04 Rate Distortion Theory-WS12

Total Page:16

File Type:pdf, Size:1020Kb

04 Rate Distortion Theory-WS12 Rate Distortion Theory Rate Distortion Theory Lossy coding: decoded signal is an approximation of original Rate distortion theory is a theoretical discipline treating data compression from the viewpoint of information theory The results of rate distortion theory are obtained without consideration of a specific coding method The goal of rate distortion theory is to calculate the minimum transmission bit rate for a given distortion and source Below: example for a rate distortion function for a discrete iid source R (H(S),Dmin = 0) Rate Distortion Function € € (R = 0,D = Dmax ) D 0 D 0 max € 1 o November 14, 2012 1 / 64 € Rate Distortion Theory Outline Transmission System and Variables Rate Distortion Function for Discrete Random Variables Definition: Source and Decoded Symbols, Coder/Decoder, Distortion, Rate Rate Distortion Function and Properties Rate Distortion Function for Binary IID Sources Rate Distortion Function for Amplitude-Continuous Random Variables Definition: Source and Decoded Symbols, Coder/Decoder, Distortion, Rate Rate Distortion Function Shannon Lower Bound Rate Distortion Function for Memoryless Gaussian Sources Rate Distortion Function for Gaussian Sources with Memory o November 14, 2012 2 / 64 Rate Distortion Theory Transmission System and Variables Transmission system Distortion D S S Source Coder Decoder ' Sink Bit-Rate R Derivation in two steps 0 1 Define S, S , coder/decoder, distortion D, and rate R 0 2 Establish a functional relationship between S, S , D, and R For two types of random variables 1 Derivation for discrete random variables 2 Derivation for amplitude-continuous random variables (Gaussian, Laplacian, etc.) o November 14, 2012 3 / 64 Rate Distortion Theory The Operational Rate Distortion Function Operational Rate Distortion Function Encoder: Irreversible encoder mapping α : s ! i Lossless mapping γ : i ! b Decoder: Lossless mapping γ−1 : b ! i Decoder mapping β : i ! s0 o November 14, 2012 4 / 64 Rate Distortion Theory The Operational Rate Distortion Function Source code Source code: Q = (α; β; γ) N-dimensional block source code: QN = αN ; βN ; γN f g Blocks of N consecutive input samples are independently coded (N) Each block of input samples s = fs0; ··· ; sN−1g is mapped to a vector of K quantization indexes (K) (N) i = αN (s ) (1) Resulting vector of indexes i is converted into bit sequence (`) (K) (N) b = γN (i ) = γN (αN (s )) (2) At decoder side, index vector is recovered (K) −1 (`) −1 (K) i = γN (b ) = γN (γN (i )) (3) Index vector mapped to a block of reconstructed samples 0(N) 0 0 s = fs0; ··· ; sN−1g 0(N) (K) (N) s = βN (i ) = βN (αN (s )) (4) o November 14, 2012 5 / 64 Rate Distortion Theory The Operational Rate Distortion Function Distortion I This lecture: additive distortion measures 0 0 d1(s; s ) 0 with equality, if and only if s = s (5) ≥ Examples: 1; for s = s0 Hamming distance: d (s; s0) = (6) 1 0; for s =6 s0 0 0 2 Mean squared error: d1(s; s ) = (s s ) (7) − (N) 0(N) 0 0 0 Distortion for s = s0; s1; : : : ; sN−1 and s = s ; s ; : : : ; s f g f 0 1 N−1g N−1 (N) 1 X d (s(N); s0 ) = d (s ; s0 ) (8) N N 1 i i i=0 o November 14, 2012 6 / 64 Rate Distortion Theory The Operational Rate Distortion Function