Dynamic Modeling and Simulation of Basic Oxygen Furnace (BOF) Operation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Society, Materials, and the Environment: the Case of Steel
metals Review Society, Materials, and the Environment: The Case of Steel Jean-Pierre Birat IF Steelman, Moselle, 57280 Semécourt, France; [email protected]; Tel.: +333-8751-1117 Received: 1 February 2020; Accepted: 25 February 2020; Published: 2 March 2020 Abstract: This paper reviews the relationship between the production of steel and the environment as it stands today. It deals with raw material issues (availability, scarcity), energy resources, and generation of by-products, i.e., the circular economy, the anthropogenic iron mine, and the energy transition. The paper also deals with emissions to air (dust, Particulate Matter, heavy metals, Persistant Organics Pollutants), water, and soil, i.e., with toxicity, ecotoxicity, epidemiology, and health issues, but also greenhouse gas emissions, i.e., climate change. The loss of biodiversity is also mentioned. All these topics are analyzed with historical hindsight and the present understanding of their physics and chemistry is discussed, stressing areas where knowledge is still lacking. In the face of all these issues, technological solutions were sought to alleviate their effects: many areas are presently satisfactorily handled (the circular economy—a historical’ practice in the case of steel, energy conservation, air/water/soil emissions) and in line with present environmental regulations; on the other hand, there are important hanging issues, such as the generation of mine tailings (and tailings dam failures), the emissions of greenhouse gases (the steel industry plans to become carbon-neutral by 2050, at least in the EU), and the emission of fine PM, which WHO correlates with premature deaths. Moreover, present regulatory levels of emissions will necessarily become much stricter. -
STAINLESS STEEL Flux Coated
U.S. ALLOY CO. STAINLESS STEEL dba Washington Alloy 7010-G Reames Rd. Charlotte, NC 28216 Flux Coated Tig www.weldingwire.com Quality Management System in accordance with ISO 9001:2000 Cert # 05-R0925 ALLOY DESCRIPTION AND APPLICATION; These flux coated rods are primarily used for the root pass on piping where backing and purging gas may not be possible or desirable. This 39” rod should be used as a basic tig rod on DCEN, however caution is advised due to the easily removable slag covering that must be removed prior to addition welding. TYPICAL GTAW WELDING PROCEDURES; DCEN Wire Diameter Amps Volts 5/64” 90-180 12-13 3/32” 150-250 12-13 1/8” 200-375 12-14 Procedures may vary with change in position, base metals, filler metals, equipment and other changes. TYPICAL UNDILUTED METAL CHEMISTRY (%) per AWS A5.22; Chemistry Grade 1) Intended Use C Cr Ni Mo R308L 0.03 18.0-21.0 9.0-11.0 0.50 Welding of 18Cr & 8Ni such as 304, 304L R308H3) 0.04-0.08 19.5-22.0 9.0-11.0 0.50 Welding of 18Cr & 8Ni such as 304, 304H R309L 0.03 22.0-25.0 12.0-14.0 0.50 Welding of carbon steel to austenitic stainless R316L 0.03 17.0-20.0 11.0-14.0 2.0-3.0 Primarily use on 316 or 316L R347 2) 0.08 18.0-21.0 9.0-11.0 0.50 Primarily use on 347 1) All grades has the following : Mn=0.50-2.5, Si=1.2, P=0.04, S=0.03 Cu=0.50 Single values are maximum 2) R347 also has Cb+Ta =8xCmin. -
General Purpose Liquid Soldering Flux
Weldcote Metals 842 Oak Grove Rd. Kings Mountain, NC 28086 704-739-4115 www.weldcotemetals.com WELDCOTE GENERAL PURPOSE LIQUID SOLDERING FLUX General Purpose Liquid Soldering Flux Formulated for soldering Stainless Steel and High-Chrome Alloys. Excellent across a broad range of base metals, solders, and temperatures. Exhibits excellent capillary action. DESCRIPTION Weldcote Liquid Soldering Flux is a water-based, general purpose, inorganic-acid flux formulated for soldering stainless steel and other industrial metals. The flux contains Zinc Chloride, Ammonium Chloride, and Hydrochloric Acid, that make this flux active at room temperature where it begins to clean metals and remove oxides. The flux exerts a strong scavenging action to remove oxide coatings