Dynamic Thermal Camouflage Via a Liquid-Crystal

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic Thermal Camouflage Via a Liquid-Crystal Nanophotonics 2020; 9(4): 855–863 Research article Yida Liua, Jinlin Songa, Weixian Zhao, Xuecheng Ren, Qiang Cheng, Xiaobing Luo, Nicholas Xuanlai Fang* and Run Hu* Dynamic thermal camouflage via a liquid-crystal- based radiative metasurface https://doi.org/10.1515/nanoph-2019-0485 and a uniform temperature field is observed in the infra- Received November 28, 2019; revised February 7, 2020; accepted red camera instead, demonstrating the very good dynamic February 25, 2020 thermal camouflage functionality. The present MLCM- based radiative metasurface may open avenues for high- Abstract: Thermal camouflage, which is used to con- resolution emissivity engineering to realize novel thermal ceal objects in the infrared vision for confrontation with functionality and develop new applications for thermal infrared detection in civilian or military applications, metamaterials and meta-devices. has garnered increasing attraction and interest recently. Compared with conductive thermal camouflage, that is to Keywords: thermal camouflage; mid-infrared; metasur- tune heat conduction to achieve equivalent temperature face; liquid crystal; nanophotonics; magnetic polariton. fields, radiative thermal camouflage, based on emissivity engineering, is more promising and shows much supe- riority in the pursuit of dynamic camouflage technology when resorting to stimuli-responsive materials. In this 1 Introduction paper, we demonstrate the emissivity-engineered radia- The dynamic structural colors in the skin of chameleons tive metasurface to realize dynamic thermal camouflage and cephalopods enable them to blend into the background functionality via a flying laser heat source on the metal- environment adaptively, thus they are known as the cam- liquid-crystal-metal (MLCM) platform. We employ a rig- ouflage masters in the natural world [1–3]. The active color- orous coupled-wave algorithm to calculate the surface changing feat stems from the chromatophore pigment cells emissivity of Au/LC/Au microstructures, where the LC- and reflective cells which can operate under mechanical orientation angle distribution is quantified by minimizing actuation of radial muscle and function as spectral filters the emitted thermal energy standard deviation through- to absorb and reflect visible light. The sophisticated archi- out the whole plate. Emissivity engineering on the MCLM tecture of the dynamic color-changing system has inspired platform is attributed to multiple magnetic polariton reso- the engineering of various adaptive artificial materials nance, and agrees well with the equivalent electric circuit and devices, like optoelectronic displays, soft robots, and analysis. Through this electrical modulation strategy, the camouflage systems, and their working spectra have been moving hot spot in the original temperature field is erased extended beyond the visible light with many civilian and military applications [1–5]. Among them, thermal cam- aYida Liu and Jinlin Song: These authors contributed equally to this ouflage, with the aim of concealing objects from infrared work. (IR) imaging, has attracted increasing attention, and can *Corresponding authors: Nicholas Xuanlai Fang, Department of be used to incapacitate IR detection [6–12]. Note that any Mechanical Engineering, Massachusetts Institute of Technology, object will radiate thermal energy whenever and wherever, Cambridge, Massachusetts 02139, USA, thus concealing target thermal radiation for thermal cam- e-mail: [email protected]. https://orcid.org/0000-0001-5713-629X; and Run Hu, State Key Laboratory of Coal Combustion, School of ouflage is tremendously challenging. Energy and Power Engineering, Huazhong University of Science and According to the Stefan-Boltzmann law, there are two Technology, Wuhan 430074, China, e-mail: [email protected]. ways to tune the thermal radiation energy for thermal cam- https://orcid.org/0000-0003-0274-9982 ouflage. One way is to change the target temperature as Yida Liu, Jinlin Song, Weixian Zhao, Xuecheng Ren, Qiang Cheng close as possible to approximate the background tempera- and Xiaobing Luo: State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science ture when their surface emissivities are comparable, and and Technology, Wuhan 430074, China. https://orcid.org/0000- the other way is to change the target surface emissivity to 0002-4370-2120 (Q. Cheng) generate the same amount of emitted thermal energy as the Open Access. © 2020 Nicholas Xuanlai Fang, Run Hu et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License. 856 Y. Liu et al.: Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface background. As a result, thermal camouflage can be sorted the nanostructured surfaces. To date, only a very limited into conductive camouflage and radiative camouflage. number of studies report dynamic thermal camouflage due Conductive thermal camouflage tunes the in-plane to the stringent requirement and challenging implementa- heat conduction along a predesigned plate with aniso- tion [1]. Fortunately, dynamic control of thermal radiation tropic thermal conductivities for achieving an equivalent can be achieved by introducing responsive materials that temperature profile as in a homogeneous plate outside can change their thermal radiation under external stimuli the devices. The transformation thermotics theory and the like electrics, magnetics, heat, mechanics, etc. [30–37]. scattering cancellation technique are frequently adopted to These stimuli-responsive materials enable us to achieve design such thermal metamaterials with stringent require- dynamic thermal camouflage to pursue the final goal