Distortion II Stationary random process S = Sn and N-dimensional block source code f g QN = αN ; βN ; γN f g n (N) (N) o δ(QN ) = E dN S ; βN (αN (S )) ) (9) Z = f(s) dN s; βN (αN (s)) ds (10) RN Arbitrary random process S = Sn and arbitrary code Q f g n (N) (N) o δ(Q) = lim E dN S ; βN (αN (S )) ) (11) N!1 o November 14, 2012 7 / 64 Rate Distortion Theory The Operational Rate Distortion Function Rate Average number of bits per input symbol ( denotes the number of bits) j · j (N) 1 (N) (`) (N) rN (s ) = γN (αN (s )) with b = γN (αN (s )) (12) N Stationary random process S = Sn and N-dimensional block source code f g QN = αN ; βN ; γN f g 1 n (N) o r(QN ) = E γN (αN (S )) (13) N Z 1 = f(s) γN (αN (s)) ds (14) N RN Arbitrary random process S = Sn and arbitrary code Q f g 1 n (N) o r(Q) = lim E γN (αN (S )) (15) N!1 N o November 14, 2012 8 / 64 Rate Distortion Theory The Operational Rate Distortion Function Operational Rate Distortion Function For given source S: each code Q is associated with a rate distortion point (R; D) Rate distortion point is achievable, if there exist a code Q such that r(Q) R and δ(Q) D Operational≤ rate distortion≤ function R(D) and its inverse, the operational distortion rate function D(R) R(D) = inf r(Q) D(R) = inf δ(Q) (16) Q: δ(Q)≤D Q: r(Q)≤R o November 14, 2012 9 / 64 Rate Distortion Theory The Information Rate Distortion Function Motivation of Information Rate Distortion Function Operational rate distortion function specifies a fundamental performance bound for lossy source coding Difficulty to evaluate R(D) = inf r(Q) (17) Q: δ(Q)≤D Information rate distortion function: introduced by Shannon in ! [Shannon, 1948, Shannon, 1959] Obtain expression of rate distortion bound that involves the distribution of the source using mutual information Show that information rate distortion function is achievable o November 14, 2012 10 / 64 Rate Distortion Theory The Information Rate Distortion Function for Discrete Sources Example: Discrete Binary Source Consider a discrete binary iid source with alphabet A = 0; 1 f g p(0) = p(1) = 0:5 (18) Assume distortion measure is Hamming distance Coding scheme: 1 out of M symbols is not transmitted but guessed at receiver side Rate for this experimental codec is M 1 1 RE = − = 1 bits/symbol (19) M − M Distortion is given as 1 1 1 1 D = 0 + 1 = (20) M 2 · 2 · 2M Operational rate distortion function for the above code: RE(D) = 1 2D (21) − o November 14, 2012 11 / 64 Rate Distortion Theory The Information Rate Distortion Function for Discrete Sources Can we do better than the example codec? RE(D) is the rate distortion performance for the experimental coding scheme Rate distortion function R(D) for the same source 1 0.9 0.8 0.7 0.6 R (D) 0.5 E R [bits] 0.4 0.3 0.2 Rate Distortion Function 0.1 0 0 0.1 0.2 0.3 0.4 0.5 D o November 14, 2012 12 / 64 Rate Distortion Theory The Information Rate Distortion Function for Discrete Sources Mutual Information for Discrete IID Sources Entropy H(S) is a measure of uncertainty about random variable S Conditional entropy H(S S0) is a measure on uncertainty about random variable S after observingj random variable S0 Mutual information I(S; S0) = H(S) H(S S0) (22) − j is a measure of for the reduction of uncertainty about S due to the observation of S0 average amount of information