The Characterization of PG0228 in Porphyromonas Gingivalis W83

Total Page:16

File Type:pdf, Size:1020Kb

The Characterization of PG0228 in Porphyromonas Gingivalis W83 Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2011 The Characterization of PG0228 in Porphyromonas gingivalis W83 Courtney Schlenker Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Physiology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/219 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. THE CHARACTERIZATION OF PG0228 IN PORPHYROMONAS GINGIVALIS W83 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physiology and Biophysics at Virginia Commonwealth University. by COURTNEY DANIELLE SCHLENKER Bachelor of Science in Biology, University of Toledo, 2007 Director: JANINA P. LEWIS, PH.D. ASSOCIATE PROFESSOR, PHILIPS INSTITUTE OF OCMB SCHOOL OF DENTISTRY Virginia Commonwealth University Richmond, Virginia May, 2011 ii ACKNOWLEDGEMENTS Most importantly, I would like to thank Dr. Lewis for this exciting project and giving me the opportunity to work in her lab. Her mentorship and constant support have made pursuing a Masters degree a challenging yet rewarding process. No matter how busy she was, she always managed to find the time to address any concerns or questions I might have had. In addition to Dr. Lewis, I would like to thank the other members of my committee, Dr. Rife and Dr. Qiao, for their insight and guidance on this project. A special thank you goes to Cecilia Anaya-Bergman for her mentorship during my research rotation last year. I would especially like to thank Sai Yanamandra, Dr. Karl Thompson, and Dr. Tiana Wyant for their time, patience, guidance, and advice this past year and a half. Finally, I must thank the rest of the lab including Kandice Klepper, Anuya Paranjape, Tyrone King, Evys Collazo, Cheyanne Warren, and Huan Mo for their support and friendship. Lastly, I would like to thank my parents and family for giving me the unconditional love, support, and confidence to go out and chase my dreams. You have been there to guide me through life’s many roadblocks, and through your example, you have shown me the power of hard work and dedication. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ...............................................................................................................ii LIST OF TABLES .............................................................................................................................v LIST OF FIGURES ..........................................................................................................................vi LIST OF ABBREVIATIONS ............................................................................................................viii ABSTRACT .......................................................................................................................................x INTRODUCTION .............................................................................................................................1 1.1. Periodontal Disease ................................................................................................1 1.2. Oral Microflora .......................................................................................................4 1.3. Porphyromonas gingivalis ......................................................................................5 1.4. Gene Regulation in Porphyromonas gingivalis ......................................................6 1.5. Regulatory small RNAs (sRNAs) ...........................................................................7 1.6. Sm Family of RNA-Associated Proteins ................................................................9 1.7. Hfq Protein ..............................................................................................................10 1. MATERIALS AND METHODS .......................................................................................................21 2.1. Project Aims............................................................................................................21 2.2. Bacterial Strains and Plasmids ................................................................................25 2.3. Growth Conditions and Media ................................................................................25 2.4. Generation of P. gingivalis Mutant Strains.............................................................29 2.5. Generation of Δ0228 Mutant Porphyromonas gingivalis Strain ............................29 2.6. Generation of 0228-HaLo Porphyromonas gingivalis Strain .................................35 2.7. Growth Curve of Δ0228 Mutant .............................................................................39 2.8. Microarray Analysis of Δ0228 Mutant ...................................................................39 2.9. Survival of Δ0228 Mutant Strain with Eukaryotic Cells ........................................45 2.10. Immunoprecipitation with 0228-HaLo Tagged Strain ............................................46 2.11. Bioinformatics.........................................................................................................51 RESULTS .........................................................................................................................................52 3.1. Sequence Alignment with PG0228 .........................................................................52 3.2. Generation of Δ0228 Mutant Strain ........................................................................55 3.3. Generation of 0228-HaLo tagged Porphyromonas