Unit 1 Physical Settings

Total Page:16

File Type:pdf, Size:1020Kb

Unit 1 Physical Settings UNIT 1 PHYSICAL SETTINGS Structure 1.0 Objectives I. I Introduction 1.2 Geographical History 1.3 Physical Geography 1.3. 1 I.alldli,rms 1.3.3 Clinlatc 1.3.3 Drainage 1.3.4 llivers and Lakes 1.3.5 Soils 1.4 Settlement I'atterns 1.5 Historical Evolution 1.6 Let US Sum Up 1.7 Key Words 1.8 Some Useful Books 1.9 Answers to Check Your Progress Exercises 1.0 OBJECTIVES It is essential, for a proper understanding of the government and the politics of a country to have some idea of its geographical settings, its history and socio-economic system. In this unit you will be acquainted with the physical geography of Australia. After studying the unit, you will be able to: trace the geographical history of Australia; I describe the topography of Australia; identify the fauna and flora of Australia; explain the settlement patterns; and explain the evolution of modern Australia. 1.1 INTRODUCTION In this unit we shall study the physical geography of Australia . Australia is the only nation that occupies an entire continent. With an area of 7,682,300 square kilometers it is the sixth largest country:in the area after Russia, Canada, China, the United States, and Brazil. Australia known as the island continent is slightly more than twice the size of India. It lies to the east between longitudes 1 13O9' and 153O39' and between the south latitude of 1 0°4 1 ' and 43'39'. The Tropic of Capricorn passes almost through the middle of the continent. It has a 36.735 km. long coastline. The continental shelf extends north to Papua New Guinea and south around Tasmania, varying in width from about 30km to more than 240km. Just off the eastern cbast the Great Barrier Reef extends north for 2000km from Southern Queensland to the Gulf of Papua. Enclosing about 207,000 square kilometers, the reef is an important marine ecosystem, a complex of islands and coral reefs containing many rare life forms. Australia-is one of the oldest land masses; the continental bedrock exposed by erosion is more than 3 billion years old, and Australia is the flattest of the continents. After Antarctica, it has the lowest precipitation rate in any continent. The mean annual rainfall is 465mm. Vast areas are arid or semi-arid and unsuitable for settlement. The average elevation is lkss than 300m, compared with the world's mean of about 700m. The Australian Alps in the southeast is Australia's highest ground. The highest peak being Mount Kosciusko (2228m). The main structural feature, the Great Western Plateau, extends over most of Western Australia, much of the Nortliern Territory and South Australia, and part of western Queensland. Introducing Australia Other significant outcrops include Uluru (Ayers Rock), a monolith 8km in circumference rising 335m above the central Australian desert. Uluru changes colour as the sun changes position in the sky. Nearly a third of the Australian continent lies in the tropics, and the rest is in the temperate zone. The coldest regions are in the south eastern corner of the mainland, where the'only ' regular snowfall occurs. Australia consists of six states and two self-governing territories. The States are: Queensland, New South Wales, Victoria, Tasmania, South Australia and Western Australia. There are two territories viz. Northern Territory and Australian Capital Territory. New South Wales has the highest population (6.20 million) followed by Victoria (4.56 million). The following Table shows the area and population of different stateslterritories: StatesITerritories Area in km sq. Population Capital Queensland 1 730 648 3.34111 Brisbane (1.52111) I New South Wales 1 800 642 I 6.20m Sydney (3.88m) Victoria Melbourne (3.28m) .Tasman ia Hobart (0.20m) South Australia Adelaide (1.08111) I Western Australia 1 2 529 875 1 1.771~1 Perth (1.301n) I Northern Territory I 1349 129 1Q.18m Darwin (O.08m) I Australian Capital Territory 1 2 43 1 I 0.31m Canberra (0.3 1 m) AUSTRALIA 7 692 024 18.3m a 1.2 GEOGRAPHICAL HISTORY Australia was known to the Western World only during the recent centuries. Though the Australian landmass is different from the landmass of America, it strongly resembles the continents of Asia, Europe and Africa. There are three kinds of structural parts in Australia, such as the Western Australian Shield, Eastern Fold mountain belt, and the central plains. The Western Australian Shield IS a comparatively stable and strong block. Though the eastern belt suffered from erosion, it is relatively uplifted. In between the east and the west lies the plain land which resembles a platform. Australia in shape and outline looks almost like the moon on the tenth day of the light fortnight. The South-west which is a part of the Western Australian Shield, consists of the oldest rocks in the continent. The oldest rocks are considered to be about 3,000,000,000 years old. These rocks have remained unfolded since the Precambrian age. The examination of the rocks show that originally they were very different from what we sek today. In the west and south coasts of western Australia there exists younger Precambrian rocks which are 2000,000,000 to 2,500,000,000 years old. > Old rocks are also to be found on the border of Kimberley Block and in the Katherine - Darwin regions of the Northern territory, in the Run jungle complex. The age of the rocks in the east has yet to be calculated. Central Australia may be approximately 2,250,000,000 years ,' old. Check Your Progress 1 Note: i) Use space provided below each question to write your answer. @ ii) Check your answer with the short model answers given at the end of the unit. / F I ) Trace the geographical history of Australia. Physical Sctti~~gs ! 