that S0 carries about S Mutual information for discrete random variables S A and S0 B 2 2 X X p(s s0) I(S; S0) = p(s; s0) log j (23) 2 p(s) s2A s02B o November 14, 2012 13 / 64 Rate Distortion Theory The Information Rate Distortion Function for Discrete Sources Mutual Information for Discrete IID Sources and Rate Mutual information rewritten using Bayes' rule X X p(s s0) I(S; S0) = p(s; s0) log j 2 p(s) s2A s02B X X p(s; s0) = p(s; s0) log 2 p(s)p(s0) s2A s02B X X p(s0 s) = p(s; s0) log j 2 p(s0) s2A s02B = H(S0) H(S0 S) (24) − j Since H(S0 S) 0 j ≥ H(S0) I(S; S0) (25) ≥ o November 14, 2012 14 / 64 Rate Distortion Theory The Information Rate Distortion Function for Discrete Sources Mutual Information for Discrete Sources and Rate T N Consider N-dimensional random vectors S = (S0;S1;:::;SN−1) A and S0 = (S0 ;S0 ;:::;S0 )T BN 2 0 1 N−1 2 0 0 0 IN (S; S ) = HN (S ) HN (S S) − | {z j } ≥0 0 HN (S ) (26) ≤ Recall: entropy rate H (S0) H¯ (S0) = lim N (27) N!1 N Rate vs. mutual information H (S0) I (S; S0) r(Q) lim N lim N (28) ≥ N!1 N ≥ N!1 N o November 14, 2012 15 / 64 Rate Distortion Theory The Information Rate Distortion Function for Discrete Sources Description of a Codec for Discrete Sources Using Conditional PMFs I Statistical properties of a mapping s0 = β(α(s)) can be described by an 0 N-th order conditional pmf gN (s s) 0 j For N > 1, gN (s s) are multivariate conditional pmfs 0 j Pmfs gN (s s) obtained by a deterministic mapping (codes) are a subset of the set of allj conditional pmfs Example 1: Mapping s s0 : s0 = s=∆ ∆ ! b c · g (s′ s) 1 | 1 1 : s0 = bs=∆c · ∆ g (s0js) = 1 0 : otherwise s/∆ ∆ s′ ⌊ ⌋ o November 14, 2012 16 / 64 Rate Distortion Theory The Information Rate Distortion Function for Discrete Sources Description of a Codec Using Conditional Pmfs II 0 0 Example 2: Mapping (sn; sn+1) (s ; s ) ! n n+1 sn+1 1 8 (1; 1) : sn + sn+1 > 1 0 0 < (s ; s ) = (−1; −1) : sn + sn+1 < −1 n n+1 1 1 sn : (0; 0) : otherwise − 1 − 8 0 g1(s′ s) x(s): s = −1 | > 0 0 < y(s): s = 0 g1(s js) = 0 > z(s): s = 1 :> 0 : otherwise with x(s) + y(s) + z(s) = 1 1 1 s′ − o November 14, 2012 17 / 64 Rate Distortion Theory The Information Rate Distortion Function for Discrete Sources Information Rate Distortion Function for Discrete Sources I 0 0 N N Let gN (s s) be the N-th order conditional pmf of s B given s A Distortionj 2 2 X X 0 0 δN (gN ) = p(s; s ) dN (s; s ) · s2AN s02BN X X 0 0 = p(s) gN (s s) dN (s; s ) (29) · j · s2AN s02BN Mutual information 0 X X 0 p(s; s ) IN (gN ) = p(s; s ) log · 2 p(s) p(s0) s2AN s02BN · 0 X X 0 gN (s s) = p(s) gN (s s) log j (30) · j · 2 p(s0) s2AN s02BN Information rate distortion function I (g ) R(I)(D) = lim inf N N (31) N!1 gN : δN (gN )≤D N o November 14, 2012 18 / 64 Rate Distortion Theory The Information Rate Distortion Function for Discrete Sources Information Rate Distortion Function for Discrete Sources II Q 0 The class of conditional pmfs gN (s s) representing a codec Q = (α; β; γ) is j 0 a subset of all conditional pmfs gN (s s) j Q IN (gN ) inf IN (gN ) (32) ≥ gN : δN (gN )≤D For a given maximum average distortion D, the information rate distortion function R(I)(D) is the lower bound for the transmission bit-rate Q : δ(Q) D r(Q) R(I)(D) (33) 8 ≤ ≥ Fundamental source coding theorem ! It can be shown [Cover and Thomas, 2006, p.