like ments of the thermal properties, like thermal conductivity camouflage masters in nature. Compared to other external and specific heat [13–24]. For the fabrication of thermal stimuli, electrical modulation is more flexible, fast, and conductive metamaterials, compromise tactics are usually reliable, thus attracting more attention recently, and has employed by trading off the desired performance for the been successively applied onto quantum wells, graphene, fabrication feasibility, e.g. stacking the alternative-layered biomimetic materials for thermal camouflage applications. structures based on the effective medium approximation Among these possibilities, nematic liquid crystals (LCs), as theory [6–8], special design of bilayer structures [9, 22, a family of stimuli-responsive materials, also show great 23], or engineering phonon/defect-phonon scattering in potential for electrically controlling thermal radiation due the microscale material system by defect engineering [24], to their inherently high optical anisotropy, low power con- holey engineering [25], or phonon engineering [26–28]. sumption, easy controllability of LC particle orientation, Moreover, the in-plane heat conduction is easy to control, sub-millisecond response time, and high compatibility with but sometimes hard to use in practice. For instance, though almost all optoelectronic materials [44–48]. LCs can also be perfect thermal cloaking, camouflage, illusion functions integrated into metal-insulator-metal gratings, in which the have been achieved on plates in previous studies, we can insulator layer is composed of LCs, to construct a dynamic easily observe the targets from the out-of-plane direction platform that powerfully combines the physics flexibility of (z plane). Trying to fix this, a general illusion thermotics a metal-insulator-metal framework and precise tunability strategy has been proposed to realize conductive camou- of LCs, with applications like waveguides, filters, and reso- flage both in the x-y plane and the z plane, by maintain- nators [49, 50]. Nevertheless, such a dynamic platform has ing perfect external camouflage and creating internal never been explored for thermal camouflage feasibility. split illusions [6, 7]. Based on general illusion thermotics, In this paper, we propose a general strategy to dynam- the concept of encrypted thermal printing was proposed ically tune the thermal emission from a metal-liquid- recently and shows the possibility to achieve a dynamic crystal-metal (MLCM) radiative metasurface for dynamic thermal illusion [8]. Conductive camouflage devices are thermal camouflage. The rigorous coupled-wave algorithm usually excessively large to warp the target, which further (RCWA) method is employed to calculate the surface emis- limits their applications. Another key defect of most con- sivity with varying the director-axis orientation angle of ductive camouflage is the static characteristic that once LCs. The MCLM unit cells can be controlled independently the structure and materials are designed and manufac- to achieve different amounts of thermal radiation energy, tured, the pursued thermal camouflage performances no and the orientation angles and emissivities of the whole longer function or are maintained when the target moves metasurface are screened by achieving the same amount or the ambient environment changes. of thermal radiation energy for the same detected temper- In contrast, radiative camouflage is more promising ature, though at different real temperatures. A more vivid for practical purposes since the radiative properties mainly demonstration is presented on the MCLM metasurface depend on surface characteristics with broad applicabil- when a flying laser heat source is moving on the bottom ity, whether the surfaces are flattened or
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Test of Self-Organization in Beach Cusp Formation Giovanni Coco,1 T
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. C3, 3101, doi:10.1029/2002JC001496, 2003 Test of self-organization in beach cusp formation Giovanni Coco,1 T. K. Burnet, and B. T. Werner Complex Systems Laboratory, Cecil and Ida Green Institute of Geophysics and Planetary Physics, University of California, San Diego, La Jolla, California, USA Steve Elgar Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA Received 4 June 2002; revised 6 November 2002; accepted 13 November 2002; published 29 March 2003. [1] Field observations of swash flow patterns and morphology change are consistent with the hypothesis that beach cusps form by self-organization, wherein positive feedback between swash flow and developing morphology causes initial development of the pattern and negative feedback owing to circulation of flow within beach cusp bays causes pattern stabilization. The self-organization hypothesis is tested using measurements from three experiments on a barrier island beach in North Carolina. Beach cusps developed after the beach was smoothed by a storm and after existing beach cusps were smoothed by a bulldozer. Swash front motions were recorded on video during daylight hours, and morphology was measured by surveying at 3–4 hour intervals. Three signatures of self- organization were observed in all experiments. First, time lags between swash front motions in beach cusp bays and horns increase with increasing relief, representing the effect of morphology on flow. Second, differential erosion between bays and horns initially increases with increasing time lag, representing the effect of flow on morphology change because positive feedback causes growth of beach cusps. Third, after initial growth, differential erosion decreases with increasing time lag, representing the onset of negative feedback that stabilizes beach cusps.