and other impurities from the metal surface to produce strong joints. Pre-cleaning is not necessary under most conditions. APPLICATIONS Weldcote Liquid Soldering Flux is excellent for use on Stainless Steel, Monel, High-Chrome Alloys, Inconel, Nickel, Copper, Brass, Ferrous Alloys and many more metals. It is not recommended for Aluminum and Magnesium. DIRECTIONS Weldcote Liquid Soldering Flux may be applied with a brush, swab or by dipping. The flux exhibits the best activity between 93°C/200°F and 315°C/600°F. Post-solder residues are water-soluble and hot water rinses (140°F or higher) may be adequate for most applications. The following steps are recommended for optimum soldering results: • Remove any oil, grease, or other contaminants from the surface to be soldered. • Apply flux to joint by dipping, spraying, dragging, swabbing or brushing to area being soldered. • Preheat or air-dry area to be soldered after flux has been applied to activate the flux and yield optimum soldering characteristics and reduce or eliminate spattering. -
SOPRIN Flux Zinc Safety Data Sheet
Flux Zinc Safety Data Sheet SECTION 1: Identification 1.1. Product identifier Product form : Mixture Product name : Flux Zinc 1.2. Recommended use and restrictions on use Smelting / deoxidizing agent for hot dip galvanizing kettles. 1.3. Supplier SOPRIN S.r.l. Via dell’Industria 106 31052 Maserada Sul Piave (TV) - Italy T (+39) 0422 521025 - F (+39) 0422 521060 [email protected] (Alessandro Padovan) 1.4. Emergency telephone number Emergency number : (+39) 0422 521025 SECTION 2: Hazard identification 2.1. Classification of the substance or mixture Classification (GHS-US/ CAN) Skin corrosion/irritation Category 2 H315 Serious eye damage/eye irritation Category 2 H319 Full text of H statements : see section 16 2.2. GHS Label elements, including precautionary statements GHS-US/CAN labeling Hazard pictograms : Signal word : Danger Hazard statements : H315 - Causes skin irritation H319 - Causes serious eye irritation Precautionary statements : P264 - Wash thoroughly after handling P280 - Wear protective gloves/protective clothing/eye protection/face protection P302+P352 - IF ON SKIN: Wash with plenty of water P305+P351+P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing P332+P313 - If skin irritation occurs: Get medical advice/attention P337+P313 - If eye irritation persists: Get medical advice/attention P362+P364 - Take off contaminated clothing and wash it before reuse 2.3. Other hazards No additional information available 2.4. Unknown acute toxicity (GHS-US/CAN) No data available SECTION 3: Composition/Information on ingredients 3.1. Substances Not applicable 3.2. Mixtures Name Product identifier % Classification (GHS-CA) GHS-US classification Ammonium chloride (CAS No) 12125-02-9 30 - 32.5 Acute Tox. -
Indalloy® Flux 3 97809 (A4) R1
PRODUCT DATA SHEET Indalloy® Flux #3 Introduction Technical Specifications Indalloy® Flux #3 is a high-viscosity liquid flux formulated Indium Part Number (IPN) 84003 for the purpose of soldering aluminum. Indalloy® Flux #3 Activation Range 96–343°C also has proven to be an effective flux for soldering to NiTi (Nitinol) alloys. Other metals for use with Indalloy® Flux #3 Specific Gravity 1.33gm/cc are: copper, brass, chrome, and stainless steel. Flash Point 93°C Due to its corrosive nature, Indalloy® Flux #3 is not Chloride Content Contains chlorides recommended for electronics applications. pH 8 Appearance Yellow to pale green Warm water (<50°C) and Cleaning Cleaning mechanical scrubbing Flux residue removal is mandatory and may be accomplished by means of warm water and mechanical scrubbing. Cleaning Transport in accordance with Shipping applicable regulations and should be performed as soon as possible after the soldering requirements operation to avoid corrosion. The cleaning water temperature All information is for reference only. should not exceed 50°C. Excessive water temperature may Not to be used as incoming product specifications. cause secondary reactions and result in corrosion and/or pitting. A warm water sonication may also be a means of flux residue removal. Technical Support Indium Corporation’s internationally experienced engineers Solder Alloy Compatibility provide in-depth technical assistance to our customers. Indalloy® Flux #3 works best with tin-containing alloys. It is Thoroughly knowledgeable in all facets of Material Science not recommended for indium-containing alloys due to indium’s as it applies to the electronics and semiconductor sectors, sensitivity to chloride-induced corrosion. -
