Researching Reproduction in Hedgehog Tenrecs (Afrosoricida, Tenrecidae) Carter, Anthony M

Total Page:16

File Type:pdf, Size:1020Kb

Researching Reproduction in Hedgehog Tenrecs (Afrosoricida, Tenrecidae) Carter, Anthony M University of Southern Denmark Hans Bluntschli in Berne Researching reproduction in hedgehog tenrecs (Afrosoricida, Tenrecidae) Carter, Anthony M Published in: Journal of Morphology DOI: 10.1002/jmor.20988 Publication date: 2019 Document version: Accepted manuscript Citation for pulished version (APA): Carter, A. M. (2019). Hans Bluntschli in Berne: Researching reproduction in hedgehog tenrecs (Afrosoricida, Tenrecidae). Journal of Morphology, 280(6), 841-848. https://doi.org/10.1002/jmor.20988 Go to publication entry in University of Southern Denmark's Research Portal Terms of use This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply: • You may download this work for personal use only. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying this open access version If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to [email protected] Download date: 04. Oct. 2021 Carter Anthony (Orcid ID: 0000-0002-8359-2085) Hans Bluntschli in Berne: researching reproduction in hedgehog tenrecs (Afrosoricida, Tenrecidae) Anthony M. Carter Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J. B. Winsloews Vej 21, DK-5000 Odense, Denmark Correspondence Anthony M. Carter, Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J. B. Winsloews Vej 21, DK-5000 Odense, Denmark. Email: [email protected] Research Highlights Tenrec reproduction was the main aspect of Bluntschli’s research after was obliged to leave Frankfurt for Berne His group described unique features that included non-antral follicles, intraovarian fertilization and absence of a morula stage Abstract The Swiss anatomist Hans Bluntschli is best known as a primatologist. Yet his focus during his later years in Berne was on reproduction in Malagasy tenrecs. This research was done with two graduate students, Robert Goetz and Fritz Strauss; all three had been obliged to leave Germany after the National Socialists came to power. Unique features of reproduction in tenrecs included non-antral follicles, intrafollicular fertilization, eversion of the corpus luteum and polyovulation. The fertilized egg formed a blastula that developed into a blastocyst; there was no morula stage. A false placental cushion developed in the endometrium opposite the implantation site. Placentation was complex and included development of a prominent haemophagous organ. These findings are discussed in relation to current concepts of mammalian phylogeny that place tenrecs and golden moles in the same order and as close relatives to elephant shrews and the aardvark. KEYWORDS blastula, history of science, non-antral follicles, placentation, polyovulation This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jmor.20988 This article is protected by copyright. All rights reserved. 1 INTRODUCTION In 1931, Hans Bluntschli, renowned primatologist and Director of the prestigious Senckenberg Research Institute, embarked on an expedition to Madagascar (Fig. 1). Two years later, and shortly after his return, he was relieved of his duties in Frankfurt by the National Socialist regime. He then was called to the chair of anatomy at Berne. Although he had collected primate material on Madagascar, his first priority was to describe the reproductive biology of tenrecs. To this end, he supervised research by Robert Goetz, who had been denied a licence to practise medicine in Germany, and Fritz Strauss, who had fled to Switzerland because of his Jewish parentage. Together they described some remarkable features of reproduction in tenrecs such as the absence of antral follicles, lack of a morula stage, large litter size and unique placentation. This work occupied Bluntschli during his most productive years at Berne, yet has been overlooked by previous biographers (Cener, 1990; Greif & Schmutz, 1995). Tenrec biology attracted scant attention until recently, when molecular phylogenetics shook the mammalian tree (Madsen et al., 2001; Murphy, Eizirik, Johnson, et al., 2001). It focussed interest on a superorder of mammals that included tenrecs, placing them near to the root of the eutherian tree (Carter, 2001). All three species studied by Bluntschli, Goetz and Strauss were from the same subfamily of tenrecs (Tenrecinae) for