U.S. Domestic High-Performance Reactor-Based Research Facility

Total Page:16

File Type:pdf, Size:1020Kb

U.S. Domestic High-Performance Reactor-Based Research Facility The Scientific Justification for a U.S. Domestic High-Performance Reactor-Based Research Facility REPORT OF THE BASIC ENERGY SCIENCES ADVISORY COMMITTEE DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. The report is available on-line at: https://science.energy.gov/bes/community-resources/reports/ DOI: 10.2172/1647598 The Scientific Justification for a U.S. Domestic High-Performance Reactor-Based Research Facility REPORT OF THE BASIC ENERGY SCIENCES ADVISORY COMMITTEE U.S. Department of Energy/Office of Science/July 2020 Revision 10-28-2020 Prepared by the BESAC Subcommittee to Assess the Scientific Justification for a U.S. Domestic High-Performance Reactor-Based Research Facility ii iii Subcommittee Membership List Robert Birgeneau, University of California, Berkeley; Subcommittee Chair Sue Clark, BESAC/PNNL Pengcheng Dai, Rice University Thomas Epps, BESAC/University of Delaware Karsten Heeger, Yale University David Hoogerheide, NIST Marc Kastner, MIT, retired; BESAC Chair Bernhard Keimer, MPI-Stuttgart Despina Louca, BESAC/University of Virginia Pete Lyons, NEAC member Allan MacDonald, BESAC/University of Texas, Austin Sean O’Kelly, Idaho National Lab Brad Olsen, MIT Julia Phillips, SNL, retired David Robertson, Director, MURR reactor @ Missouri; Subcommittee Vice-Chair Anthony Rollett, BESAC/Carnegie Mellon Kate Ross, Colorado State University Mike Rowe, NIST, retired John Stevens, ANL Brian Wirth, FESAC/University of Tennessee, Knoxville Editor/writer: Al Hammond Design/Production: Maggie Powell BES Staff: Harriet Kung, Tom Russell, Katie Runkles October 2020 revision corrected an error on page 1 of the Executive Summary. iv Table of Contents Executive Summary. 1 Recommendations .........................................................................5 Introduction ..............................................................................6 THE SCIENTIFIC CASE 1. Neutron Scattering ......................................................................9 1a. Solid State Physics Including Quantum Materials .........................................9 1b. Soft Matter .........................................................................19 1c. Biology ............................................................................22 1d. Polarized Neutrons .................................................................25 1e. Synchrotron X-rays vs. Neutrons ......................................................27 2. Industrial Applications of Neutron Scattering ..............................................30 2a. Industrial Applications ..............................................................30 2b. Industry-Related Consortia for Use of Neutrons ........................................31 2c. Neutron Techniques with Potential Industrial Applications ...............................32 2d. Barriers to Broad Industry Use of Neutrons ............................................32 2e. Summary ..........................................................................33 3. Fundamental Physics at Reactors and Spallation Sources .....................................34 4. Isotope Production .....................................................................41 4a. Isotope Production at HFIR. 41 4b. Heavy Element Chemistry. .43 5. Materials Irradiation ....................................................................46 5a. Materials Irradiation — General. 46 5b. Fusion Materials Irradiation ..........................................................48 HEU-LEU CONVERSION Preservation of Reactor Capability with Low Enriched Uranium Fuel ..........................52 Selection of U3Si2 for HFIR Application, and the Path to Conversion. 53 Progress on High Flux Reactor Conversion since 2016 NAS and 2018 APS Studies ...............54 v MAJOR U.S. NEUTRON FACILITIES: STATUS AND FUTURE PLANS High Flux Isotope Reactor (HFIR) ........................................................57 NIST Center for Neutron Research (NCNR) ...............................................60 SNS Present and Future .................................................................63 INTERNATIONAL NEUTRON FACILITIES Institut Laue-Langevin (ILL) .............................................................66 Forschungsreaktor München II (FRM-II) ..................................................68 Jules Horowitz Research Reactor (JHR) ....................................................70 Belgian Reactor 2 (BR2) .................................................................71 Conclusions .............................................................................72 References and Notes .....................................................................77 APPENDICES 1. Oak Ridge Proposed Strategy for HFIR ...................................................83 2. The Global Effort to Convert Research Reactors to Low Enriched Uranium Fuels ...............94 3. HFIR, SNS, and NIST User Data ........................................................102 About the cover image: HFIR Refueling: July 2015 The High Flux Isotope Reactor at Oak Ridge National Laboratory is the highest flux reactor-based source of neutrons for research in the United States, and it