Iron and Steel: Introduction
Iron and Steel: Introduction Iron is cheap and strong and the most used metal in the world. Iron, as produced in the blast furnace is called pig iron. This is brittle because it contains about 4% carbon and other non-metal impurities. Most of this iron is converted into a variety of steels by removing nearly all the carbon, and adding small quantities of different metals. The different steels are alloys which are mixtures of metals. They have different properties such as toughness, hardness, corrosion resistance, etc. Some background The method of using carbon to reduce iron oxide to iron was very probably discovered accidentally in prehistoric camp fires. Here, charcoal would have been the source of carbon. The iron was used to make tools and weapons and gave its name to the Iron Age. Early in the 18th century, Abraham Darby in Shropshire discovered a method of converting coal to coke as a source of carbon. This led to the modern blast furnace. In the mid-19th century, Henry Bessemer developed a steel-making process that used oxygen to burn off some of the carbon in cast iron. The Basic Oxygen Steelmaking process was introduced in the 1950s and now accounts for about two-thirds of steel production. Did you know? Stainless steel contains about 18% chromium. About three-quarters of food and drinks cans are made of steel. A car tyre contains over ½ kg of steel wire. About 400 million tonnes of steel are recycled every year worldwide. Iron and Steel: Introduction | 1 . -
Indalloy® Flux #2 97808 R1
PRODUCT DATA SHEET Indalloy® Flux #2 Introduction Technical Specifications Indalloy® Flux #2 is a specialty acid-based liquid flux Indium Part Number (IPN) 84002 formulated for the purpose of soldering high chromium- Activation Range 100–371°C containing alloys, including stainless steel. Indalloy® Flux #2 also has proven to be an effective flux for soldering to NiTi Specific Gravity 1.53gm/cc (Nitinol) alloys. Other metals for use with Indalloy® Flux #2 Flash Point Non-flammable are: copper, brass, lead, chrome, galvanized iron, and steel. No zinc or other heavy metal Chloride Content chlorides Due to its corrosive nature, Indalloy® Flux #2 is not recommended for electronics applications. pH 1–1.5 Appearance Water white Warm water (<50°C) and Cleaning Cleaning mechanical scrubbing Flux residue removal is mandatory and may be accomplished by Transport in accordance with means of warm water and mechanical scrubbing. Cleaning should Shipping applicable regulations and be performed as soon as possible after the soldering operation to requirements. ® avoid corrosion. Indalloy Flux #2 does not progressively corrode All information is for reference only. stainless steel (no neutralization necessary), but cleaning is still Not to be used as incoming product specifications. advisable as the flux/flux residue may still attack the solder. The cleaning water temperature should not exceed 50°C. Excessive water temperature may cause secondary reactions and result in Technical Support corrosion and/or pitting. A warm water sonication may also be a Indium Corporation’s internationally experienced engineers means of flux residue removal. The addition of Citric Acid to wash provide in-depth technical assistance to our customers. -
ARCHAEOLOGY DATASHEET 302 Steelmaking