which they used the synonym Centetinae (McKenna & Bell, 1997). Tenrecs were seen by them to be very primitive insectivores as were golden moles (Bluntschli, 1938). Based on molecular phylogenetics, tenrecs and golden moles are now grouped in the order Afrosoricida (Madsen et al., 2001). In contrast to what was known in Bluntschli’s time, they are thought to belong to a different lineage than other insectivores, such as hedgehogs, shrews and moles. Today, the three subfamilies of Malagasy tenrecs and the African otter shrews comprise the suborder Tenrecomorpha (Everson, Soarimalala, Goodman, & Olson, 2016). This review has a dual purpose. The first is to recapitulate the careers of three scientists and their intersection in the shadow of the Third Reich (Hildebrandt & Redies, 2012). The other is to review the unique aspects of tenrec biology they described in the late 1930’s and 1940’s and, where relevant, update them with recent data. This story is a timely reminder that research does not operate in a vacuum but must be viewed in the context of contemporary politics and societal norms (Hildebrandt & Redies, 2012). 2 THE SCIENTISTS 2 This article is protected by copyright. All rights reserved. The principal sources for Bluntschli are an obituary (Strauss, 1964), more recent biographies dealing with him as anatomist (Cener, 1990) and morphologist (Greif & Schmutz, 1995) and detailed accounts of his dismissal from Frankfurt under the National Socialist regime (Benzenhöfer, 2014; Benzenhöfer & Hack- Molitor, 2012). The most comprehensive account of Goetz deals principally with his career after leaving Berne, but includes his own thoughts on the time spent there (Konstantinov, 2000). There is a useful obituary of Strauss (Weber, 1995). Hermann Georg Hans Bluntschli was born at Frankfurt on Main on 19 February 1877. His father was a renowned Swiss architect. Bluntschli studied medicine at the University of Zurich but developed symptoms of a hereditary hearing impediment (otosclerosis) that he knew would hinder a clinical career. In consequence, after his final exams, he moved to the Anatomical Institute at Heidelberg. There, under the guidance of Max Fürbringer (1846-1920), a student of Carl Gegenbauer (1826-1903), he wrote a dissertation on the liver of the Queensland lungfish Neoceratodus forsteri (Bluntschli, 1904). He then returned to Zurich with a view to studying the comparative anatomy of primates. His thesis (Habilitation) was about the branches of the femoral artery in catarrhine primates (Bluntschli, 1906). In 1912 he made an expedition to Brazil to collect material from Neotropical primates, following in the footsteps of the eminent Swiss-Brazilian zoologist Emil August Goeldi (1859-1917). On his return, he was recruited by the Senckenberg Research Institute in Frankfurt, becoming a full professor in 1914. Here he did his most important primatological work (Greif & Schmutz, 1995). From 1931 to 1932, he embarked on an expedition to Madagascar, where he collected lemurs and tenrecs with the intent of studying their embryology. Not long after his return, he was relieved of his duties by the National Socialist regime (Benzenhöfer & Hack- Molitor, 2012). He was, however, called to the chair of anatomy in Berne, where he remained until his retirement in 1947. Bluntschli favoured a holistic approach to anatomy (Benzenhöfer & Hack-Molitor, 2012) and in 1938 founded a new journal Bio-Morphosis, with the aim of fostering the exchange of ideas between morphologists and physiologists (Strauss, 1964). A considerable part of the tenrec work was published there. Hans Bluntschli died at Berne on 13 July 1962. Robert Hans Goetz was born in Frankfurt 17 April 1910. He read medicine at the University of Frankfurt and while still a student invented a finger plethysmograph (Goetz, 1933). In 1934, after completing his finals, he was declared “politically unreliable” and denied a medical license. Meanwhile, Goetz had married Verena Bluntschli and his father-in-law gave him the opportunity to work on the tenrec material in Berne 3 This article is protected by copyright. All rights reserved. (Konstantinov, 2000). In 1937 he went to South Africa, where he had to retake his medical exams before practising medicine. During the Cape Town years, he conducted innovative field studies on the cardiovascular physiology of the giraffe (Mitchell, 2008). In 1957 Goetz, by then a cardiac surgeon, settled in the United States. While at the Albert Einstein College of Medicine, New York, he performed the first successful coronary bypass operation (Konstantinov, 2000). Throughout his career, Goetz was supported by his wife, who was a physician trained in Geneva