provides one of the highest steady-state neutron fluxes of any research reactor in the world. Operating at 85 MW, an average fuel cycle for the HFIR generally runs for approximately 26 days—depending on the experiment loading for that cycle—followed by a refueling and maintenance outage for various scheduled calibrations, modifications, repairs, and inspections. The reactor underwent routine refueling in July 2015, as seen in these photos. While submersed, the spent fuel emits a luminescent blue glow due to Cherenkov radiation, in which shedding electrons move through the water faster than the speed of light in water. Once removed from the reactor, spent fuel is then relocated into an adjacent holding pool for interim storage. This image shows the removal of a HFIR fuel element from the reactor vessel during defueling operations. Image credit: Jason Richards/ORNL vi Executive Summary Why neutrons are important. Neutrons are a research embrittlement of the steel, so that the pressure tool that scientists and industrial researchers use to vessel will have to be replaced (or the reactor shut probe the properties of materials. As their name sug- down) within two to three decades. gests, they are neutral (carry no electric charge) and • In the short term, the U.S. and other nations are hence do not interact with the electric fields of atoms. committed by agreements, policy, and precedent to Beams of neutrons can thus penetrate deeply into a stop using highly-enriched uranium (HEU) fuel for material without damaging it, and they “scatter” or research reactors—inclu-ding the HFIR—as an bounce off the atoms within a material in ways that can international security measure against nuclear reveal its structure and dynamics. Neutrons are also weapons proliferation. Conversion to low-enriched uniquely suited to exploring the magnetic properties of uranium (LEU) will involve significant changes to materials. Indeed, whenever an important new material the HFIR and, this report argues, should be is discovered, its basic structural and magnetic proper- combined with replace-ment of the pressure vessel. ties will invariably be explored using neutron scattering techniques. In addition, neutron bombardment creates • Thirdly, demand by both academic and industrial the radioactive isotopes used for medical treatments of researchers for access to the HFIR and other major cancers and other diseases as well as in a wide range of U.S. neutron sources (SNS and NCNR) is already as critical industrial and national security activities. much as three times higher than current facilities can accommodate, meaning that critical research is Where they come from. Neutrons are generated within either not done or delayed for long lengths of time. a nuclear reactor, such as the High Flux Isotope Reactor In addition, national security demand for certain (HFIR) at Oak Ridge National Laboratory and the reac- radioactive isotopes produced by the HFIR is more tor at the NIST Center for Neutron Research (NCNR) than the reactor can currently supply. During a at the National Institute of Standards and Technology, shutdown of the HFIR to replace the pressure ves- by the process of nuclear fission. Neutrons can also be sel and convert to LEU fuel, it would be possible to generated by colliding a beam of high-energy protons add more beamlines that extract neutrons from the with a metallic target to shake loose a pulse of neu- reactor and more experiment stations along those trons, such as at the Spallation Neutron Source (SNS) beamlines
Recommended publications
  • Framatome in Latin America Strong History and Partnerships
    SEN – Semana da Engenharia Nuclear UFRJ 17/10/2019 Framatome– 2019 1 © Framatome All right reserved Framatome– 2019 2 © Framatome All right reserved Framatome at a glance 60 years of experience, alongside our customers, in developing safe and competitive nuclear power worldwide Design Supply Manufacture Integrate Maintain Framatome– 2019 3 © Framatome All right reserved Framatome at a glance High-performing people and technologies for safe and competitive nuclear plants worldwide 92 14 000 250 3.3 NPPs PEOPLE REACTORS € BILLION As OEM Servicing … All over the world 2017 turnover Framatome– 2019 4 © Framatome All right reserved Our values More than principles, our values guide our actions and describe how we work each other, with our customers and business partners Safety Future Performance Integrity Passion Framatome– 2019 5 © Framatome All right reserved Framatome worldwide presence Germany 4 sites France 17 sites USA 7 sites China 8 sites 58 locations Argentina Japan Sweden 21 Belgium Republic of South Switzerland countries Others Brazil Africa The Netherlands locations Bulgaria Russia Ukraine Canada Slovakia United Arab Emirates Framatome– 2019 Czech Republic Slovenia United Kingdom 6 Finland South Korea © Framatome Hungary Spain All right reserved Our customers Asia CNNC Nawah CGN Tepco North & South America Doosan Hitachi Bruce Power Exelon OPG KHNP Dominion Corporation PSEG Africa MHI Duke Energy Luminant TVA Entergy NA-SA Eskom ETN NextEra Europe ANAV EDF Energy Skoda CNAT Engie TVO CEA EPZ Vattenfall CEZ Iberdrola DCNS KKG EnBW NEK Framatome– 2019 7 EDF RWE © Framatome All right reserved Framatome shareholder structure 19,5% 75,5% 5% • Stock-listed company • Majority shareholder: French state 100% Framatome Inc.
