16 3.3 Equivariant Chow groups 19 3.4 Equivariant cohomology and the CFG of curves 21 4 Stacks, moduli spaces and cohomology 22 4.1 Deligne-Mumford stacks 23 4.2 Coarse moduli spaces of Deligne-Mumford stacks 27 4.3 Cohomology of Deligne-Mumford stacks and their moduli spaces 29 2000 Mathematics Subject Classification. Primary 14D23, 14H10; Secondary 14C15, 55N91. Key words and phrases. stacks, moduli of curves, equivariant cohomology. The author was supported by NSA grant H98230-08-1-0059 while preparing this article. 2 Cohomology of the moduli space of curves 1. Introduction The study of the cohomology of the moduli space of curves has been a very rich research area for the last 30 years.
    [Show full text]
  • Introduction to Algebraic Stacks
    Introduction to Algebraic Stacks K. Behrend December 17, 2012 Abstract These are lecture notes based on a short course on stacks given at the Newton Institute in Cambridge in January 2011. They form a self-contained introduction to some of the basic ideas of stack theory. Contents Introduction 3 1 Topological stacks: Triangles 8 1.1 Families and their symmetry groupoids . 8 Various types of symmetry groupoids . 9 1.2 Continuous families . 12 Gluing families . 13 1.3 Classification . 15 Pulling back families . 17 The moduli map of a family . 18 Fine moduli spaces . 18 Coarse moduli spaces . 21 1.4 Scalene triangles . 22 1.5 Isosceles triangles . 23 1.6 Equilateral triangles . 25 1.7 Oriented triangles . 25 Non-equilateral oriented triangles . 30 1.8 Stacks . 31 1.9 Versal families . 33 Generalized moduli maps . 35 Reconstructing a family from its generalized moduli map . 37 Versal families: definition . 38 Isosceles triangles . 40 Equilateral triangles . 40 Oriented triangles . 41 1 1.10 Degenerate triangles . 42 Lengths of sides viewpoint . 43 Embedded viewpoint . 46 Complex viewpoint . 52 Oriented degenerate triangles . 54 1.11 Change of versal family . 57 Oriented triangles by projecting equilateral ones . 57 Comparison . 61 The comparison theorem . 61 1.12 Weierstrass compactification . 64 The j-plane . 69 2 Formalism 73 2.1 Objects in continuous families: Categories fibered in groupoids 73 Fibered products of groupoid fibrations . 77 2.2 Families characterized locally: Prestacks . 78 Versal families . 79 2.3 Families which can be glued: Stacks . 80 2.4 Topological stacks . 81 Topological groupoids . 81 Generalized moduli maps: Groupoid Torsors .
    [Show full text]
  • Algebraic Stacks Many of the Geometric Properties That Are Defined for Schemes (Smoothness, Irreducibility, Separatedness, Properness, Etc...)
    Algebraic stacks Tom´as L. G´omez Tata Institute of Fundamental Research Homi Bhabha road, Mumbai 400 005 (India) [email protected] 9 November 1999 Abstract This is an expository article on the theory of algebraic stacks. After intro- ducing the general theory, we concentrate in the example of the moduli stack of vector budles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory. 1 Introduction The concept of algebraic stack is a generalization of the concept of scheme, in the same sense that the concept of scheme is a generalization of the concept of projective variety. In many moduli problems, the functor that we want to study is not representable by a scheme. In other words, there is no fine moduli space. Usually this is because the objects that we want to parametrize have automorphisms. But if we enlarge the category of schemes (following ideas that go back to Grothendieck and Giraud, and were developed by Deligne, Mumford and Artin) and consider algebraic stacks, then we can construct the “moduli stack”, that captures all the information that we would like in a fine moduli space. The idea of enlarging the category of algebraic varieties to study moduli problems is not new. In fact A. Weil invented the concept of abstract variety to give an algebraic arXiv:math/9911199v1 [math.AG] 25 Nov 1999 construction of the Jacobian of a curve. These notes are an introduction to the theory of algebraic stacks. I have tried to emphasize ideas and concepts through examples instead of detailed proofs (I give references where these can be found).