Recommended publications
  • Structure of the Ovaries of the Nimba Otter Shrew, Micropotamogale Lamottei , and the Madagascar Hedgehog Tenrec, Echinops Telfairi
    Original Paper Cells Tissues Organs 2005;179:179–191 Accepted after revision: March 7, 2005 DOI: 10.1159/000085953 Structure of the Ovaries of the Nimba Otter Shrew, Micropotamogale lamottei , and the Madagascar Hedgehog Tenrec, Echinops telfairi a b c d A.C. Enders A.M. Carter H. Künzle P. Vogel a Department of Cell Biology and Human Anatomy, University of California, Davis, Calif. , USA; b Department of Physiology and Pharmacology, University of Southern Denmark, Odense , Denmark; c d Department of Anatomy, University of Munich, München , Germany, and Department of Ecology and Evolution, University of Lausanne, Lausanne , Switzerland Key Words es between the more peripheral granulosa cells. It is sug- Corpora lutea Non-antral follicles Ovarian gested that this fl uid could aid in separation of the cu- lobulation Afrotheria mulus from the remaining granulosa at ovulation. The protruding follicles in lobules and absence of a tunica albuginea might also facilitate ovulation of non-antral Abstract follicles. Ovaries with a thin-absent tunica albuginea and The otter shrews are members of the subfamily Potamo- follicles with small-absent antra are widespread within galinae within the family Tenrecidae. No description of both the Eulipotyphla and in the Afrosoricida, suggest- the ovaries of any member of this subfamily has been ing that such features may represent a primitive condi- published previously. The lesser hedgehog tenrec, Echi- tion in ovarian development. Lobulated and deeply nops telfairi, is a member of the subfamily Tenrecinae of crypted ovaries are found in both groups but are not as the same family and, although its ovaries have not been common in the Eulipotyphla making inclusion of this fea- described, other members of this subfamily have been ture as primitive more speculative.
    [Show full text]
  • Amblysomus Robustus – Robust Golden Mole
    Amblysomus robustus – Robust Golden Mole continuing decline and possible severe fragmentation of habitat. Currently known from only five locations but probably more widespread. Further field surveys and molecular data are needed to accurately delimit its range. The Highveld grasslands favoured by this species are being degraded by mining for shallow coal deposits to fuel numerous power stations that occur in the preferred high-altitude grassland habitats of this species, which is an inferred major threat. Rehabilitation attempts at these sites appear to have been largely ineffective. These power stations form the backbone of South Africa's electricity network, and disturbance is likely to increase as human populations grow and the demand for power increases. While no mining sites and power generation plants occur at the five localities where this species has been collected, an environmental authorisation application to mine coal at a site near Belfast, close to where this species occurs, is Gary Bronner currently being assessed. Given the ubiquity of mines and power stations in the Mpumalanga grasslands, impacts on this species are likely if it is more widespread than current Regional Red List status (2016) Vulnerable B1ab(iii)* records indicate, which seems probable. Farming, tourism National Red List status (2004) Endangered resort developments and agro-forestry (exotic pine and B1,2ab(i-iv) eucalyptus plantations) have also transformed habitat, but less dramatically; these do not appear to pose a major Reasons for change Non-genuine: threat. More data is required on the distribution limits, New information ecology, densities and reproduction of this species. Global Red List status (2015) Vulnerable B1ab(iii) TOPS listing (NEMBA) None Distribution CITES listing None Endemic to South Africa, this species is known from only the Steenkampsberg Mountain Plateau and in the Endemic Yes Dullstroom and Belfast areas of Mpumalanga (Figure 1), extending eastwards to Lydenburg and possibly *Watch-list Data southwards towards the Ermelo district where A.