    [Show full text]
  • Chapter 16: Fourier Series
    Chapter 16: Fourier Series 16.1 Fourier Series Analysis: An Overview A periodic function can be represented by an infinite sum of sine and cosine functions that are harmonically related: Ϧ ͚ʚͨʛ Ɣ ͕1 ƍ ȕ ͕) cos ͢!*ͨ ƍ ͖) sin ͢!*ͨ Fourier Coefficients: are)Ͱͥ calculated from ͕1; ͕); ͖) ͚ʚͨʛ Fundamental Frequency: ͦ_ where multiples of this frequency are called !* Ɣ ; ͢! * harmonic frequencies Conditions that ensure that f(t) can be expressed as a convergent Fourier series: (Dirichlet’s conditions) 1. f(t) be single-values 2. f(t) have a finite number of discontinuities in the periodic interval 3. f(t) have a finite number of maxima and minima in the periodic interval 4. the integral /tͮ exists Ȅ/ |͚ʚͨʛ|ͨ͘; t These are sufficient conditions not necessary conditions; therefore if these conditions exist the functions can be expressed as a Fourier series. However if the conditions are not met the function may still be expressible as a Fourier series. 16.2 The Fourier Coefficients Defining the Fourier coefficients: /tͮ 1 ͕1 Ɣ ǹ ͚ʚͨʛͨ͘ ͎ /t /tͮ 2 ͕& Ɣ ǹ ͚ʚͨʛ cos ͟!*ͨ ͨ͘ ͎ /t /tͮ 2 ͖& Ɣ ǹ ͚ʚͨʛ sin ͟!*ͨ ͨ͘ ͎ / t Example 16.1 Find the Fourier series for the periodic waveform shown. Assessment problems 16.1 & 16.2 ECEN 2633 Spring 2011 Page 1 of 5 16.3 The Effects of Symmetry on the Fourier Coefficients Four types of symmetry used to simplify Fourier analysis 1. Even-function symmetry 2. Odd-function symmetry 3.
    [Show full text]
  • Coating Provides Infrared Camouflage
    COURTESY OF PATRICK RONEY, ALIREZA SHAHSAFI AND MIKHAIL KATS February 1, 2020 Coating Provides Infrared Camouflage February 1, 2020 Coating Provides Infrared Camouflage About this Guide This Guide, based on the Science News article “Coating provides infrared camouflage,” asks students to explore the physics and potential technological applications of a material, discuss the various types of electromagnetic radiation, analyze infrared images and research how infrared imaging is used across a range of fields. This Guide includes: Article-based Comprehension Q&A — These questions, based on the Science News article “Coating provides infrared camouflage,” Readability: 12.7, ask students to explore the physics and potential technological applications of a material. Related standards include NGSS-DCI: HS-PS4; HS-PS3; HS-PS2; HS-ETS1. Student Comprehension Worksheet — These questions are formatted so it’s easy to print them out as a worksheet. Cross-curricular Discussion Q&A — Students will watch a NASA video about the electromagnetic spectrum to learn about properties of the various types of radiation. Then, students will explore and discuss technologies that use specific types of electromagnetic radiation. Related standards include NGSS- DCI: HS-PS4; HS-PS3; HS-PS2. Student Discussion Worksheet — These questions are formatted so it’s easy to print them out as a worksheet. Activity: Seeing in Infrared Summary: In this activity, students will analyze infrared images and then explore how infrared imaging is used across a range of fields of work. Skills include researching, evaluating, synthesizing and presenting information. Related standards include NGSS-DCI: HS-PS4; HS-PS3; HS-ETS1. Approximate class time: 1 class period to complete the discussion, research, presentations and debriefing as a class.