Recommended publications
  • Entropy Rate of Stochastic Processes
    Entropy Rate of Stochastic Processes Timo Mulder Jorn Peters [email protected] [email protected] February 8, 2015 The entropy rate of independent and identically distributed events can on average be encoded by H(X) bits per source symbol. However, in reality, series of events (or processes) are often randomly distributed and there can be arbitrary dependence between each event. Such processes with arbitrary dependence between variables are called stochastic processes. This report shows how to calculate the entropy rate for such processes, accompanied with some denitions, proofs and brief examples. 1 Introduction One may be interested in the uncertainty of an event or a series of events. Shannon entropy is a method to compute the uncertainty in an event. This can be used for single events or for several independent and identically distributed events. However, often events or series of events are not independent and identically distributed. In that case the events together form a stochastic process i.e. a process in which multiple outcomes are possible. These processes are omnipresent in all sorts of elds of study. As it turns out, Shannon entropy cannot directly be used to compute the uncertainty in a stochastic process. However, it is easy to extend such that it can be used. Also when a stochastic process satises certain properties, for example if the stochastic process is a Markov process, it is straightforward to compute the entropy of the process. The entropy rate of a stochastic process can be used in various ways. An example of this is given in Section 4.1.
    [Show full text]
  • Entropy Rate Estimation for Markov Chains with Large State Space
    Entropy Rate Estimation for Markov Chains with Large State Space Yanjun Han Department of Electrical Engineering Stanford University Stanford, CA 94305 [email protected] Jiantao Jiao Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720 [email protected] Chuan-Zheng Lee, Tsachy Weissman Yihong Wu Department of Electrical Engineering Department of Statistics and Data Science Stanford University Yale University Stanford, CA 94305 New Haven, CT 06511 {czlee, tsachy}@stanford.edu [email protected] Tiancheng Yu Department of Electronic Engineering Tsinghua University Haidian, Beijing 100084 [email protected] Abstract Entropy estimation is one of the prototypicalproblems in distribution property test- ing. To consistently estimate the Shannon entropy of a distribution on S elements with independent samples, the optimal sample complexity scales sublinearly with arXiv:1802.07889v3 [cs.LG] 24 Sep 2018 S S as Θ( log S ) as shown by Valiant and Valiant [41]. Extendingthe theory and algo- rithms for entropy estimation to dependent data, this paper considers the problem of estimating the entropy rate of a stationary reversible Markov chain with S states from a sample path of n observations. We show that Provided the Markov chain mixes not too slowly, i.e., the relaxation time is • S S2 at most O( 3 ), consistent estimation is achievable when n . ln S ≫ log S Provided the Markov chain has some slight dependency, i.e., the relaxation • 2 time is at least 1+Ω( ln S ), consistent estimation is impossible when n . √S S2 log S . Under both assumptions, the optimal estimation accuracy is shown to be S2 2 Θ( n log S ).
    [Show full text]
  • Entropy Power, Autoregressive Models, and Mutual Information
    entropy Article Entropy Power, Autoregressive Models, and Mutual Information Jerry Gibson Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; [email protected] Received: 7 August 2018; Accepted: 17 September 2018; Published: 30 September 2018 Abstract: Autoregressive processes play a major role in speech processing (linear prediction), seismic signal processing, biological signal processing, and many other applications. We consider the quantity defined by Shannon in 1948, the entropy rate power, and show that the log ratio of entropy powers equals the difference in the differential entropy of the two processes. Furthermore, we use the log ratio of entropy powers to analyze the change in mutual information as the model order is increased for autoregressive processes. We examine when we can substitute the minimum mean squared prediction error for the entropy power in the log ratio of entropy powers, thus greatly simplifying the calculations to obtain the differential entropy and the change in mutual information and therefore increasing the utility of the approach. Applications to speech processing and coding are given and potential applications to seismic signal processing, EEG classification, and ECG classification are described. Keywords: autoregressive models; entropy rate power; mutual information 1. Introduction In time series analysis, the autoregressive (AR) model, also called the linear prediction model, has received considerable attention, with a host of results on fitting AR models, AR model prediction performance, and decision-making using time series analysis based on AR models [1–3]. The linear prediction or AR model also plays a major role in many digital signal processing applications, such as linear prediction modeling of speech signals [4–6], geophysical exploration [7,8], electrocardiogram (ECG) classification [9], and electroencephalogram (EEG) classification [10,11].