    [Show full text]
  • Zeitschrift Für Säugetierkunde)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mammalian Biology (früher Zeitschrift für Säugetierkunde) Jahr/Year: 1981 Band/Volume: 47 Autor(en)/Author(s): Stephan Heinz, Kuhn Hans-Jürg Artikel/Article: The brain of Micropotamogale lamottei Heim de Balsac, 1954 129-142 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ The brain of Micropotamogale lamottei Heim de Balsac, 1954 By H. Stephan and H.-J. Kuhn Max-Planck-Institut für Hirnforschung, Neurohiologische Abteilung, Frankfurt a. M. and Anatomisches Institut der Universität, Göttingen Receipt of Ms. 8. 12. 1981 Abstract Studied the brain of Micropotamogale lamottei. It differs markedly from the brains of "average Insectivora" by less developed olfactory structures and a larger meduUa oblongata. The large size of the latter is caused by a marked enlargement of the nucleus of the spinal trigeminal tract. Since similar characteristics are present in all water-adapted Insectivora, such as Limnogale, Potamogale, Neomys, Desmana, and Galemys, they are thought to be related to predatory habits in limnetic ecosystems. The trigeminal System, innervating the strongly developed vibrissae of the muzzle, is thought to replace the olfactory system in water-adapted Insectivora and to become the main sensory System involved in searching for food. Within the otter-shrews, the enlargement of the medulla oblongata and the concomitant reduction of the olfactory structures are in M. lamottei less marked than in Potamogale velox. Similarities in the brain characteristics of M. lamottei are with the shrew-like tenrecs of Madagascar (Oryzorictinae). Introduction The african water or otter-shrews comprise two genera {Micropotamogale and Potamogale) and three species {M.
    [Show full text]
  • Ecology and Population Dynamics of Small Mammals in the Ankazomivady Forest, Madagascar
    Ecology and population dynamics of small mammals in the Ankazomivady Forest, Madagascar Voahangy Soarimalala Association Vahatra CRVOI Introduction • Madagascar: rich in endemic small mammal, 92% occuring species, but little known about their zoonoses, • The exception is plague transmitted by introduced species, Rattus rattus and R. norvegicus, • Plague results in human epidemics and could contributed to the decline of endemic rodents. Endemic small mammals Tenrecidae 32 species Microgale dobsoni Hemicentetes nigriceps Nesomyinae Rodentia 27 species Eliurus minor Nesomys rufus Introduced small mammals Rattus rattus Suncus murinus Rodentia Soricomorpha High abundance of Transmission cycles of Rattus rattus in human various potential diseases disturbed forest areas to endemic species and at a range of human populations living elevations. near the forest area. Objectives Environmental contamination by other pathogens probably responsible for human and endemic mammal infections. CRVOI and Vahatra Association conducting inventory of small mammals : 1. To increase available information, 2. Provide biological samples for pathogen detection and identifying infectious agents, 3. Evaluation of the possible pathogen transmission routes between endemic and introduced small mammals. Study site • Ankazomivady, Ambositra • 1670 m • Central Highlands humid montane forest • Degraded, fragmented and isolated from other forest blocks Methods • Trapping sessions: December 2010 November 2011 March 2012 • Traps: 80 Shermans and 20 National traps x Sherman
    [Show full text]
  • AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group
    AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group Number 10 Edited by PJ Stephenson September 2014 Afrotherian Conservation is published annually by the Speaking of our website, it was over ten years old IUCN Species Survival Commission Afrotheria Specialist and suffering from outdated material and old technology, Group to promote the exchange of news and inform- making it very difficult to maintain. Charles Fox, who ation on the conservation of, and applied research into, does our web maintenance at a hugely discounted cost golden moles, sengis, hyraxes, tenrecs and the aardvark. (many thanks Charles), has reworked the site, especially the design of the home page and conservation page Published by IUCN, Gland, Switzerland. (thanks to Rob Asher for his past efforts with the latter © 2014 International Union for Conservation of Nature material, which is still the basis for the new conservation and Natural Resources page). Because some of the hyrax material was dated, Lee ISSN: 1664-6754 Koren and her colleagues completely updated the hyrax material, and we have now linked our websites. A similar Find out more about the Group on our website at update is being discussed by Tom Lehmann and his http://afrotheria.net/ASG.html and follow us on colleagues for the aardvark link. The sengi web material is Twitter @Tweeting_Tenrec largely unchanged, with the exception of updating various pages to accommodate the description of a new species from Namibia (go to the current topics tab in the Message from the Chair sengi section). Galen Rathbun Although a lot of effort has focused on our Chair, IUCN/SSC Afrotheria Specialist Group group's education goals (logo, website, newsletter), it has not over-shadowed one of the other major functions that There has been a long time gap since our last newsletter our specialist group performs: the periodic update of the was produced in October 2012.