    [Show full text]
  • Sound and Vision: Visualization of Music with a Soap Film, and the Physics Behind It C Gaulon, C Derec, T Combriat, P Marmottant, F Elias
    Sound and Vision: Visualization of music with a soap film, and the physics behind it C Gaulon, C Derec, T Combriat, P Marmottant, F Elias To cite this version: C Gaulon, C Derec, T Combriat, P Marmottant, F Elias. Sound and Vision: Visualization of music with a soap film, and the physics behind it. 2017. hal-01487166 HAL Id: hal-01487166 https://hal.archives-ouvertes.fr/hal-01487166 Preprint submitted on 11 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sound and Vision: Visualization of music with a soap film, and the physics behind it C. Gaulon1, C. Derec1, T. Combriat2, P. Marmottant2 and F. Elias1;3 1 Laboratoire Mati`ere et Syst`emesComplexes UMR 7057, Universit´eParis Diderot, Sorbonne Paris Cit´e,CNRS, F-75205 Paris, France 2 Laboratoire Interdisciplinaire de Physique LIPhy, Universit´eGrenoble Alpes and CNRS UMR 5588 3 Sorbonne Universit´es,UPMC Univ Paris 06, 4 place Jussieu, 75252 PARIS cedex 05, France fl[email protected] Abstract A vertical soap film, freely suspended at the end of a tube, is vi- brated by a sound wave that propagates in the tube.
    [Show full text]
  • Guidance for Flood Risk Analysis and Mapping
    Guidance for Flood Risk Analysis and Mapping Coastal Notations, Acronyms, and Glossary of Terms May 2016 Requirements for the Federal Emergency Management Agency (FEMA) Risk Mapping, Assessment, and Planning (Risk MAP) Program are specified separately by statute, regulation, or FEMA policy (primarily the Standards for Flood Risk Analysis and Mapping). This document provides guidance to support the requirements and recommends approaches for effective and efficient implementation. Alternate approaches that comply with all requirements are acceptable. For more information, please visit the FEMA Guidelines and Standards for Flood Risk Analysis and Mapping webpage (www.fema.gov/guidelines-and-standards-flood-risk-analysis-and- mapping). Copies of the Standards for Flood Risk Analysis and Mapping policy, related guidance, technical references, and other information about the guidelines and standards development process are all available here. You can also search directly by document title at www.fema.gov/library. Coastal Notation, Acronyms, and Glossary of Terms May 2016 Guidance Document 66 Page i Document History Affected Section or Date Description Subsection Initial version of new transformed guidance. The content was derived from the Guidelines and Specifications for Flood Hazard Mapping Partners, Procedure Memoranda, First Publication May 2016 and/or Operating Guidance documents. It has been reorganized and is being published separately from the standards. Coastal Notation, Acronyms, and Glossary of Terms May 2016 Guidance Document 66
    [Show full text]
  • Modes of Wave-Chaotic Dielectric Resonators
    Modes of wave-chaotic dielectric resonators H. E. Tureci, H. G. L. Schwefel, and A. Douglas Stone Department of Applied Physics, Yale University, New Haven, CT 06520, USA Ph. Jacquod D¶epartement de Physique Th¶eorique, Universit¶e de Geneve, CH-1211 Geneve 4, Switzerland (Dated: October 29, 2003) Dielectric optical micro-resonators and micro-lasers represent a realization of a wave-chaotic sys- tem, where the lack of symmetry in the resonator shape leads to non-integrable ray dynamics. Modes of such resonators display a rich spatial structure, and cannot be classi¯ed through mode indices which would require additional constants of motion in the ray dynamics. Understanding and controlling the emission properties of such resonators requires the investigation of the correspon- dence between classical phase space structures of the ray motion inside the resonator and resonant solutions of the wave equations. We ¯rst discuss the breakdown of the conventional eikonal approx- imation in the short wavelength limit, and motivate the use of phase-space ray tracing and phase space distributions. Next, we introduce an e±cient numerical method to calculate the quasi-bound modes of dielectric resonators, which requires only two diagonalizations per N states, where N is approximately equal to the number of half-wavelengths along the perimeter. The relationship be- tween classical phase space structures and modes is displayed via the Husimi projection technique. Observables related to the emission pattern of the resonator are calculated with high e±ciency. I. INTRODUCTION A promising approach to making compact and high-Q optical resonators is to base them on \totally internally reected” modes of dielectric micro-structures.