    [Show full text]
  • Source Coding: Part I of Fundamentals of Source and Video Coding
    Foundations and Trends R in sample Vol. 1, No 1 (2011) 1–217 c 2011 Thomas Wiegand and Heiko Schwarz DOI: xxxxxx Source Coding: Part I of Fundamentals of Source and Video Coding Thomas Wiegand1 and Heiko Schwarz2 1 Berlin Institute of Technology and Fraunhofer Institute for Telecommunica- tions — Heinrich Hertz Institute, Germany, [email protected] 2 Fraunhofer Institute for Telecommunications — Heinrich Hertz Institute, Germany, [email protected] Abstract Digital media technologies have become an integral part of the way we create, communicate, and consume information. At the core of these technologies are source coding methods that are described in this text. Based on the fundamentals of information and rate distortion theory, the most relevant techniques used in source coding algorithms are de- scribed: entropy coding, quantization as well as predictive and trans- form coding. The emphasis is put onto algorithms that are also used in video coding, which will be described in the other text of this two-part monograph. To our families Contents 1 Introduction 1 1.1 The Communication Problem 3 1.2 Scope and Overview of the Text 4 1.3 The Source Coding Principle 5 2 Random Processes 7 2.1 Probability 8 2.2 Random Variables 9 2.2.1 Continuous Random Variables 10 2.2.2 Discrete Random Variables 11 2.2.3 Expectation 13 2.3 Random Processes 14 2.3.1 Markov Processes 16 2.3.2 Gaussian Processes 18 2.3.3 Gauss-Markov Processes 18 2.4 Summary of Random Processes 19 i ii Contents 3 Lossless Source Coding 20 3.1 Classification
    [Show full text]
  • Relative Entropy Rate Between a Markov Chain and Its Corresponding Hidden Markov Chain
    ⃝c Statistical Research and Training Center دورهی ٨، ﺷﻤﺎرهی ١، ﺑﻬﺎر و ﺗﺎﺑﺴﺘﺎن ١٣٩٠، ﺻﺺ ٩٧–١٠٩ J. Statist. Res. Iran 8 (2011): 97–109 Relative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain GH. Yariy and Z. Nikooraveshz;∗ y Iran University of Science and Technology z Birjand University of Technology Abstract. In this paper we study the relative entropy rate between a homo- geneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the rela- tive entropy between two finite subsequences of above mentioned chains with the help of the definition of relative entropy between two random variables then we define the relative entropy rate between these stochastic processes and study the convergence of it. Keywords. Relative entropy rate; stochastic channel; Markov chain; hid- den Markov chain. MSC 2010: 60J10, 94A17. 1 Introduction Suppose fXngn2N is a homogeneous stationary Markov chain with finite state space S = f0; 1; 2; :::; N − 1g and fYngn2N is a hidden Markov chain (HMC) which is observed through a discrete stochastic channel where the input of channel is the Markov chain. The output state space of channel is characterized by channel’s statistical properties. From now on we study ∗ Corresponding author 98 Relative Entropy Rate between a Markov Chain and Its ::: the channels state spaces which have been equal to the state spaces of input chains. Let P = fpabg be the one-step transition probability matrix of the Markov chain such that pab = P rfXn = bjXn−1 = ag for a; b 2 S and Q = fqabg be the noisy matrix of channel where qab = P rfYn = bjXn = ag for a; b 2 S.
