Gödel, Leibniz and ''Russell's Mathematical Logic''
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Automating Free Logic in HOL, with an Experimental Application in Category Theory
Noname manuscript No. (will be inserted by the editor) Automating Free Logic in HOL, with an Experimental Application in Category Theory Christoph Benzm¨uller and Dana S. Scott Received: date / Accepted: date Abstract A shallow semantical embedding of free logic in classical higher- order logic is presented, which enables the off-the-shelf application of higher- order interactive and automated theorem provers for the formalisation and verification of free logic theories. Subsequently, this approach is applied to a selected domain of mathematics: starting from a generalization of the standard axioms for a monoid we present a stepwise development of various, mutually equivalent foundational axiom systems for category theory. As a side-effect of this work some (minor) issues in a prominent category theory textbook have been revealed. The purpose of this article is not to claim any novel results in category the- ory, but to demonstrate an elegant way to “implement” and utilize interactive and automated reasoning in free logic, and to present illustrative experiments. Keywords Free Logic · Classical Higher-Order Logic · Category Theory · Interactive and Automated Theorem Proving 1 Introduction Partiality and undefinedness are prominent challenges in various areas of math- ematics and computer science. Unfortunately, however, modern proof assistant systems and automated theorem provers based on traditional classical or intu- itionistic logics provide rather inadequate support for these challenge concepts. Free logic [24,25,30,32] offers a theoretically appealing solution, but it has been considered as rather unsuited towards practical utilization. Christoph Benzm¨uller Freie Universit¨at Berlin, Berlin, Germany & University of Luxembourg, Luxembourg E-mail: [email protected] Dana S. -
Mathematical Logic. Introduction. by Vilnis Detlovs And
1 Version released: May 24, 2017 Introduction to Mathematical Logic Hyper-textbook for students by Vilnis Detlovs, Dr. math., and Karlis Podnieks, Dr. math. University of Latvia This work is licensed under a Creative Commons License and is copyrighted © 2000-2017 by us, Vilnis Detlovs and Karlis Podnieks. Sections 1, 2, 3 of this book represent an extended translation of the corresponding chapters of the book: V. Detlovs, Elements of Mathematical Logic, Riga, University of Latvia, 1964, 252 pp. (in Latvian). With kind permission of Dr. Detlovs. Vilnis Detlovs. Memorial Page In preparation – forever (however, since 2000, used successfully in a real logic course for computer science students). This hyper-textbook contains links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. 2 Table of Contents References..........................................................................................................3 1. Introduction. What Is Logic, Really?.............................................................4 1.1. Total Formalization is Possible!..............................................................5 1.2. Predicate Languages.............................................................................10 1.3. Axioms of Logic: Minimal System, Constructive System and Classical System..........................................................................................................27 1.4. The Flavor of Proving Directly.............................................................40 -
The Modal Logic of Potential Infinity, with an Application to Free Choice
The Modal Logic of Potential Infinity, With an Application to Free Choice Sequences Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ethan Brauer, B.A. ∼6 6 Graduate Program in Philosophy The Ohio State University 2020 Dissertation Committee: Professor Stewart Shapiro, Co-adviser Professor Neil Tennant, Co-adviser Professor Chris Miller Professor Chris Pincock c Ethan Brauer, 2020 Abstract This dissertation is a study of potential infinity in mathematics and its contrast with actual infinity. Roughly, an actual infinity is a completed infinite totality. By contrast, a collection is potentially infinite when it is possible to expand it beyond any finite limit, despite not being a completed, actual infinite totality. The concept of potential infinity thus involves a notion of possibility. On this basis, recent progress has been made in giving an account of potential infinity using the resources of modal logic. Part I of this dissertation studies what the right modal logic is for reasoning about potential infinity. I begin Part I by rehearsing an argument|which is due to Linnebo and which I partially endorse|that the right modal logic is S4.2. Under this assumption, Linnebo has shown that a natural translation of non-modal first-order logic into modal first- order logic is sound and faithful. I argue that for the philosophical purposes at stake, the modal logic in question should be free and extend Linnebo's result to this setting. I then identify a limitation to the argument for S4.2 being the right modal logic for potential infinity. -
Basic Concepts of Set Theory, Functions and Relations 1. Basic
Ling 310, adapted from UMass Ling 409, Partee lecture notes March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory........................................................................................................................1 1.1. Sets and elements ...................................................................................................................................1 1.2. Specification of sets ...............................................................................................................................2 1.3. Identity and cardinality ..........................................................................................................................3 1.4. Subsets ...................................................................................................................................................4 1.5. Power sets .............................................................................................................................................4 1.6. Operations on sets: union, intersection...................................................................................................4 1.7 More operations on sets: difference, complement...................................................................................5 1.8. Set-theoretic equalities ...........................................................................................................................5 Chapter 2. Relations and Functions ..................................................................................................................6 -
Are Large Cardinal Axioms Restrictive?