gingivalis Strain .....................62 3.4. Evaluation of Δ0228 Growth Compared to Wild Type W83 .................................71 3.5. Differential Expression Using Microarray Analysis...............................................74 3.6. Analysis of Δ0228’s Ability to Survive with Host Cells ........................................83 DISCUSSION ...................................................................................................................................88 iv 4.1. Δ0228 Strain ...........................................................................................................88 4.2. Differential Gene Expression ..................................................................................90 4.3. RNA Binding to PG0228 ........................................................................................94 4.4. Evaluation of Phenotypic Changes in Δ0228 .........................................................96 4.5. Alternate Hypothesis ...............................................................................................98 4.6. Future Studies .........................................................................................................99 LITERATURE CITED .....................................................................................................................101 VITA ..................................................................................................................................................109 v LIST OF TABLES Table 1: Primer Sequences ................................................................................................................28 Table 2: Optical Density of Δ0228 Compared to W83 ....................................................................72 Table 3: Upregulated Genes Detected in Δ0228 Strain ...................................................................76 Table 4: Downregulated Genes Detected in Δ0228 Strain ...............................................................77 Table 5: Transcription Profile of nusA .............................................................................................80 Table 6: Transcription Profile of luxR ..............................................................................................81 Table 7: Transcription Profile of luxS ..............................................................................................82 Table 8: Colonies Found on the Blood Agar Plates after HN4 Invasion .........................................86 vi LIST OF FIGURES Figure 1: Periodontal Diseases .........................................................................................................3 Figure 2: Examples of Hfq Regulation in E. coli .............................................................................13 Figure 3: Structure Summary of Hfq from Pseudomonas aeruginosa .............................................16 Fig. 4a: Presence or Absence of an hfq gene in Completed Genomes of Bac. Pathogens .............19 Fig. 4b: Summary of Phenotypes of hfq Mutants of Pathogenic Bacteria ......................................20 Figure 5: Project Aims ......................................................................................................................24 Figure 6: pCR2.1 TOPO Vector .......................................................................................................26 Figure 7: pFC20K (HaLoTag 7) T7 SP6 Flexi Vector ....................................................................27 Figure 8: Schematic Diagram of Δ0228 Strain Generation .............................................................34 Figure 9: Schematic Diagram of 0228-HaLo Strain Generation .....................................................38
Recommended publications
  • Pathological and Therapeutic Approach to Endotoxin-Secreting Bacteria Involved in Periodontal Disease
    toxins Review Pathological and Therapeutic Approach to Endotoxin-Secreting Bacteria Involved in Periodontal Disease Rosalia Marcano 1, M. Ángeles Rojo 2 , Damián Cordoba-Diaz 3 and Manuel Garrosa 1,* 1 Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine and INCYL, University of Valladolid, 47005 Valladolid, Spain; [email protected] 2 Area of Experimental Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain; [email protected] 3 Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, and IUFI, Complutense University of Madrid, 28040 Madrid, Spain; [email protected] * Correspondence: [email protected] Abstract: It is widely recognized that periodontal disease is an inflammatory entity of infectious origin, in which the immune activation of the host leads to the destruction of the supporting tissues of the tooth. Periodontal pathogenic bacteria like Porphyromonas gingivalis, that belongs to the complex net of oral microflora, exhibits a toxicogenic potential by releasing endotoxins, which are the lipopolysaccharide component (LPS) available in the outer cell wall of Gram-negative bacteria. Endotoxins are released into the tissues causing damage after the cell is lysed. There are three well-defined regions in the LPS: one of them, the lipid A, has a lipidic nature, and the other two, the Core and the O-antigen, have a glycosidic nature, all of them with independent and synergistic functions. Lipid A is the “bioactive center” of LPS, responsible for its toxicity, and shows great variability along bacteria. In general, endotoxins have specific receptors at the cells, causing a wide immunoinflammatory response by inducing the release of pro-inflammatory cytokines and the production of matrix metalloproteinases.