    [Show full text]
  • The Algebraic Stack Mg
    The algebraic stack Mg Raymond van Bommel 9 October 2015 The author would like to thank Bas Edixhoven, Jinbi Jin, David Holmes and Giulio Orecchia for their valuable contributions. 1 Fibre products and representability Recall from last week ([G]) the definition of categories fibred in groupoids over a category S. Besides objects there are 1-morphisms (functors) between objects and 2-morphisms (natural transformations (that are isomorphisms automatically)) between the 1-morphisms. They form a so-called 2-category, CFG. We also defined the fibre product in CFG. In this chapter we will take a general base category S unless otherwise indicated. However, if wanted, you can think of S as being Sch. Given an object S 2 Ob(S), we can consider it as category fibred in groupoids, which is also called S=S, by taking arrows T ! S in S as objects and arrows over S in S as morphisms. The functor S=S !S is the forgetful functor, forgetting the map to S. Exercise 1. Let S; T 2 Ob(S). Check that the fibre (S=S)(T ) is isomorphic to the set Hom(T;S), i.e. the category whose objects are the elements of Hom(T;S) and whose arrows are the identities. Proposition 2. Let X be a category fibred in groupoids over S. Then X is equivalent to an object of S (i.e. there is an equivalence of categories that commutes with the projection to S) if and only if X has a final object. Proof. Given an object S 2 Ob(S) the associated category fibred in groupoids has final object id: S ! S.
    [Show full text]
  • 6. Galois Descent for Quasi-Coherent Sheaves 19 7
    DESCENT 0238 Contents 1. Introduction 2 2. Descent data for quasi-coherent sheaves 2 3. Descent for modules 4 4. Descent for universally injective morphisms 9 4.1. Category-theoretic preliminaries 10 4.3. Universally injective morphisms 11 4.14. Descent for modules and their morphisms 12 4.23. Descent for properties of modules 15 5. Fpqc descent of quasi-coherent sheaves 17 6. Galois descent for quasi-coherent sheaves 19 7. Descent of finiteness properties of modules 21 8. Quasi-coherent sheaves and topologies 23 9. Parasitic modules 31 10. Fpqc coverings are universal effective epimorphisms 32 11. Descent of finiteness and smoothness properties of morphisms 36 12. Local properties of schemes 39 13. Properties of schemes local in the fppf topology 40 14. Properties of schemes local in the syntomic topology 42 15. Properties of schemes local in the smooth topology 42 16. Variants on descending properties 43 17. Germs of schemes 44 18. Local properties of germs 44 19. Properties of morphisms local on the target 45 20. Properties of morphisms local in the fpqc topology on the target 47 21. Properties of morphisms local in the fppf topology on the target 54 22. Application of fpqc descent of properties of morphisms 54 23. Properties of morphisms local on the source 57 24. Properties of morphisms local in the fpqc topology on the source 58 25. Properties of morphisms local in the fppf topology on the source 58 26. Properties of morphisms local in the syntomic topology on the source 59 27. Properties of morphisms local in the smooth topology on the source 59 28.
    [Show full text]
  • Geometricity for Derived Categories of Algebraic Stacks 3
    GEOMETRICITY FOR DERIVED CATEGORIES OF ALGEBRAIC STACKS DANIEL BERGH, VALERY A. LUNTS, AND OLAF M. SCHNURER¨ To Joseph Bernstein on the occasion of his 70th birthday Abstract. We prove that the dg category of perfect complexes on a smooth, proper Deligne–Mumford stack over a field of characteristic zero is geometric in the sense of Orlov, and in particular smooth and proper. On the level of trian- gulated categories, this means that the derived category of perfect complexes embeds as an admissible subcategory into the bounded derived category of co- herent sheaves on a smooth, projective variety. The same holds for a smooth, projective, tame Artin stack over an arbitrary field. Contents 1. Introduction 1 2. Preliminaries 4 3. Root constructions 8 4. Semiorthogonal decompositions for root stacks 12 5. Differential graded enhancements and geometricity 20 6. Geometricity for dg enhancements of algebraic stacks 25 Appendix A. Bounded derived category of coherent modules 28 References 29 1. Introduction The derived category of a variety or, more generally, of an algebraic stack, is arXiv:1601.04465v2 [math.AG] 22 Jul 2016 traditionally studied in the context of triangulated categories. Although triangu- lated categories are certainly powerful, they do have some shortcomings. Most notably, the category of triangulated categories seems to have no tensor product, no concept of duals, and categories of triangulated functors have no obvious trian- gulated structure. A remedy to these problems is to work instead with differential graded categories, also called dg categories. We follow this approach and replace the derived category Dpf (X) of perfect complexes on a variety or an algebraic stack dg X by a certain dg category Dpf (X) which enhances Dpf (X) in the sense that its homotopy category is equivalent to Dpf (X).