Are Large Cardinal Axioms Restrictive? Neil Barton∗ 24 June 2020y Abstract The independence phenomenon in set theory, while perva- sive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper, I argue that whether or not large cardinal axioms count as maximality prin- ciples depends on prior commitments concerning the richness of the subset forming operation. In particular I argue that there is a conception of maximality through absoluteness, on which large cardinal axioms are restrictive. I argue, however, that large cardi- nals are still important axioms of set theory and can play many of their usual foundational roles. Introduction Large cardinal axioms are widely viewed as some of the best candi- dates for new axioms of set theory. They are (apparently) linearly ordered by consistency strength, have substantial mathematical con- sequences for questions independent from ZFC (such as consistency statements and Projective Determinacy1), and appear natural to the ∗Fachbereich Philosophie, University of Konstanz. E-mail: neil.barton@uni- konstanz.de. yI would like to thank David Aspero,´ David Fernandez-Bret´ on,´ Monroe Eskew, Sy-David Friedman, Victoria Gitman, Luca Incurvati, Michael Potter, Chris Scam- bler, Giorgio Venturi, Matteo Viale, Kameryn Williams and audiences in Cambridge, New York, Konstanz, and Sao˜ Paulo for helpful discussion. Two anonymous ref- erees also provided helpful comments, and I am grateful for their input. I am also very grateful for the generous support of the FWF (Austrian Science Fund) through Project P 28420 (The Hyperuniverse Programme) and the VolkswagenStiftung through the project Forcing: Conceptual Change in the Foundations of Mathematics. -
Invitation to Semantics
Varieties of meaning http://www-rohan.sdsu.edu/~gawron/semantics Jean Mark Gawron San Diego State University, Department of Linguistics 2012-01-25 Ling 525 Jean Mark Gawron ( SDSU ) Gawron: Semantics intro 2012-01-25 Ling 525 1 / 59 Outline 1 Semantics and pragmatics 2 Lexical vs. structural meaning 3 Sense and denotation 4 Determining denotations 5 Sentence denotations 6 Intensions and possible worlds 7 Conclusion Jean Mark Gawron ( SDSU ) Gawron: Semantics intro 2012-01-25 Ling 525 2 / 59 Outline 1 Semantics and pragmatics 2 Lexical vs. structural meaning 3 Sense and denotation 4 Determining denotations 5 Sentence denotations 6 Intensions and possible worlds 7 Conclusion Jean Mark Gawron ( SDSU ) Gawron: Semantics intro 2012-01-25 Ling 525 3 / 59 What is semantics? Definition Semantics Semantics is the study of the meaning of linguistic forms, what the words and the syntax contribute to what is communicated. Jean Mark Gawron ( SDSU ) Gawron: Semantics intro 2012-01-25 Ling 525 4 / 59 Literal meaning We call the meaning of a linguistic form its literal meaning. Sentence Literal meaning I forgot the paper Past forget(I, the paper) At some time in the past, someone forgets something [forget( , )] The speaker is the someone. The paper is the something. Each part of the sentence contributes something to this literal meaning. I the speaker of the utterance the paper an object appropriately describable as a paper forget the relation that holds between an indi- vidual and something they forget Past Tense (ed) the relation holds in the past Jean Mark Gawron ( SDSU ) Gawron: Semantics intro 2012-01-25 Ling 525 5 / 59 Semantics and pragmatics Literal meaning excludes a lot of what might actually be communicated on a particular occasion of utterance. -
Existence and Reference in Medieval Logic
GYULA KLIMA EXISTENCE AND REFERENCE IN MEDIEVAL LOGIC 1. Introduction: Existential Assumptions in Modern vs. Medieval Logic “The expression ‘free logic’ is an abbreviation for the phrase ‘free of existence assumptions with respect to its terms, general and singular’.”1 Classical quantification theory is not a free logic in this sense, as its standard formulations commonly assume that every singular term in every model is assigned a referent, an element of the universe of discourse. Indeed, since singular terms include not only singular constants, but also variables2, standard quantification theory may be regarded as involving even the assumption of the existence of the values of its variables, in accordance with Quine’s famous dictum: “to be is to be the value of a variable”.3 But according to some modern interpretations of Aristotelian syllogistic, Aristotle’s theory would involve an even stronger existential assumption, not shared by quantification theory, namely, the assumption of the non-emptiness of common terms.4 Indeed, the need for such an assumption seems to be supported not only by a number of syllogistic forms, which without this assumption appear to be invalid, but also by the doctrine of Aristotle’s De Interpretatione concerning the logical relationships among categorical propositions, commonly summarized in the Square of Opposition. For example, Aristotle’s theory states that universal affirmative propositions imply particular affirmative propositions. But if we formalize such propositions in quantification theory, we get formulae between which the corresponding implication does not hold. So, evidently, there is some discrepancy between the ways Aristotle and quantification theory interpret these categoricals. -