    [Show full text]
  • Afrotherian Conservation – Number 16
    AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group Number 16 Edited by PJ Stephenson September 2020 Afrotherian Conservation is published annually by the measure the effectiveness of SSC’s actions on biodiversity IUCN Species Survival Commission Afrotheria Specialist conservation, identification of major new initiatives Group to promote the exchange of news and information needed to address critical conservation issues, on the conservation of, and applied research into, consultations on developing policies, guidelines and aardvarks, golden moles, hyraxes, otter shrews, sengis and standards, and increasing visibility and public awareness of tenrecs. the work of SSC, its network and key partners. Remarkably, 2020 marks the end of the current IUCN Published by IUCN, Gland, Switzerland. quadrennium, which means we will be dissolving the © 2020 International Union for Conservation of Nature membership once again in early 2021, then reassembling it and Natural Resources based on feedback from our members. I will be in touch ISSN: 1664-6754 with all members at the relevant time to find out who wishes to remain a member and whether there are any Find out more about the Group people you feel should be added to our group. No one is on our website at http://afrotheria.net/ASG.html automatically re-admitted, however, so you will all need to and on Twitter @Tweeting_Tenrec actively inform me of your wishes. We will very likely need to reassess the conservation status of all our species during the next quadrennium, so get ready for another round of Red Listing starting Message from the Chair sometime in the not too distant future.
    [Show full text]
  • The Adapted Ears of Big Cats and Golden Moles: Exotic Outcomes of the Evolutionary Radiation of Mammals
    FEATURED ARTICLE The Adapted Ears of Big Cats and Golden Moles: Exotic Outcomes of the Evolutionary Radiation of Mammals Edward J. Walsh and JoAnn McGee Through the process of natural selection, diverse organs and organ systems abound throughout the animal kingdom. In light of such abundant and assorted diversity, evolutionary adaptations have spawned a host of peculiar physiologies. The anatomical oddities that underlie these physiologies and behaviors are the telltale indicators of trait specialization. Following from this, the purpose of this article is to consider a number of auditory “inventions” brought about through natural selection in two phylogenetically distinct groups of mammals, the largely fossorial golden moles (Order Afrosoricida, Family Chrysochloridae) and the carnivorous felids of the genus Panthera along with its taxonomic neigh- bor, the clouded leopard (Neofelis nebulosa). In the Beginning The first vertebrate land invasion occurred during the Early Carboniferous period some 370 million years ago. The primitive but essential scaffolding of what would become the middle and inner ears of mammals was present at this time, although the evolution of the osseous (bony) middle ear system and the optimization of cochlear fea- tures and function would play out over the following 100 million years. Through natural selection, the evolution of the middle ear system, composed of three small articu- lated bones, the malleus, incus, and stapes, and a highly structured and coiled inner ear, came to represent all marsupial and placental (therian) mammals on the planet Figure 1. Schematics of the outer, middle, and inner ears (A) and thus far studied. The consequences of this evolution were the organ of Corti in cross section (B) of a placental mammal.