    [Show full text]
  • Entropy Rates & Markov Chains Information Theory Duke University, Fall 2020
    ECE 587 / STA 563: Lecture 4 { Entropy Rates & Markov Chains Information Theory Duke University, Fall 2020 Author: Galen Reeves Last Modified: September 1, 2020 Outline of lecture: 4.1 Entropy Rate........................................1 4.2 Markov Chains.......................................3 4.3 Card Shuffling and MCMC................................4 4.4 Entropy of the English Language [Optional].......................6 4.1 Entropy Rate • A stochastic process fXig is an indexed sequence of random variables. They need not be in- n dependent nor identically distributed. For each n the distribution on X = (X1;X2; ··· ;Xn) is characterized by the joint pmf n pXn (x ) = p(x1; x2; ··· ; xn) • A stochastic process provides a useful probabilistic model. Examples include: ◦ the state of a deck of cards after each shuffle ◦ location of a molecule each millisecond. ◦ temperature each day ◦ sequence of letters in a book ◦ the closing price of the stock market each day. • With dependent sequences, hows does the entropy H(Xn) grow with n? (1) Definition 1: Average entropy per symbol H(X ;X ; ··· ;X ) H(X ) = lim 1 2 n n!1 n (2) Definition 2: Rate of information innovation 0 H (X ) = lim H(XnjX1;X2; ··· ;Xn−1) n!1 • If fXig are iid ∼ p(x), then both limits exists and are equal to H(X). nH(X) H(X ) = lim = H(X) n!1 n 0 H (X ) = lim H(XnjX1;X2; ··· ;Xn−1) = H(X) n!1 But what if the symbols are not iid? 2 ECE 587 / STA 563: Lecture 4 • A stochastic process is stationary if the joint distribution of subsets is invariant to shifts in the time index, i.e.
    [Show full text]
  • Information Theory 1 Entropy 2 Mutual Information
    CS769 Spring 2010 Advanced Natural Language Processing Information Theory Lecturer: Xiaojin Zhu [email protected] In this lecture we will learn about entropy, mutual information, KL-divergence, etc., which are useful concepts for information processing systems. 1 Entropy Entropy of a discrete distribution p(x) over the event space X is X H(p) = − p(x) log p(x). (1) x∈X When the log has base 2, entropy has unit bits. Properties: H(p) ≥ 0, with equality only if p is deterministic (use the fact 0 log 0 = 0). Entropy is the average number of 0/1 questions needed to describe an outcome from p(x) (the Twenty Questions game). Entropy is a concave function of p. 1 1 1 1 7 For example, let X = {x1, x2, x3, x4} and p(x1) = 2 , p(x2) = 4 , p(x3) = 8 , p(x4) = 8 . H(p) = 4 bits. This definition naturally extends to joint distributions. Assuming (x, y) ∼ p(x, y), X X H(p) = − p(x, y) log p(x, y). (2) x∈X y∈Y We sometimes write H(X) instead of H(p) with the understanding that p is the underlying distribution. The conditional entropy H(Y |X) is the amount of information needed to determine Y , if the other party knows X. X X X H(Y |X) = p(x)H(Y |X = x) = − p(x, y) log p(y|x). (3) x∈X x∈X y∈Y From above, we can derive the chain rule for entropy: H(X1:n) = H(X1) + H(X2|X1) + ..