    [Show full text]
  • Bacillus Cereus Pneumonia
    ‘Advances in Medicine and Biology’, Volume 67, 2013 Nova Science Publisher Inc., Editor: Berhardt LV To Alessia, my queen, and Giorgia, my princess Chapter BACILLUS CEREUS PNEUMONIA Vincenzo Savini* Clinical Microbiology and Virology, Spirito Santo Hospital, Pescara (PE), Italy ABSTRACT Bacillus cereus is a Gram positive/Gram variable environmental rod, that is emerging as a respiratory pathogen; particularly, pneumonia it causes may be serious and can resemble the anthrax disease. In fact, the organism is strictly related to the famous Bacillus anthracis, with which it shares genotypical, fenotypical, and pathogenic features. Treatment of B. cereus lower airway infections is becoming increasingly hard, due to the spread of multidrug resistance traits among members of the species. Hence, the present chapter’s scope is to shed a light on this bacterium’s lung pathogenicity, by depicting salient microbiological, epidemiological and clinical features it shows. Also, we would like to explore virulence determinants and resistance mechanisms that make B. cereus a life-threatening, potentially difficult-to-treat agent of airway pathologies. * Email: [email protected]. 2 Vincenzo Savini INTRODUCTION The genus Bacillus includes spore-forming species, strains of which are not usually considered to be clinically relevant when isolated from human specimens; in fact, these bacteria are known to be ubiquitously distributed in the environment and may easily contaminate culture material along with improperly handled sample collection devices (Miller, 2012; Brooks, 2001). Bacillus anthracis is the prominent agent of human pathologies within the genus Bacillus, although it is uncommon in most clinical laboratories (Miller, 2012). It is a frank pathogen, as it causes skin and enteric infections; above all, however, it is responsible for a serious lung disease (the ‘anthrax’) that is frequently associated with bloodstream infection and a high mortality rate (Frankard, 2004).
    [Show full text]
  • The Role of Porphyromonas Gingivalis Virulence Factors in Periodontitis Immunopathogenesis
    The Role of Porphyromonas gingivalis Virulence Factors in Periodontitis Immunopathogenesis (Peran Faktor Virulensi Porphyromonas Gingivalis pada Imunopatogenesis Periodontitis) Tienneke Riana Septiwidyati, Endang Winiati Bachtiar Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia, Email: [email protected] Abstract Porphyromonas gingivalis is an anaerobic Gram-negative bacteria, often associated with the pathogenesis of periodontitis. Periodontitis is a chronic inflammation characterized by damage to the supporting tissues of the tooth. Porphyromonas gingivalis locally can invade periodontal tissue and avoid host defence mechanisms. Porphyromonas gingivalis have virulence factors that can interfere with host immune response and cause inflammation at host tissue. The aim of this article is to provide an overview of the role of Porphyromonas gingivalis virulence factors such as capsules, fimbriae, lipopolysaccharides, and gingipain in the pathogenesis of periodontitis. The data sources were taken from PubMed and Google Scholar within 10 years. The role of Porphyromonas gingivalis capsule is to suppress the host's immune response to bacteria by reducing phagocytosis so the bacteria can survive. The roles of Porphyromonas gingivalis fimbriaeare to facilitate adhesion and invasion of bacteria to host cells so the damage will occur in the periodontal tissue. One of the roles of Porphyromoas gingivalis lipopolysaccharide is to disrupt the host immune system by disrupting the distribution of leukocytes around bacterial colonization so the bacteria can survive. The role of the Porphyromonas gingivalis gingipain is to suppress inflammatory cytokines thereby reducing the host's response by manipulating the complement system and disrupting the response of T cells. Porphyromonas gingivalis expresses several virulence factors involved in the colonization of subgingival plaque, modulates the immune response of host cells, and damages the host tissue directly so it can cause periodontitis.