    [Show full text]
  • Pattern Formation, Wave Propagation and Stability in Conservation Laws with Slow Diffusion and Fast Reaction
    Pattern Formation, Wave Propagation and Stability in Conservation Laws with Slow Diffusion and Fast Reaction Haitao Fan ∗ and Hailiang Liu † Contents 1 Introduction 2 2 Convergence and pattern formation 4 3 Propagation speed of fronts 7 3.1Lawofmotionoffronts........................................................ 7 3.2LaxShockcondition.......................................................... 8 3.3Variationalformula.......................................................... 10 4 Existence and stability of layer solutions 11 4.1Connectingorbit............................................................ 11 4.2 Dynamic Stability and Approaching to a Wave . 15 5 Existence and Structure of the limit lim→0+ u (x, t) 19 Abstract The limiting behavior of the solution of scalar conservation laws with slow diffu- sion and fast bistable reaction is considered. In a short time the solution develops transition patterns connected by shock layers and rarefaction layers, when the initial data has finitely many monotone pieces. The existence and uniqueness of the front profiles for both shock layers and rarefaction layers are established. A variational characterization of the wave speed of these profiles is derived. These profiles are shown to be stable. Furthermore, it is proved that solutions with monotone intimal data approach to shock layer or rarefaction layer waves as time goes to infinity. Key Words: Reaction-diffusion-convection equations, Pattern formation, transition fronts, asymptotic stability. AMS subject classification: 35K65; 35K57; 41A60. Date: August 14, 2001 ∗Department of Mathematics, Georgetown University Washington, DC 20057. Email: [email protected]. Web: http://www.georgetown.edu/faculty/fanh †Department of Mathematics, University of California, Los Angeles, CA 90095-1555. Email: [email protected]. Web: http://www.math.ucla.edu/∼hliu 1 1 Introduction Front propagation and interface motion occur in many scientific areas such as chemical kinetics, combustion, biology, transport in porous media, geometry and image process- ing.
    [Show full text]
  • The Emergence of Chaos in Quantum Mechanics
    S S symmetry Article The Emergence of Chaos in Quantum Mechanics Emilio Fiordilino Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy; emilio.fi[email protected] Received: 4 April 2020; Accepted: 7 May 2020; Published: 8 May 2020 Abstract: Nonlinearity in Quantum Mechanics may have extrinsic or intrinsic origins and is a liable route to a chaotic behaviour that can be of difficult observations. In this paper, we propose two forms of nonlinear Hamiltonian, which explicitly depend upon the phase of the wave function and produce chaotic behaviour. To speed up the slow manifestation of chaotic effects, a resonant laser field assisting the time evolution of the systems causes cumulative effects that might be revealed, at least in principle. The nonlinear Schrödinger equation is solved within the two-state approximation; the solution displays features with characteristics similar to those found in chaotic Classical Mechanics: sensitivity on the initial state, dense power spectrum, irregular filling of the Poincaré map and exponential separation of the trajectories of the Bloch vector s in the Bloch sphere. Keywords: nonlinear Schrödinger equation; chaos; high order harmonic generation 1. Introduction The theory of chaos gained the role of a new paradigm of Science for explaining a large variety of phenomena by introducing the concept of unpredictability within the perimeter of Classical Physics. Chaos occurs when the trajectory of a particle is sensitive to the initial conditions and is produced by a nonlinear equation of motion [1]. As examples we quote the equation for the Duffing oscillator (1918) 3 mx¨ + gx˙ + rx = F cos(wLt) (1) or its elaborated form 3 mx¨ + gx˙ + kx + rx = F cos(wLt) (2) that are among the most studied equation of mathematical physics [1,2] and, as far as we know, cannot be analytically solved.