ARCHAEOLOGY DATASHEET 302 Steelmaking Introduction A single forging produced ‘shear steel’, a second operation Although an important aspect of medieval and earlier resulted in ‘double shear steel’ and so-on. societies, the manufacture of steel was industrialised during Furnace design changed over time, and also appears to the post-medieval period. Many complementary techniques have shown some regional variation. The first English steel were developed which often operated at the same time on furnaces were built at Coalbrookdale (Shropshire) by Sir the same site; there were also close links with other Basil Brooke in c1615 and c1630. These were circular in ironworking processes. This datasheet describes pre-20th plan with a central flue. They probably contained a single century steelmaking processes in the UK, their material chest and would have had a conical chimney. Other 17th- remains and metallurgical potential. century cementation furnaces were located in and around Birmingham, Wolverhampton, Stourbridge and Bristol, but Carbon steel and other alloys none of these have been excavated. The north-east became Until the late 19th century, steel was, like other types of the main area of cementation steelmaking in the late 17th iron, simply an alloy of iron and carbon (HMS datasheet and early 18th centuries. Ambrose Crowley established 201). There was considerable variation in the nature of several cementation steelworks, and others followed. Of ‘steel’ and in the properties of individual artefacts. Cast these, the oldest standing structure is at Derwentcote iron, smelted in the blast furnace usually had a carbon (County Durham), built in 1734. Unlike the West Midlands content of 5-8%, making it tough but brittle. -
SHEETMETAL FABRICATION TECHNICAL TIPS for SOLDERING Flux
SHEETMETAL FABRICATION TECHNICAL TIPS FOR SOLDERING Flux In metallurgy, a flux (derived from Latin fluxus meaning “flow”), is a chemical cleaning agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both metallurgy and metal joining. In high-temperature metal joining processes (welding, brazing and soldering), the primary purpose of flux is to prevent oxidation of the base and filler materials. Tin-lead solder (e.g.) attaches very well to copper, but poorly to the various oxides of copper, which form quickly at soldering temperatures. The role of a flux in joining processes is typically dual: 1. As cleaning agents, fluxes facilitate soldering by removing oxidation from the metals to be joined by dissolving the oxides on the metal surface, which facilitates wetting by molten solder. The flux also acts as an oxygen barrier by coating the hot surface, preventing further oxidation during the soldering process. 2. Additionally, flux allows solder to flow easily on the working piece rather than forming beads as it would otherwise. In some applications molten flux also serves as a heat transfer medium, facilitating heating of the joint by the soldering tool or molten solder. FLUX TYPES There are two types of fluxes used for soft soldering. These are organic (rosin based) fluxes or inorganic fluxes, usually based on halogenides and/or acids. Common fluxes are: ammonium chloride or rosin for soldering tin; hydrochloric acid and zinc chloride for soldering galvanized iron (and other zinc surfaces); and borax for brazing or braze-welding ferrous metals. -
Circuitworks® Tacky Flux
® CircuitWorks Tacky Flux: Use and Working Conditions By Milton Davis ® ITW Chemtronics 8125 Cobb Center Drive Kennesaw, GA 30152 770-424-4888 Tacky fluxes are commonly used in the electronics assembly industry for a variety of applications. These fluxes generally have honey-like consistency and can be used for ball attach applications, BGA re-balling and hand soldering applications. CircuitWorks® No-Clean Tacky Flux, part number CW8500, is a mildly activated rosin (RMA) no-clean tacky flux. Its formulation includes a unique rosin/resin blend coupled with a proprietary blend of activators and stabilizers, providing significantly increased shelf life and long-term product stability. This results in a post solder residue that is stable and can be left on a board without cleaning. Performance Characteristics CircuitWorks® No-Clean Tacky Flux offers a combination of a stable platform with robust activity. In this regard CircuitWorks® No-Clean Tacky Flux is ideally positioned between the more traditional RMA paste fluxes and the synthetic low residue-tacky fluxes. Typical RMA fluxes have strong activity but lack stability and consistency, whereas synthetic low-residue tacky fluxes are stable in their characteristics, but only sufficiently active for a limited range of soldering parameters. CircuitWorks® No-Clean Tacky Flux can be used in a wide range of soldering applications with predictable results. CircuitWorks® No-Clean Tacky Flux can be used for the following applications: BGA ball attachment and detachment; repair and rework of printed circuit board (PCB) components; and soldering of specialty components that cannot be attached in standard SMT reflow of PTH wave solder applications. -