    [Show full text]
  • Cigarette Smoke Promotes Genomic Evolution in the Periodontal Pathogen Porphyromonas Gingivalis
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2013 Cigarette smoke promotes genomic evolution in the periodontal pathogen Porphyromonas gingivalis. Josh George University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Recommended Citation George, Josh, "Cigarette smoke promotes genomic evolution in the periodontal pathogen Porphyromonas gingivalis." (2013). Electronic Theses and Dissertations. Paper 486. https://doi.org/10.18297/etd/486 This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. CIGARETTE SMOKE PROMOTES GENOMIC EVOLUTION IN THE PERIODONTAL PATHOGEN PORPHYROMONAS GINGIVALIS by JOSH GEORGE B.S. Biology A Thesis Submitted to the Faculty of the School of Dentistry of the University of Louisville In Partial Fulfillment of the Requirements For the Degree of Master of Science Oral Biology University of Louisville Louisville, Kentucky May 2013 CIGARETTE SMOKE PROMOTES GENOMIC EVOLUTION IN THE PERIODONTAL PATHOGEN PORPHYROMONAS GINGIVALIS by JOSH GEORGE B.S. Biology A Thesis Approved on April 26, 2013 By the following Thesis Committee: ________________________________________________________ David Scott Ph.D. – Mentor/Director _______________________________________________________ Ted Kalbfleisch Ph.D. – Committee Member _______________________________________________________ Jan Potempa Ph.D. – Committee Member _______________________________________________________ Don Demuth Ph.D. – Committee Member ii ACKNOWLEDGMENTS I would like to thank Dr.
    [Show full text]
  • Prevotella Intermedia
    The principles of identification of oral anaerobic pathogens Dr. Edit Urbán © by author Department of Clinical Microbiology, Faculty of Medicine ESCMID Online University of Lecture Szeged, Hungary Library Oral Microbiological Ecology Portrait of Antonie van Leeuwenhoek (1632–1723) by Jan Verkolje Leeuwenhook in 1683-realized, that the film accumulated on the surface of the teeth contained diverse structural elements: bacteria Several hundred of different© bacteria,by author fungi and protozoans can live in the oral cavity When these organisms adhere to some surface they form an organizedESCMID mass called Online dental plaque Lecture or biofilm Library © by author ESCMID Online Lecture Library Gram-negative anaerobes Non-motile rods: Motile rods: Bacteriodaceae Selenomonas Prevotella Wolinella/Campylobacter Porphyromonas Treponema Bacteroides Mitsuokella Cocci: Veillonella Fusobacterium Leptotrichia © byCapnophyles: author Haemophilus A. actinomycetemcomitans ESCMID Online C. hominis, Lecture Eikenella Library Capnocytophaga Gram-positive anaerobes Rods: Cocci: Actinomyces Stomatococcus Propionibacterium Gemella Lactobacillus Peptostreptococcus Bifidobacterium Eubacterium Clostridium © by author Facultative: Streptococcus Rothia dentocariosa Micrococcus ESCMIDCorynebacterium Online LectureStaphylococcus Library © by author ESCMID Online Lecture Library Microbiology of periodontal disease The periodontium consist of gingiva, periodontial ligament, root cementerum and alveolar bone Bacteria cause virtually all forms of inflammatory
    [Show full text]
  • Characterization of an Endolysin Targeting Clostridioides Difficile
    International Journal of Molecular Sciences Article Characterization of an Endolysin Targeting Clostridioides difficile That Affects Spore Outgrowth Shakhinur Islam Mondal 1,2 , Arzuba Akter 3, Lorraine A. Draper 1,4 , R. Paul Ross 1 and Colin Hill 1,4,* 1 APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; [email protected] (S.I.M.); [email protected] (L.A.D.); [email protected] (R.P.R.) 2 Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh 3 Biochemistry and Molecular Biology Department, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh; [email protected] 4 School of Microbiology, University College Cork, T12 K8AF Cork, Ireland * Correspondence: [email protected] Abstract: Clostridioides difficile is a spore-forming enteric pathogen causing life-threatening diarrhoea and colitis. Microbial disruption caused by antibiotics has been linked with susceptibility to, and transmission and relapse of, C. difficile infection. Therefore, there is an urgent need for novel therapeutics that are effective in preventing C. difficile growth, spore germination, and outgrowth. In recent years bacteriophage-derived endolysins and their derivatives show promise as a novel class of antibacterial agents. In this study, we recombinantly expressed and characterized a cell wall hydrolase (CWH) lysin from C. difficile phage, phiMMP01. The full-length CWH displayed lytic activity against selected C. difficile strains. However, removing the N-terminal cell wall binding domain, creating CWH351—656, resulted in increased and/or an expanded lytic spectrum of activity. C. difficile specificity was retained versus commensal clostridia and other bacterial species.