THE 1910 PRINCIPIA's THEORY of FUNCTIONS and CLASSES and the THEORY of DESCRIPTIONS*
EUJAP VOL. 3 No. 2 2007 ORIGinal SCienTifiC papeR UDK: 165 THE 1910 PRINCIPIA’S THEORY OF FUNCTIONS AND CLASSES AND THE THEORY OF DESCRIPTIONS* WILLIAM DEMOPOULOS** The University of Western Ontario ABSTRACT 1. Introduction It is generally acknowledged that the 1910 Prin- The 19101 Principia’s theory of proposi- cipia does not deny the existence of classes, but tional functions and classes is officially claims only that the theory it advances can be developed so that any apparent commitment to a “no-classes theory of classes,” a theory them is eliminable by the method of contextual according to which classes are eliminable. analysis. The application of contextual analysis But it is clear from Principia’s solution to ontological questions is widely viewed as the to the class paradoxes that although the central philosophical innovation of Russell’s theory of descriptions. Principia’s “no-classes theory it advances holds that classes are theory of classes” is a striking example of such eliminable, it does not deny their exis- an application. The present paper develops a re- tence. Whitehead and Russell argue from construction of Principia’s theory of functions the supposition that classes involve or and classes that is based on Russell’s epistemo- logical applications of the method of contextual presuppose propositional functions to the analysis. Such a reconstruction is not eliminativ- conclusion that the paradoxical classes ist—indeed, it explicitly assumes the existence of are excluded by the nature of such func- classes—and possesses certain advantages over tions. This supposition rests on the repre- the no–classes theory advocated by Whitehead and Russell. -
From Von Mises' Impossibility of a Gambling System to Probabilistic
From von Mises' Impossibility of a Gambling System to Probabilistic Martingales MSc Thesis (Afstudeerscriptie) written by Francesca Zaffora Blando (born January 27th, 1988 in Chivasso, Italy) under the supervision of Prof. Dr. Paul Vit´anyi and Prof. Dr. Michiel van Lambalgen, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: September 16th, 2015 Prof. Dr. Johan van Benthem Prof. Dr. Michiel van Lambalgen (supervisor) Dr. Piet Rodenburg Dr. Leen Torenvliet Prof. Dr. Paul Vit´anyi (supervisor) Prof. Dr. Ronald de Wolf (chair) Per Si´sPi`uOtto! Abstract Algorithmic randomness draws on computability theory to offer rigorous formulations of the notion of randomness for mathematical objects. In addition to having evolved into a highly technical branch of mathematical logic, algorithmic randomness prompts numerous methodological questions. This thesis aims at addressing some of these questions, together with some of the technical challenges that they spawn. In the first part, we discuss the work on randomness and the foundations of probability of the Austrian mathematician Richard von Mises [1919], whose theory of collectives constitutes the first attempt at providing a formal definition of randomness. Our main objective there is to ascertain the reasons that led to the demise of von Mises' approach in favour of algorithmic randomness. Then, we turn to the myriad definitions of randomness that have been proposed within the algorithmic paradigm, and we focus on the issue of whether any of these definitions can be said to be more legitimate than the others. -
Frege and the Logic of Sense and Reference
FREGE AND THE LOGIC OF SENSE AND REFERENCE Kevin C. Klement Routledge New York & London Published in 2002 by Routledge 29 West 35th Street New York, NY 10001 Published in Great Britain by Routledge 11 New Fetter Lane London EC4P 4EE Routledge is an imprint of the Taylor & Francis Group Printed in the United States of America on acid-free paper. Copyright © 2002 by Kevin C. Klement All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any infomration storage or retrieval system, without permission in writing from the publisher. 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data Klement, Kevin C., 1974– Frege and the logic of sense and reference / by Kevin Klement. p. cm — (Studies in philosophy) Includes bibliographical references and index ISBN 0-415-93790-6 1. Frege, Gottlob, 1848–1925. 2. Sense (Philosophy) 3. Reference (Philosophy) I. Title II. Studies in philosophy (New York, N. Y.) B3245.F24 K54 2001 12'.68'092—dc21 2001048169 Contents Page Preface ix Abbreviations xiii 1. The Need for a Logical Calculus for the Theory of Sinn and Bedeutung 3 Introduction 3 Frege’s Project: Logicism and the Notion of Begriffsschrift 4 The Theory of Sinn and Bedeutung 8 The Limitations of the Begriffsschrift 14 Filling the Gap 21 2. The Logic of the Grundgesetze 25 Logical Language and the Content of Logic 25 Functionality and Predication 28 Quantifiers and Gothic Letters 32 Roman Letters: An Alternative Notation for Generality 38 Value-Ranges and Extensions of Concepts 42 The Syntactic Rules of the Begriffsschrift 44 The Axiomatization of Frege’s System 49 Responses to the Paradox 56 v vi Contents 3. -
How Peircean Was the “'Fregean' Revolution” in Logic?