    [Show full text]
  • The Surface Operations Framework – Transitioning from Early Analogue Experiments to Future Lunar Missions
    THE SURFACE OPERATIONS FRAMEWORK – TRANSITIONING FROM EARLY ANALOGUE EXPERIMENTS TO FUTURE LUNAR MISSIONS Sebastian Martin(1), Toril Bye Rinnan(2), Mehran Sarkarati(3), Kim Nergaard(4) (1) ESA/ESOC, Robert-Bosch-Straße 5, 64293 Darmstadt, Germany, Email: [email protected] (2) Solenix Deutschland GmbH, Spreestraße 3, 64295 Darmstadt, Germany, Email: [email protected] (3) ESA/ESOC, Robert-Bosch-Straße 5, 64293 Darmstadt, Germany, Email: [email protected] (4) ESA/ESOC, Robert-Bosch-Straße 5, 64293 Darmstadt, Germany, Email: [email protected] ABSTRACT to assess the financial and technical feasibility of new mission concepts, technologies and studies before This paper provides an overview of a family of possibly advancing them to the next phases of activities performed within the European Space implementation of a mission. Operations Centre (ESOC) to prepare for future robotic As the result of one such concurrent design study in missions on the lunar surface and beyond. 2009, the METERON concept was created. METERON – the Multi-purpose End-To-End Robotics Operations Over the course of nearly a decade, ESOC has been Network – was initiated to prepare for future human and gradually building up expertise for future surface robotic exploration scenarios. These future scenarios operations activities. foresee robotic assets controlled on the surface of Moon This paper describes or Mars, with humans operating those assets from an - the activities and corresponding systems prepared orbiting vehicle or by Earth ground control. The benefit from the ground up before concrete missions were of near real-time remote asset operations is to reduce defined, human risks and cost by not having to land humans and - how we are now covering a range of activities return them from the surface, while still being able to where we have requirements from missions in the control robotic assets with short transmission delays definition phases while continuing to build on from an orbiter.
    [Show full text]
  • ESA Strategy for Science at the Moon
    ESA UNCLASSIFIED - Releasable to the Public ESA Strategy for Science at the Moon ESA UNCLASSIFIED - Releasable to the Public EXECUTIVE SUMMARY A new era of space exploration is beginning, with multiple international and private sector actors engaged and with the Moon as its cornerstone. This renaissance in lunar exploration will offer new opportunities for science across a multitude of disciplines from planetary geology to astronomy and astrobiology whilst preparing the knowledge humanity will need to explore further into the Solar System. Recent missions and new analyses of samples retrieved during Apollo have transformed our understanding of the Moon and the science that can be performed there. We now understand the scientific importance of further exploration of the Moon to understand the origins and evolution of Earth and the cosmic context of life’s emergence on Earth and our future in space. ESA’s priorities for scientific activities at the Moon in the next ten years are: • Analysis of new and diverse samples from the Moon. • Detection and characterisation of polar water ice and other lunar volatiles. • Deployment of geophysical instruments and the build up a global geophysical network. • Identification and characterisation of potential resources for future exploration. • Deployment long wavelength radio astronomy receivers on the lunar far side. • Characterisation of the dynamic dust, charge and plasma environment. • Characterisation of biological sensitivity to the lunar environment. ESA UNCLASSIFIED - Releasable to the Public
    [Show full text]
  • Jules Horowitz Reactor (JHR), a High-Performance Material Test Reactor in Cadarache, France