    [Show full text]
  • Porphyromonas Gingivalis Fimbrial Protein Mfa5 Contains a Von
    ARTICLE https://doi.org/10.1038/s42003-020-01621-w OPEN Porphyromonas gingivalis fimbrial protein Mfa5 contains a von Willebrand factor domain and an intramolecular isopeptide ✉ Thomas V. Heidler 1, Karin Ernits1, Agnieszka Ziolkowska1, Rolf Claesson2 & Karina Persson 1 1234567890():,; The Gram-negative bacterium Porphyromonas gingivalis is a secondary colonizer of the oral biofilm and is involved in the onset and progression of periodontitis. Its fimbriae, of type-V, are important for attachment to other microorganisms in the biofilm and for adhesion to host cells. The fimbriae are assembled from five proteins encoded by the mfa1 operon, of which Mfa5 is one of the ancillary tip proteins. Here we report the X-ray structure of the N-terminal half of Mfa5, which reveals a von Willebrand factor domain and two IgG-like domains. One of the IgG-like domains is stabilized by an intramolecular isopeptide bond, which is the first such bond observed in a Gram-negative bacterium. These features make Mfa5 structurally more related to streptococcal adhesins than to the other P. gingivalis Mfa proteins. The structure reported here indicates that horizontal gene transfer has occurred among the bacteria within the oral biofilm. 1 Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden. 2 Department of Odontology, Umeå ✉ University, 90187 Umeå, Sweden. email: [email protected] COMMUNICATIONS BIOLOGY | (2021) 4:106 | https://doi.org/10.1038/s42003-020-01621-w | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01621-w imbriae (also called pili) are long filamentous protein poly- In this study, we present the crystal structure of the N-terminal mers that project from the bacterial surface and are crucial for half of Mfa5, residues 99–664, at 1.8 Å resolution.
    [Show full text]
  • The Role of Tannerella Forsythia and Porphyromonas Gingivalis in Pathogenesis of Esophageal Cancer Bartosz Malinowski1, Anna Węsierska1, Klaudia Zalewska1, Maya M
    Malinowski et al. Infectious Agents and Cancer (2019) 14:3 https://doi.org/10.1186/s13027-019-0220-2 REVIEW Open Access The role of Tannerella forsythia and Porphyromonas gingivalis in pathogenesis of esophageal cancer Bartosz Malinowski1, Anna Węsierska1, Klaudia Zalewska1, Maya M. Sokołowska1, Wiktor Bursiewicz1*, Maciej Socha3, Mateusz Ozorowski1, Katarzyna Pawlak-Osińska2 and Michał Wiciński1 Abstract Tannerella forsythia and Porphyromonas gingivalis are anaerobic, Gram-negative bacterial species which have been implicated in periodontal diseases as a part of red complex of periodontal pathogens. Esophageal cancer is the eight most common cause of cancer deaths worldwide. Higher rates of esophageal cancer cases may be attributed to lifestyle factors such as: diet, obesity, alcohol and tobacco use. Moreover, the presence of oral P. gingivalis and T. forsythia has been found to be associated with an increased risk of esophageal cancer. Our review describes theroleofP. gingivalis and T. forsythia in signaling pathways responsible for cancer development. It has been shown that T. forsythia may induce pro-inflammatory cytokines such as IL-1β and IL-6 by CD4 + T helper cells and TNF-α. Moreover, gingipain K produced by P. gingivalis, affects hosts immune system by degradation of immunoglobulins and complement system (C3 and C5 components). Discussed bacteria are responsible for overexpression of MMP-2, MMP-2 and GLUT transporters. Keywords: Esophageal cancer, Tannerella forsythia, Porphyromonas gingivalis Background of cases) and adenocarcinoma (10%). Currently, there is a Cancer is a significant problem in the modern world. It downward trend in the incidence of squamous cell carcin- concerns the entire population. In developed countries, oma and an increase in adenocarcinoma [1].