    [Show full text]
  • Chromosomal Evolution in Tenrecs (Microgale and Oryzorictes, Tenrecidae) from the Central Highlands of Madagascar
    Chromosome Research (2007) 15:1075–1091 # Springer 2007 DOI: 10.1007/s10577-007-1182-6 Chromosomal evolution in tenrecs (Microgale and Oryzorictes, Tenrecidae) from the Central Highlands of Madagascar C. Gilbert1, S. M. Goodman2,3, V. Soarimalala3,4, L. E. Olson5,P.C.M.O_Brien6, F. F. B. Elder7, F. Yang8, M. A. Ferguson-Smith6 & T. J. Robinson1* 1Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa; Tel: +27-21-8083955; Fax: +27-21-8082405; E-mail: [email protected]; 2Department of Zoology, Field Museum of Natural History, Lake Shore Drive, Chicago, IL, USA; 3Vahatra, BP 738, Antananarivo (101), Madagascar; 4De´partement de Biologie Animale, Universite´ d_Antananarivo, BP 906, Antananarivo (101), Madagascar; 5University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA; 6Centre for Veterinary Science, University of Cambridge, Cambridge, UK; 7Department of Pathology, Cytogenetics Laboratory, UT Southwestern Medical Center, Dallas, TX, USA; 8The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK *Correspondence Received 13 August 2007. Received in revised form and accepted for publication by Pat Heslop-Harrison 2 October 2007 Key words: Afrotheria, cytogenetics, evolution, speciation, Tenrecidae Abstract Tenrecs (Tenrecidae) are a widely diversified assemblage of small eutherian mammals that occur in Madagascar and Western and Central Africa. With the exception of a few early karyotypic descriptions based on conventional staining, nothing is known about the chromosomal evolution of this family. We present a detailed analysis of G-banded and molecularly defined chromosomes based on fluorescence in situ hybridization (FISH) that allows a comprehensive comparison between the karyotypes of 11 species of two closely related Malagasy genera, Microgale (10 species) and Oryzorictes (one species), of the subfamily Oryzorictinae.
    [Show full text]
  • Late Eocene Potamogalidae and Tenrecidae (Mammalia) from the Sperrgebiet, Namibia
    Late Eocene Potamogalidae and Tenrecidae (Mammalia) from the Sperrgebiet, Namibia Martin Pickford Sorbonne Universités (CR2P, UMR 7207 du CNRS, Département Histoire de la Terre, Muséum National d’Histoire Naturelle et Université Pierre et Marie Curie) case postale 38, 57 rue Cuvier, 75005 Paris. e-mail: < [email protected] > Abstract : The Late Eocene (Bartonian) Eocliff Limestone has yielded a rich, diverse and well- preserved micromammalian fauna which includes three tenrecoids, a chrysochlorid, several macroscelidids and at least eight taxa of rodents. The available cranio-dental and post-cranial elements reveal that the three tenrecoid species are closely related to potamogalids (one taxon) and to tenrecids (two taxa). The dichotomy between these two families probably occurred a long time before deposition of the Eocliff carbonate, possibly during the Palaeocene or even as early as the Late Cretaceous. The dentitions of the Eocliff potamogalid and tenrecids exhibit primitive versions of protozalambdodonty, in which the upper molars have clear metacones. Three new genera and species are described. Key Words : Potamogalidae, Tenrecidae, Zalambdodonty, Late Eocene, Namibia, Evolution To cite this paper: Pickford, M., 2015. Late Eocene Potamogalidae and Tenrecidae (Mammalia) from the Sperrgebiet, Namibia. Co mmunications of the Geological Survey of Namibia , 16, 114-152. Submitted in 2015. Introduction the suborder Tenrecoidea is not well represented in North Africa. The Late Eocene The discovery of Bartonian vertebrates Namibian fossils thus help to fill extensive in the Sperrgebiet, Namibia, is of major chronological and geographic gaps in the significance for throwing light on the evolution history and distribution of zalambdodont of African Palaeogene mammals, especially mammals in Africa, although the geographic that of rodents, tenrecoids and chrysochlorids position of the deposits from which they were (Pickford et al.