    [Show full text]
  • Arxiv:1711.03962V1 [Stat.ME] 10 Nov 2017 the Entropy Rate of an Individual’S Behavior
    Estimating the Entropy Rate of Finite Markov Chains with Application to Behavior Studies Brian Vegetabile1;∗ and Jenny Molet2 and Tallie Z. Baram2;3;4 and Hal Stern1 1Department of Statistics, University of California, Irvine, CA, U.S.A. 2Department of Anatomy and Neurobiology, University of California, Irvine, CA, U.S.A. 3Department of Pediatrics, University of California, Irvine, CA, U.S.A. 4Department of Neurology, University of California, Irvine, CA, U.S.A. *email: [email protected] Summary: Predictability of behavior has emerged an an important characteristic in many fields including biology, medicine, and marketing. Behavior can be recorded as a sequence of actions performed by an individual over a given time period. This sequence of actions can often be modeled as a stationary time-homogeneous Markov chain and the predictability of the individual's behavior can be quantified by the entropy rate of the process. This paper provides a comprehensive investigation of three estimators of the entropy rate of finite Markov processes and a bootstrap procedure for providing standard errors. The first two methods directly estimate the entropy rate through estimates of the transition matrix and stationary distribution of the process; the methods differ in the technique used to estimate the stationary distribution. The third method is related to the sliding-window Lempel-Ziv (SWLZ) compression algorithm. The first two methods achieve consistent estimates of the true entropy rate for reasonably short observed sequences, but are limited by requiring a priori specification of the order of the process. The method based on the SWLZ algorithm does not require specifying the order of the process and is optimal in the limit of an infinite sequence, but is biased for short sequences.
    [Show full text]
  • Entropy Rate
    Lecture 6: Entropy Rate • Entropy rate H(X) • Random walk on graph Dr. Yao Xie, ECE587, Information Theory, Duke University Coin tossing versus poker • Toss a fair coin and see and sequence Head, Tail, Tail, Head ··· −nH(X) (x1; x2;:::; xn) ≈ 2 • Play card games with friend and see a sequence A | K r Q q J ♠ 10 | ··· (x1; x2;:::; xn) ≈? Dr. Yao Xie, ECE587, Information Theory, Duke University 1 How to model dependence: Markov chain • A stochastic process X1; X2; ··· – State fX1;:::; Xng, each state Xi 2 X – Next step only depends on the previous state p(xn+1jxn;:::; x1) = p(xn+1jxn): – Transition probability pi; j : the transition probability of i ! j P = j – p(xn+1) xn p(xn)p(xn+1 xn) – p(x1; x2; ··· ; xn) = p(x1)p(x2jx1) ··· p(xnjxn−1) Dr. Yao Xie, ECE587, Information Theory, Duke University 2 Hidden Markov model (HMM) • Used extensively in speech recognition, handwriting recognition, machine learning. • Markov process X1; X2;:::; Xn, unobservable • Observe a random process Y1; Y2;:::; Yn, such that Yi ∼ p(yijxi) • We can build a probability model Yn−1 Yn n n p(x ; y ) = p(x1) p(xi+1jxi) p(yijxi) i=1 i=1 Dr. Yao Xie, ECE587, Information Theory, Duke University 3 Time invariance Markov chain • A Markov chain is time invariant if the conditional probability p(xnjxn−1) does not depend on n p(Xn+1 = bjXn = a) = p(X2 = bjX1 = a); for all a; b 2 X • For this kind of Markov chain, define transition matrix 2 3 6 ··· 7 6P11 P1n7 = 6 ··· 7 P 46 57 Pn1 ··· Pnn Dr.
    [Show full text]
  • Redundancy Rates of Slepian-Wolf Coding∗
    Redundancy Rates of Slepian-Wolf Coding∗ Dror Baron, Mohammad Ali Khojastepour, and Richard G. Baraniuk Dept. of Electrical and Computer Engineering, Rice University, Houston, TX 77005 Abstract The results of Shannon theory are asymptotic and do not reflect the finite codeword lengths used in practice. Recent progress in design of distributed source codes, along with the need for distributed compression in sensor networks, has made it crucial to understand how quickly distributed communication systems can approach their ultimate limits. Slepian and Wolf considered the distributed encoding of length-n sequences x and y. If y is available at the decoder, then as n increases x can be encoded losslessly at rates arbitrarily close to the conditional entropy H(X Y ). However, for any finite n there is a positive probability that x and y are | not jointly typical, and so x cannot be decoded correctly. We examine a Bernoulli setup, where x is generated by passing y through a binary symmetric correlation channel. We prove that the finite n requires us to increase the rate above the conditional entropy by K()/√n, where is the probability of error. We also study the cost of universality in Slepian-Wolf coding, and propose a universal variable 1 rate scheme wherein the encoder for x receives PY = n i yi. For PY < 0.5, our redundancy rate is K0()/√n above the empirical conditional entropy. When 1/6 1/6 P PY 0.5 = O(n− ), K0()=Ω(n ), and another scheme with redundancy rate | −1/3 | O(n− ) should be used. Our results indicate that the penalties for finite n and unknown statistics can be large, especially for P 0.5.