    The Swedish-French collaboration on the research reactors ASTRID & JHR Prof. Christophe Demazière Chalmers University of Technology Department of Applied Physics Division of Nuclear Engineering [email protected] Background − the ESS project • ESS: European Spallation Source – a European Union facility. • Will be built in Lund. • Participation of France is formalized in a contract between France and Sweden. • Sweden has to spend 400 MSEK on joint research in subjects relevant to France (energy and environment). • Out of this, 100 MSEK is devoted to fission-based nuclear energy. Background – the European research program • Vision: Sustainable Nuclear Energy Technology Platform (SNETP). • Planned facilities: – Jules Horowitz Reactor (JHR), a high-performance material test reactor in Cadarache, France. Start of operation: 2014. – MYRRHA facility in Mol, Belgium, a fast spectrum irradiation facility working as an ADS. Start of operation: ca. 2023. – ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a prototype Gen-IV sodium-cooled fast reactor to be built in France. Start of operation: ca. 2020. – VHTR, a first-of-a kind Very High Temperature Reactor for, among others, hydrogen production. VR Multi-project Grant in Nuclear Energy Research • 3 multi-grant projects granted by the Swedish Research Council in the spring of 2012 (projects in collaboration with CEA, France – French Alternative Energies and Atomic Energy Commission): – DEMO-JHR (coordinator: Prof. Christophe Demazière, Chalmers): 3 PhD projects. – ASTRID
    [Show full text]
  • The Jules Horowitz Reactor Project, a Driver for Revival of the Research Reactor Community
    THE JULES HOROWITZ REACTOR PROJECT, A DRIVER FOR REVIVAL OF THE RESEARCH REACTOR COMMUNITY P. PERE, C. CAVAILLER, C. PASCAL AREVA TA CEA Cadarache - Etablissement d'AREVA TA - Chantier RJH - MOE - BV2 - BP n° 9 – 13115 Saint Paul lez Durance - France CS 50497 - 1100, rue JR Gauthier de la Lauzière, 13593 Aix en Provence cedex 3 – France ABSTRACT The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first -rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x1014 n.cm-2/sec-1 E> 1 MeV in core and 3,6x1014 n.cm-2/sec-1 E<0.625 eV in the reflector) and the JHR’s considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960s, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015.
    [Show full text]
  • Global Exploration Roadmap
    The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System.
    [Show full text]
  • Les Réacteurs Expérimentaux Et Leur Contrôle ▼ Les Réacteurs Expérimentaux Et Leur Contrôle Experimental Reactors and Their Regulation
    Dossier: Les réacteurs expérimentaux et leur contrôle ▼ Les réacteurs expérimentaux et leur contrôle Experimental reactors and their regulation Chargement de la cuve du réacteur à haut flux (RHF). 2 Dossier: Les réacteurs expérimentaux et leur contrôle ▼ Éditorial 4 Foreword Le contrôle des réacteurs expérimentaux : la démarche de l’Autorité de sûreté nucléaire 5 Experimental reactor regulation: the Nuclear Safety Authority’s approach LE RÔLE DES RÉACTEURS EXPÉRIMENTAUX Le poids des réacteurs expérimentaux dans les programmes de recherche : l’exemple de l’énergie nucléaire 15 The importance of experimental reactors for research programs: The example of nuclear energy Les réacteurs expérimentaux 20 The experimental nuclear reactors La contribution des réacteurs d’expérimentation aux recherches sur la sûreté 27 Contribution of research reactors to the programmes for research and technological development on the safety LES SPÉCIFICITÉS DU CONTRÔLE DES RÉACTEURS EXPÉRIMENTAUX La spécificité du contrôle des réacteurs expérimentaux: le point de vue de l’inspecteur de l’ASN 35 The specific nature of experimental reactor regulation: the viewpoint of ASN’s inspectors La sûreté des réacteurs de recherche vue du Groupe permanent réacteurs 41 Research reactor safety from the advisory committee for nuclear reactors standpoint Les facteurs organisationnels et humains et la sûreté des réacteurs d’expérimentation 47 The human factors and the safety of experimentation reactors Les réexamens de sûreté des réacteurs d’expérimentation en France 52 Periodic safety review management for french research reactors CONCILIER RECHERCHE ET SÛRETÉ: LES RÉPONSES DES EXPLOITANTS ET DES CONCEPTEURS Un enjeu majeur: concilier recherche et sûreté. Le point de vue du CEA 58 A major issue: reconciling research and safety.