    [Show full text]
  • Higher Analytic Stacks and Gaga Theorems
    HIGHER ANALYTIC STACKS AND GAGA THEOREMS MAURO PORTA AND TONY YUE YU Abstract. We develop the foundations of higher geometric stacks in complex analytic geometry and in non-archimedean analytic geometry. We study coherent sheaves and prove the analog of Grauert’s theorem for derived direct images under proper morphisms. We define analytification functors and prove the analog of Serre’s GAGA theorems for higher stacks. We use the language of infinity category to simplify the theory. In particular, it enables us to circumvent the functoriality problem of the lisse-étale sites for sheaves on stacks. Our constructions and theorems cover the classical 1-stacks as a special case. Contents 1. Introduction 2 2. Higher geometric stacks 4 2.1. Notations 4 2.2. Geometric contexts 5 2.3. Higher geometric stacks 6 2.4. Functorialities of the category of sheaves 8 2.5. Change of geometric contexts 16 3. Examples of higher geometric stacks 17 3.1. Higher algebraic stacks 17 3.2. Higher complex analytic stacks 17 3.3. Higher non-archimedean analytic stacks 18 3.4. Relative higher algebraic stacks 18 4. Proper morphisms of analytic stacks 19 5. Direct images of coherent sheaves 26 5.1. Sheaves on geometric stacks 26 arXiv:1412.5166v2 [math.AG] 28 Jul 2016 5.2. Coherence of derived direct images for algebraic stacks 32 5.3. Coherence of derived direct images for analytic stacks 34 6. Analytification functors 38 Date: December 16, 2014 (Revised on July 6, 2016). 2010 Mathematics Subject Classification. Primary 14A20; Secondary 14G22 32C35 14F05. Key words and phrases.
    [Show full text]
  • Simplicial Presheaves and Derived Algebraic Geometry. Bertrand Toen
    Simplicial presheaves and derived algebraic geometry. Bertrand Toen To cite this version: Bertrand Toen. Simplicial presheaves and derived algebraic geometry.. Simplicial Methods for Operads and Algebraic Geometry, Springer Basel, pp.119-185, 2010, Advanced Courses in Mathematics - CRM Barcelona, 978-3-0348-0051-8. 10.1007/978-3-0348-0052-5. hal-00772850v1 HAL Id: hal-00772850 https://hal.archives-ouvertes.fr/hal-00772850v1 Submitted on 11 Jan 2013 (v1), last revised 18 Feb 2013 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Simplicial presheaves and derived algebraic geometry Bertrand To¨en Laboratoire Emile Picard Universit´ePaul Sabatier, Bat 1R2 31062 Toulouse Cedex , France email: [email protected] May 2009 2 Contents 1 Motivations and objectives 7 1.1 The notion of moduli spaces . 7 1.2 Construction of moduli spaces: one example . 8 1.3 Conclusions . 12 2 Simplicial presheaves as stacks 13 2.1 Review of the model category of simplicial presheaves . 13 2.2 Basic examples . 19 3 Algebraic stacks 29 3.1 Schemes and algebraic n-stacks . 30 3.2 Some examples . 33 3.3 Coarse moduli spaces and homotopy sheaves .
    [Show full text]