    [Show full text]
  • Entropy Rate
    School of Information Science Entropy Rate 2009 2-2 Course - Information Theory - Tetsuo Asano and Tad matsumoto Email: {t-asano, matumoto}@jaist.ac.jp Japan Advanced Institute of Science and Technology Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan http://www.jaist.ac.jp School of Information Science Preliminary Experiment Information Destination Source Encoder Fax Tx+ Fax Rx Decoder Noise In the previous chapter, we learned that information can be evaluated by the uncertainty of the source output random variable. Æ Entropy Question: How does the entropy of the sequence grow with its length? Goes the growth rate have a limit, if the source outputs infinite length of information? School of Information Science Outline We have made a journey on the topics: 1. Revisit to Markov Chain 2. Entropy Rate - Stationary Process - Asymptotic Properties - Entropy Rate Chain Rule - Conditioning School of Information Science Revisit of Markov Chain (1) Definition 5.1.1: Markov Chain or Markov Process A discrete stochastic process X1, X2, …, Xk, … forms Markov Chain (or Markov Process), if for n=1, 2, …., Pr(X n+1 = xn+1 X n = xn , X n−1 = xn−1,L, X1 = x1 )= Pr(X n+1 = xn+1 X n = xn ) withx1, x2 ,L, xn , xn+1 ∈ X . Theorem 5.1.1: Joint Distribution: p()x1,L, xn−1, xn = p(x1 )p(x2 x1 )p(x3 x2 )L p(xn xn−1 ) Proof: Obvious from the definition. Definition 5.1.2: Time Invariance: The Markov process is time-invariant, if the conditional probability p(xn|xn-1) does not depend on n, i.e., .
    [Show full text]
  • Arxiv:1906.02570V2 [Cs.IT] 22 Apr 2020 on Orsodn Oagvnmliait Ore E [Kac12])
    ON TYPICAL ENCODINGS OF MULTIVARIATE ERGODIC SOURCES In memory of Fero Mat´uˇs Abstract. We show that the typical coordinate-wise encoding of multivari- ate ergodic source into prescribed alphabets has the entropy profile close to the convolution of the entropy profile of the source and the modular poly- matroid that is determined by the cardinalities of the output alphabets. We show that the proportion of the exceptional encodings that are not close to the convolution goes to zero doubly exponentially. The result holds for a class of multivariate sources that satisfy asymptotic equipartition property described via the mean fluctuation of the information functions. This class covers asymp- totically mean stationary processes with ergodic mean, ergodic processes, ir- reducible Markov chains with an arbitrary initial distribution. We also proved that typical encodings yield the asymptotic equipartition property for the out- put variables. These asymptotic results are based on an explicit lower bound of the proportion of encodings that transform a multivariate random variable into a variable with the entropy profile close to the suitable convolution. M. Kupsa 1 1. Introduction In Information theory and namely in Network coding theory, the encoding of multiple possibly correlated sources have been extensively studied in the last two decades (for the main framework, overview and references see [Yeu08] and [BMR+13]). The sources are usually assumed to be discrete and memory-less, so they are repre- sented by sequences of i.i.d. discrete random variables. The important character- istics of multivariate sources, which we focus on, is its entropy profile (an entropic point corresponding to a given multivariate source, see [Kac12]).
    [Show full text]