Studies of NRIM Continuous Steelmaking Process*
UDC 669.18-932 Studies of NRIM Continuous Steelmaking Process* By Ry uichi NAKAGAWA:* S hiro YOS HIMATSU:* Taklly a UEDA:* Tatsllro M ITSUI, ** Akira FUKUZA WA:* A kira S ATO:* and TS llyoshi OZAKI** Synopsis K.)U- 13) The fundamental aspect q! the development of the NRIM multi-stage (2) Tank type continuous steelmaking process at trough type continuous steelmaking process and the results of its recent IRSID (France )14- 16) operations are presented in this jJaper. Though the scale of the plant used (3) Single stage trough type continuous steel was small (7.8 tlhr in hot metal flow rate), a suitable sejJaration of the making process (WORCRA process) at CRA (Austral steelmaking reactions to each stage of the continuous steelmaking furnace ia)17 - 20) and the know-how qf its ojJeration were satiifactorily obtained. As the (4) Single stage trough type continuous steel result of the separation, that is, silicon and phosphorus were mostly removed making process at Bethlehem Steel Co. (U.S.A. )21) in the first stage so that the final carbon level was controlled mainly in the second stage, the product with phosphorus as low as 0.005% (dephosjJhori (5) Single stage multi-chamber type continuous z ation rate 96% ) was obtained with comparable amount of lime to that steelmaking process at MISiS (U.S.S.R.)22) of the conventional batch type steelmaking processes. The industrializ a (6) Multi-stage trough type continuous steelmak tion of this process is confirmed to be feasible. ing process at NRIM (Japan)23- 34) In NRIM the research on the continuous steelmak I. -
3. Classification 4. Owner of Property 5. Location of Legal Description 6
NATIONAL HISTORIC LANDMARK NPS Form 10-900 OMB No. 1024-0018 (3-82) Exp. 10-31-84 United States Department of the interior National Park Semes For NPS use only Of received date entered See instructions in How to Complete National Register Forms Type all entries—complete applicable sections historic CORNWALL IRON FURNACE NATIONAL HISTORIC LANDMARK DISTRICT and or common In irregular pattern along Rexmont Road and Boyd street & number street_________ _ _______ __________________—— no* city, town Cornwall Borough ——vicinity of state Pennsylvania code 42 county Lebanon code 075 3. Classification Category Ownership Status Present Use X district __ public X occupied agriculture _X_ museum building(s) private X unoccupied commercial park structure both work in progress educational _X_ private residence site Public Acquisition Accessible entertainment religious object in process yes: restricted government efiantifir being considered _X- yes: unrestricted X industrial transportation no military ...X other: 4. Owner of Property name Multiple - see continuation sheet street & number city, town __ vicinity of state 5. Location of Legal Description courthouse, registry of deeds, etc. T.P hanon County Courthouse street & number South 8th Street city, town Lebanon state PA 6. Representation in Existing Surveys title Historic Sites Survey has this property been determined eligible? yes no date 1966 _ federal county local depository for survey records National Park Service city, town Washington state D.C. 7. Description Condition Check one Check one X excellent deteriorated unaltered XL original site good ruins _X_ altered moved date fair unexposed Describe the present and original (if known) physical appearance The Cornwall Iron Furnace National Historic Landmark contains three interrelated major elements.