    [Show full text]
  • Anti-Anthrax Agents Means That New Antibiotics Are Needed to the 14-Membered Ring
    research highlights NATURAL PRODUCTS infection and its resistance to treatment system — along with a dichloro group on Anti-anthrax agents means that new antibiotics are needed to the 14-membered ring. Fenical and the Angew. Chem. Int. Ed. 52, 7822–7824 (2013) target this bacterium. team decided to incorporate this dichloro In an effort to discover new antimicrobial moiety into anthracimycin to see what H H scaffolds, a team led by William Fenical at the effect this would have on the antimicrobial University of California at San Diego, USA, activity. Interestingly, the dichloro analogue H H H isolated metabolites from a marine organism was approximately half as potent against H H Cl H (a species of Streptomyces) and tested them Bacillus anthracis, however, it exhibited O O O O Cl for antibacterial activity. One metabolite greater activity against some strains of O O H O O showed potent activity against the Gram- Gram-negative bacteria — which the team positive Bacillus anthracis and methicillin- believe is linked to easier penetration Anthracimycin Dichloro analogue resistant Staphylococcus aureus; although through the cell wall. RJ it had only very limited activity against Few diseases carry the sinister connotations Gram-negative bacteria such as Escherichia REACTIVE INTERMEDIATES of anthrax. It is a deadly infection that coli. A series of NMR spectroscopy, mass Non-classical crystals predominantly affects herbivores, although spectrometry and X-ray crystallography Science 341, 62–64 (2013) it has also been used for bioterrorism analyses enabled the team to characterize and adapted for biowarfare. Anthrax is the structure and stereochemistry of this When either enantiomer of exo-2-norbornyl caused by Bacillus anthracis, and, like other new antimicrobial compound — which they bromide reacts with a nucleophile, a racemic bacterial diseases, it is normally treated with termed anthracimycin.