HOW PEIRCEAN WAS THE “‘FREGEAN’ REVOLUTION” IN LOGIC? Irving H. Anellis Peirce Edition, Institute for American Thought Indiana University – Purdue University at Indianapolis Indianapolis, IN, USA [email protected] Abstract. The historiography of logic conceives of a Fregean revolution in which modern mathematical logic (also called symbolic logic) has replaced Aristotelian logic. The preeminent expositors of this conception are Jean van Heijenoort (1912–1986) and Don- ald Angus Gillies. The innovations and characteristics that comprise mathematical logic and distinguish it from Aristotelian logic, according to this conception, created ex nihlo by Gottlob Frege (1848–1925) in his Begriffsschrift of 1879, and with Bertrand Rus- sell (1872–1970) as its chief This position likewise understands the algebraic logic of Augustus De Morgan (1806–1871), George Boole (1815–1864), Charles Sanders Peirce (1838–1914), and Ernst Schröder (1841–1902) as belonging to the Aristotelian tradi- tion. The “Booleans” are understood, from this vantage point, to merely have rewritten Aristotelian syllogistic in algebraic guise. The most detailed listing and elaboration of Frege’s innovations, and the characteristics that distinguish mathematical logic from Aristotelian logic, were set forth by van Heijenoort. I consider each of the elements of van Heijenoort’s list and note the extent to which Peirce had also developed each of these aspects of logic. I also consider the extent to which Peirce and Frege were aware of, and may have influenced, one another’s logical writings. AMS (MOS) 2010 subject classifications: Primary: 03-03, 03A05, 03C05, 03C10, 03G27, 01A55; secondary: 03B05, 03B10, 03E30, 08A20; Key words and phrases: Peirce, abstract algebraic logic; propositional logic; first-order logic; quantifier elimina- tion, equational classes, relational systems §0. -
Foundations of Mathematics
Foundations of Mathematics. Does mathematics need foundations? (Not until 1900.) Mathematical approach: Work towards an axiom system of mathematics with purely mathematical means. ( Hilbert’s Programme ). In its naïve interpretation crushed by Gödel’s Incompleteness Theorem. Extra-mathematical approach: Use external arguments for axioms and rules: pragmatic, philosophical, sociological, (theological ?). Foundations of number theory: test case. Core Logic – 2007/08-1ab – p. 2/36 Sets are everything (1). Different areas of mathematics use different primitive notions: ordered pair, function, natural number, real number, transformation, etc. Set theory is able to incorporate all of these in one framework: Ordered Pair. We define hx, y i := {{ x}, {x, y }} . (Kuratowski pair ) Function. A set f is called a function if there are sets X and Y such that f ⊆ X × Y and ′ ′ ′ ∀x, y, y hx, y i ∈ f&hx, y i ∈ f → y = y . Core Logic – 2007/08-1ab – p. 3/36 Sets are everything (2). Set theory incorporates basic notions of mathematics: Natural Numbers. We call a set X inductive if it contains ∅ and for each x ∈ X, we have x ∪ { x} ∈ X. Assume that there is an inductive set. Then define N to be the intersection of all inductive sets. Rational Numbers. We define P := {0, 1} × N × N\{ 0}, then hi, n, m i ∼ h j, k, ℓ i : ⇐⇒ i = j & n · ℓ = m · k, and Q := P/∼. Core Logic – 2007/08-1ab – p. 4/36 Sets are everything (3). Set theory incorporates basic notions of mathematics: Real Numbers. Define an order on Q by hi, n, m i ≤ h j, k, ℓ i : ⇐⇒ i < j ∨ (i = j & n · ℓ ≤ k · m).