    [Show full text]
  • RIL AMT Workshop Summary
    RIL 2021-03 NRC WORKSHOP ON ADVANCED MANUFACTURING TECHNOLOGIES FOR NUCLEAR APPLICATIONS Part I – Workshop Summary Date Published: Draft April 2021 Prepared by: A. Schneider M. Hiser M. Audrain A. Hull Research Information Letter Office of Nuclear Regulatory Research Disclaimer This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party complies with applicable law. This report does not contain or imply legally binding requirements. Nor does this report establish or modify any regulatory guidance or positions of the U.S. Nuclear Regulatory Commission and is not binding on the Commission. EXECUTIVE SUMMARY Advanced manufacturing technologies (AMTs) are defined by the U.S. Nuclear Regulatory Commission (NRC) as those techniques and material processing methods that have not been traditionally used or formally standardized/codified by the nuclear industry. In June 2020, the NRC released Revision 1 to the Agency Action Plan for AMTs (AMT AP) (Agencywide Documents Access and Management System Accession No. ML19333B980 (package)). The AMT AP is a strategic plan that responds to the rapid pace of developments in respective AMTs and industry implementation plans. The NRC’s AMT activities are driven by industry interest in implementing specific AMTs and ensuring that the NRC staff are prepared to review potential AMT applications efficiently and effectively.
    [Show full text]
  • ITER Project Garching for the Fusion Community an Historic Milestone Was Achieved at the Eighth ITER Negotiations Meeting on February 18-19, 2003 in St
    newsletternewsletter Vol 2003 / 2 April 5, 2003 EUROPEAN FUSION DEVELOPEMENT AGREEMENT News Issued by the EFDA Close Support Unit China and the US as New Partners in the ITER Project Garching For the fusion community an historic milestone was achieved at the Eighth ITER Negotiations Meeting on February 18-19, 2003 in St. Petersburg (Russian Federation), when delega- tions from the People’s Republic of China and the United States of America joined those from Canada, the European Union, Japan and the Russian Federation in their efforts to reach agreement on the implementation of the ITER pro- ject. The Head of the Chinese Delegation indicated that Contents China, as the largest developing country in the world, has a great need to pursue alternative energy sources. China . Interview: believes that ITER can potentially lead to new forms of ener- Dr. Joseph V. Minervini gy and contribute to the peaceful and sustainable development page 2 of the world in the long-term. China expressed its strong wishes to be a valuable member of the ITER family, to make joint efforts with . Interview: other partners to the successful exploitation of fusion energy. Prof. Huo Yuping At their St. Petersburg meeting the ITER Negotiators approved the Report on the page 3 Joint Assessment of Specific Sites (JASS). The JASS Report provided as a main con- clusion and despite the differences between the candidate sites (Clarington in Canada, . ITER: Cadarache in France, Vandellos in Spain and Rokkasho-mura in Japan) that the JASS First Full Scale Primary assessment ascertained that all four sites are sound and fully capable to respond to all First Wall Panel ITER Site Requirements and Design Assumptions, as approved by the ITER Council in its January 2000 meeting.
    [Show full text]
  • Ancient Egyptian Dieties
    Ancient Egyptian Dieties Amun: When Amun’s city, Thebes, rose to power in the New Kingdom (1539-1070 B.C.), Amun became known as the “King of the Gods.” He was worshipped as the high god throughout Egypt. Able to take many shapes, Amun was sometimes shown as a ram or goose, but was usually shown in human form. He is fundamentally a Creator God and his name, Amun, means “The Hidden One.” Amun-Re: Originating in the Middle Kingdom, (2055 - 1650 B.C.), Amun-Re is a fusion of the Gods Amun and Re. He combined the invisible power of creation and the power visible in heat and light. Anubis: Usually represented as a black jackal, or as a human with a canine head, Anubis was a guardian of mummies, tombs, and cemeteries, as well as an escort of the deceased to the afterlife. Atum: According to the most ancient Egyptian creation myths, Atum is the creator of the world. He also brought the first gods Shu (air), Tefnut (water), Geb (earth), and Nut (sky) to Egypt. He is also god of the setting sun. Atum was represented in many forms such as a human, a human with the head of a ram, and a combination of an eel and a cobra. Bastet: Originating as early as Dynasty II (2820-2670 B.C.), Bastet was represented as a cat or a woman with a lioness’s head. She eventually became Egypt’s most important “cat goddess.” If Bastet took the form of a cat she was considered content, but if Bastet was a lioness she was considered an angry goddess.