    [Show full text]
  • The Gram Positive Bacilli of Medical Importance Chapter 19
    The Gram Positive Bacilli of Medical Importance Chapter 19 MCB 2010 Palm Beach State College Professor Tcherina Duncombe Medically Important Gram-Positive Bacilli 3 General Groups • Endospore-formers: Bacillus, Clostridium • Non-endospore- formers: Listeria • Irregular shaped and staining properties: Corynebacterium, Proprionibacterium, Mycobacterium, Actinomyces 3 General Characteristics Genus Bacillus • Gram-positive/endospore-forming, motile rods • Mostly saprobic • Aerobic/catalase positive • Versatile in degrading complex macromolecules • Source of antibiotics • Primary habitat:soil • 2 species of medical importance: – Bacillus anthracis right – Bacillus cereus left 4 Bacillus anthracis • Large, block-shaped rods • Central spores: develop under all conditions except in the living body • Virulence factors – polypeptide capsule/exotoxins • 3 types of anthrax: – cutaneous – spores enter through skin, black sore- eschar; least dangerous – pulmonary –inhalation of spores – gastrointestinal – ingested spores Treatment: penicillin, tetracycline Vaccines (phage 5 sensitive) 5 Bacillus cereus • Common airborne /dustborne; usual methods of disinfection/ antisepsis: ineffective • Grows in foods, spores survive cooking/ reheating • Ingestion of toxin-containing food causes nausea, vomiting, abdominal cramps, diarrhea; 24 hour duration • No treatment • Increasingly reported in immunosuppressed article 6 Genus Clostridium • Gram-positive, spore-forming rods • Obligate Anaerobes • Catalase negative • Oval or spherical spores • Synthesize organic
    [Show full text]
  • Bacillus Anthracis Growth and Virulence-Gene Expression by Inhibitors of Quorum-Sensing
    MAJOR ARTICLE Inhibition of Bacillus anthracis Growth and Virulence-Gene Expression by Inhibitors of Quorum-Sensing Marcus B. Jones,1,2 Rachana Jani,2 Dacheng Ren,4 Thomas K. Wood,5 and Martin J. Blaser1,2,3 1Department of Microbiology, Sackler Institute, 2Department of Medicine, New York University School of Medicine, and 3Department of Veterans Affairs Medical Center, New York, and 4School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York; 5Departments of Chemical Engineering and Molecular and Cell Biology, University of Connecticut, Storrs Density-dependent gene expression, quorum sensing (QS), involves the synthesis and detection of low-mo- lecular-weight molecules known as autoinducers. Inhibitors of bacterial QS systems offer potential treatment of infections with highly virulent or multidrug-resistant agents. We studied the effects on Bacillus anthracis growth and the virulence gene (pagA, lef, and cya) expression of the QS inhibitor (5Z)-4-bromo-5-(bromo- methylene)-3-butyl-2(5H)-furanone, which is naturally synthesized by the marine alga Delisea pulchra, as well as a related compound and synthetic derivatives. Growth of B. anthracis Sterne strain was substantially reduced in the presence of each furanone in a dose-dependent manner. When furanones were added to midlog-phase cultures of B. anthracis strains with LacZ reporters in pagA, lef, or cya, growth was inhibited, and expression of these virulence genes was inhibited to a proportionately greater extent. These data suggest that use of QS inhibitors could represent novel therapies for anthrax. The discovery of antibiotics was the single most im- part, by using a population-monitoring system known portant advancement in the treatment of patients with as quorum sensing (QS) that involves the synthesis and bacterial infection [1].
    [Show full text]
  • Electronic Supplementary Material (ESI) for Molecular Biosystems
    Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2017 Applications to GI microbiome data 1. GI microbime data preparation We applied the newly defined LemonTree parameters recommendation on the GI microbiome data set from (Scher et al., 2013). The representative sequences for each OTU and the OTU abundance table -with reads counts down to the genus classification- were downloaded from https://github.com/polyatail/scher_et_al_2013/tree/master/16S_Analysis. The raw sequencing data were summarized at the genus level, with a taxonomy from phylum to genus to well annotate the unclassified genera, and TMM normalized (Robinson and Oshlack, 2010). The abundance was further filtered by eliminating low abundance (average counts < 1) and low variance (SD < 0.5) microbes. The differential microbes were identified with LIMMA differential analysis, with the following criteria: i) summed abundance > 5; ii) expressed in at least 3 samples; iii) p-value < 0.05 and FC > 2. Finally, the expressions of the regulated and candidate regulator microbes were normalized to be zero centered with SD = 1. The taxonomical annotation can be found in Data S2, Sheet 1. The raw and TMM normalized counts are in Data S2, Sheet 2-3. 2. Clinical parameters analyses The clinical parameters are in Data S2, Sheet 4. 2.1 Association of the clinical parameters with the left/right branches Table S3-1. Fisher’s exact test and t-test for the categorical and quantitative clinical parameters. left vs right (all MTX, left
    [Show full text]