    [Show full text]
  • ANSWER KEY for the MAMMAL SEARCH and FIND
    ANSWER KEY: MAMMAL SEARCH AND FIND A) An animal you already know about B) An animal you have never heard of C) An animal whose name starts with the same letter as your name. (You may use the full species name, the general name, or the scientific name for example: Sloth Bear [Ursus ursinus] is okay for the letters S, B and U.) There are multiple answers for many letters, but here is one for each. A anteater B bongo C coati D dibatag E echidna F fanaloka G giraffe H hedgehog I Indian pangolin J jumping mouse K kultarr L llama M mongoose N numbat O okapi P panda Q quoll katytanis.com #AMisclassificationOfMammals © Katy Tanis 2018 ANSWER KEY: MAMMAL SEARCH AND FIND R raccoon S sloth T tamandua U Ursus ursinus (sloth bear) V vicuna W wildebeest X Xenarthran* Y yellow footed rock wallaby Z zorilla *this is a bit of a cheat Xenarthra is the superorder that include anteaters, tree sloths and armadillo. There were 6 in the show. D) 7 spotted animals African civet fanaloka quoll king cheetah common genet giraffe spotted cuscus E) 2 flying animals Chapin's free-tailed bat Bismarck masked flying fox F) 2 swimming animals Southern Right Whale Commerson's Dolphin katytanis.com #AMisclassificationOfMammals © Katy Tanis 2018 ANSWER KEY: MAMMAL SEARCH AND FIND katytanis.com #AMisclassificationOfMammals © Katy Tanis 2018 ANSWER KEY: MAMMAL SEARCH AND FIND G) 2 mammals that lay eggs short beaked echidna western long beaked echidna H) 2 animals that look similar to skunks and are also stinky long fingered trick Zorilla I) 1 animal that smells like buttered
    [Show full text]
  • Convergent Spectral Shifts to Blue-Green Vision in Mammals
    Convergent spectral shifts to blue-green vision in BRIEF REPORT mammals extends the known sensitivity of vertebrate M/LWS pigments Hai Chia,b, Yimeng Cuia, Stephen J. Rossiterc, and Yang Liub,d,1 aCollege of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866 Shenyang, China; bCollege of Life Sciences, Shaanxi Normal University, 710119 Xi’an, China; cSchool of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS London, United Kingdom; and dKey Laboratory of Zoonosis of Liaoning Province, Shenyang Agricultural University, 110866 Shenyang, China Edited by Jeremy Nathans, Johns Hopkins University School of Medicine, Baltimore, MD, and approved March 10, 2020 (received for review February 11, 2020) Daylight vision in most mammals is mediated predominantly by a respective spectral peaks (522 and 554 nm) were similar to values middle/long wavelength-sensitive (M/LWS) pigment. Although predicted by sequences (7). In contrast, the elephant-shrew’s spectral sensitivity and associated shifts in M/LWS are mainly de- pigment had a λmax of 490 nm, showing a wide discrepancy (32 termined by five critical sites, predicted phenotypic variation is nm) with the predicted value (7) (Fig. 1). The highly divergent rarely validated, and its ecological significance is unclear. We ex- elephant-shrew and gerbil appear to have both undergone dra- perimentally determine spectral tuning of M/LWS pigments and matic functionally convergent shifts (−60 and −20 nm) in M/L show that two highly divergent taxa, the gerbil and the elephant- opsin sensitivity toward blue-green light, extending the lowest shrew, have undergone independent dramatic blue-green shifts to known limits for vertebrates (4).
    [Show full text]
  • Subterranean Mammals Show Convergent Regression in Ocular Genes and Enhancers, Along with Adaptation to Tunneling
    RESEARCH ARTICLE Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling Raghavendran Partha1, Bharesh K Chauhan2,3, Zelia Ferreira1, Joseph D Robinson4, Kira Lathrop2,3, Ken K Nischal2,3, Maria Chikina1*, Nathan L Clark1* 1Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States; 2UPMC Eye Center, Children’s Hospital of Pittsburgh, Pittsburgh, United States; 3Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States; 4Department of Molecular and Cell Biology, University of California, Berkeley, United States Abstract The underground environment imposes unique demands on life that have led subterranean species to evolve specialized traits, many of which evolved convergently. We studied convergence in evolutionary rate in subterranean mammals in order to associate phenotypic evolution with specific genetic regions. We identified a strong excess of vision- and skin-related genes that changed at accelerated rates in the subterranean environment due to relaxed constraint and adaptive evolution. We also demonstrate that ocular-specific transcriptional enhancers were convergently accelerated, whereas enhancers active outside the eye were not. Furthermore, several uncharacterized genes and regulatory sequences demonstrated convergence and thus constitute novel candidate sequences for congenital ocular disorders. The strong evidence of convergence in these species indicates that evolution in this environment is recurrent and predictable and can be used to gain insights into phenotype–genotype relationships. DOI: https://doi.org/10.7554/eLife.25884.001 *For correspondence: [email protected] (MC); [email protected] (NLC) Competing interests: The Introduction authors declare that no The subterranean habitat has been colonized by numerous animal species for its shelter and unique competing interests exist.
    [Show full text]