    [Show full text]
  • AAS SFMC Manuscript Format Template
    (Preprint) AAS 18-344 REFINED MISSION ANALYSIS FOR HERACLES – A ROBOTIC LUNAR SURFACE SAMPLE RETURN MISSION UTILIZING HUMAN INFRASTRUCTURE Dr.-Ing. Florian Renk,* Dr. rer. nat. Markus Landgraf,† and Lorenzo Bucci‡ In the frame of the International Space Exploration Coordination Working Group the European Space Agency is participating in the planning of future ex- ploration architectures. The mission concept for the robotic lander mission (Human Enhanced Robotic Architecture and Capability for Lunar Exploration and Science – HERACLES) has matured meanwhile. The mission aims for a human assisted sample return from the lunar surface, while at the same time providing a qualification opportunity for technologies required for a crewed lu- nar lander. Human spaceflight rating is required for parts of the mission, since the sample return shall not be via a direct return trajectory, but the samples shall be transported via Orion, and thus docking of the robotic lander to the LOP-G will be required. This paper shall provide an update on the current mission de- sign as agreed between the international partners and the associated mission analysis as all the intermediate and final orbits have been selected for the base- line. The implications of the design decision as well as some alternatives that can serve as a backup scenario will be presented as well. The paper will first present the baseline mission sequence and will then focus on aspects of particu- lar interest as e.g. the strong limitation in the launch window design and the ren- dezvous and docking strategy. INTRODUCTION HERACLES is intended as a human-robotic architecture in the frame of preparations for hu- man exploration activities on the lunar surface.
    [Show full text]
  • Decommissioning of Nuclear Facilities in Switzerland – Lessons Learned
    WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN Fritz Leibundgut :: Decommissioning Officer :: Paul Scherrer Institut Decommissioning of Nuclear Facilities in Switzerland – Lessons learned HRP/IAEA/NEA Decommissioning workshop – February 7, 2017 Overview Basel Germany Aarau/Bern Zürich material sciences nanotechnology radio chemistry hotlab radio pharmacy biology PSI east solar concentrator energy research SwissFEL particle physics proton accelerator neutron source muon source proton therapy PSI west synchrotron light source Page 2 Nuclear installations on the PSI area • (ZWILAG) • AERA with VVA* • Hotlabor • DIORIT* • SAPHIR* • PROTEUS* *Post-operation phase/ Decomm./Dismantling Page 3 SAPHIR: 1957-1993 First reactor in Switzerland; used for isotope production, reactor training, neutron source for various experiments 1955 USA exposed a reactor at the “Atoms for Peace” conference in Geneva 1956 Laying of the cornerstone in Würenlingen 1957 First criticality 1960 Approval by Swiss government 1985 Approval for 10 MW 1993 Final shutdown 2000 Decommissioning ordinance 2008 Dismantling of the pool completed 2015 Cleanout of the KBL (“Kernbrennstofflager”) Page 4 SAPHIR: Status 2016 ENSI-Inspection at 7. of April, 2016 Page 5 DIORIT: 1960-1977 Proprietary Swiss development. Goal was the construction of industrial applicable reactors for material testings and experiments. 1960 Operation with natural uranium and D2O as coolant and moderator. 1966 Uprating from 20 MW to 30 MW. 1972 (after modification): Operation with LEU. 1977 Final shutdown. 1982 Partial dismantling; continued 1988-1993. 1994 Approval of dismantling the reactor. 2005 Asbestos was found interruption until 2009. 2013 Dismantling of biological shielding 2016 Cutting of the „Arbeitsboden“ (22 t activated Fe) 2019 (?) 2. Decommissioning ordinance for greenfield Page 6 DIORIT PSI, 23.10.2016 Page 7 Biol.
    [Show full text]