    [Show full text]
  • Wave Nature of Fractal Lacunarity: a Higher Resolution Scale to Capture Subtle Changes in ECG Signals
    Wave Nature of Fractal Lacunarity: A Higher Resolution Scale to Capture Subtle Changes in ECG Signals AN Esgiar, PK Chakravorty University of Al Tahadi, Sirte, Libya Abstract ECG signal is a statistically fractal set (unlike any systematic fractal set) and hence its lacunarity measure is Lacunarity is a feature of a fractal set. Its wave a function of the box size and it can be proved that the nature was predicted theoretically by Bloomenfeld and lacunarity (based on even moments of mass) plot should Mandelbrot. In this paper, we present our result confirming be generally convex upwards and lacunarity (based on odd the existence of wave nature of lacunarity for ECG signals moments of mass) should be generally concave upwards as which are statistical fractal sets. We have applied this was presented earlier[1]. In this paper, first we confirm the wave nature of lacunarity to capture the subtle changes prediction of Bloomenfeld and Mandelbrot regarding the in ECG signals in a very short time span of about one wave nature of Lacunarity. This wave nature of lacunarity minute to predict occurrence of termination of atrial is used to discern the changes occurring in the ECG signals fibrillation for a subject, whose ECG is being monitored in a very short time span. continuously. This method can be used to detect the All the fractal features have been estimated by a new box minute subtle changes of ECG signals which are caused counting algorithm. We have named it True Box Counting by other physiological events as well and needs further method.
    [Show full text]
  • Soap Bubbles: Part 2 ______
    Andrew Glassner’s Notebook http://www.glassner.com Soap Bubbles: Part 2 ________________________________ oap bubbles are fragile, beautiful phenomena. the points I want to make, so I’ll just ignore them. Andrew SThey’re fun to make and play with, and their geom- To get an endless succession of waves in the tank, Glassner etry is as clean and elegant as anything in nature, which plunge the cylinder in repeatedly at just the right rate. makes them particularly suited to computer graphics. Each time the pipe drops into the water, it creates a In the last issue I discussed the nature of soap films. wave, which starts to spread outward. If you measure These thin sheets of soapy water have less surface ten- the distance from the crest of one wave to the crest of sion than water itself, so they can billow out into curved the next one—as they move down the length of the surfaces like bubbles. In this column I’ll talk about where tank—you’ll find that that distance doesn’t change as a bubble’s beautiful colors come from, the geometry of the wave moves out. This distance is called the wave- bubble clusters, and how to make bubbles in a 3D mod- length. As we watch the wave move, it’s like a distur- eler. I’ll use some of the material discussed in previous bance moving through the water. columns: reflection, refraction, and Snell’s Law If we set a piece of foam on top of the water as the wave (January/February 1998 and March/April 1998) and goes by, we’ll see the foam rise up and down.
    [Show full text]
  • Wave Chaos for the Helmholtz Equation Olivier Legrand, Fabrice Mortessagne
    Wave chaos for the Helmholtz equation Olivier Legrand, Fabrice Mortessagne To cite this version: Olivier Legrand, Fabrice Mortessagne. Wave chaos for the Helmholtz equation. Matthew Wright & Richard Weaver. New Directions in Linear Acoustics and Vibration, Cambridge University Press, pp.24-41, 2010, 978-0-521-88508-9. hal-00847896 HAL Id: hal-00847896 https://hal.archives-ouvertes.fr/hal-00847896 Submitted on 24 Jul 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Wave chaos for the Helmholtz equation O. Legrand and F. Mortessagne Laboratoire de Physique de la Mati`ere Condens´ee CNRS - UMR 6622 Universit´ede Nice-Sophia Antipolis Parc Valrose F-06108 Nice Cedex 2 FRANCE I. INTRODUCTION The study of wave propagation in complicated structures can be achieved in the high frequency (or small wavelength) limit by considering the dynamics of rays. The complexity of wave media can be either due to the presence of inhomogeneities (scattering centers) of the wave velocity, or to the geometry of boundaries enclosing a homogeneous medium. It is the latter case that was originally addressed by the field of Quantum Chaos to describe solutions of the Schr¨odinger equation when the classical limit displays chaos.
    [Show full text]