1.3 PHYSICAL GEOGRAPHY I Australia is a land both flat and dry. Th~llgbit is flat there is not much uniformity in the landscape. It is an arid land. Only one-third 6f the ccl'htineat gets more than 20 inches rainfall per annum average. Perennial rivers are to be found only in eastern Australia and in Tasmania. 'The climate of Australia has had a tremendous role to play in soil formation and composition. 1.3.1 Landforms Australfa is the lowest, flattest and, apart hotti Antarctica, the driest of all the continents. Unlike Europe and North America. where some landscape8 date back to 'only' 20,000 years ago, when great ice sheets retreated, the age of landforms in Australia is generally measured in many mlllions of years. This fact gives Australia L iery cli&r.ctive physical geography. The continent can be divided into three parts: the Western Plateau; the Central Lowlands; and the Eastern Highlands. The Western part of Australia is a vast plateau. It occupies hearly two-thirds of the continent. It consists of very old rocks (some over 3,000 million years old), and much of it has existed as a landmass for over 500 mill~onyears. Several parts have individual plateau names (e.g. Kimberley. I-lammersley, Arnhem Land, Yilgarn). In the Perth area, younger rocks along a coastal str~pare separated from the rest by the Darling Fault escarpment. The Nullabor Plain is virtually an uplifted sea floor, a limestone plain of Miocene age (about 25 million years). Most of the plateau is desert or semi-desert. Mostly it is flat and covered with small shrubs. The Central Lowlands stretch from the Gulf of Carpentaria through the Great Artesian Basin to the Murray-Darling Plains i.e. southern shores of Australia. The Great Artesian Basin is filled with sedimentary rocks which holds the water that enters the wetter Eastern Highlands. Much of the centre of Australia is flat, but there are numerous ranges (e.g. Macdonnels, Musgl-ave) and some individual mountains of which Uluru iAyers Rock) is probably the best known. Faulting and folding in this area took place long ago. In the southern australian part of the Central Lowlands, fault movements are more recent, and the area can be considered as a number of blocks that have been moved up and down to form a series of ranges (Mt Lofty, Flinders Ranges) and hills (such as the Adelaide Hills), with the comes faulted blocks occupied by sea (e.g. Spencer Gulf) or lowlands including the lower Murray Plains. The average elevation of the region is less than 150 meters. At Lake Eyre it is about 12 meters below sea level. Owing to scanty rains much of the lowland is very dry. Some water is obta~nedfrom the Artesian wells, dug deep into the ground and the water flows out contin~~ouslyand automatically. Most of the rivers flowi~igthrough this lowland do not reach the sea. They flow into inland lakes. 'The Eastern Highlands rise gently from central Australia towards a series of high plateaus, and even the highest part around Mt Kosciuszko (2,228 metres) is part of a plateau. These highlands are found mainly parallel to the east-coast of Australia. They extend from Cape York Peninsula in the north to Tasmania in the South. Introd~~cingAustrnlia There are a few younger faults and folds, such as the Lake George Fault near Canberra, and the Lapstone Monocline near Sydney. Some plateaus in the Eastern Highlands are dissected by erosion into rugged hills, and the eastern edges of the plateaus tend to form high exarpments. Many of these are united to form the Great Escarpment that runs from northern ( 4.:cnsland to the Victorian border. Australia's highest waterfalls (Wollombi on the Macleay, r ''lnlnn Falls on a tributary of the Herbert, Barron Falls near Cairns, and Wentworth Falls I LC Blue Mountains) all occur where rivers flow over the Great Escarpment.
Recommended publications
  • Contextualizing Disaster
    Contextualizing Disaster This open access edition has been made available under a CC BY-NC-ND 4.0 license, thanks to the support of Knowledge Unlatched. Catastrophes in Context Series Editors: Gregory V. Button, former faculty member of University of Michigan at Ann Arbor Mark Schuller, Northern Illinois University / Université d’État d’Haïti Anthony Oliver-Smith, University of Florida Volume ͩ Contextualizing Disaster Edited by Gregory V. Button and Mark Schuller This open access edition has been made available under a CC BY-NC-ND 4.0 license, thanks to the support of Knowledge Unlatched. Contextualizing Disaster Edited by GREGORY V. BUTTON and MARK SCHULLER berghahn N E W Y O R K • O X F O R D www.berghahnbooks.com This open access edition has been made available under a CC BY-NC-ND 4.0 license, thanks to the support of Knowledge Unlatched. First published in 2016 by Berghahn Books www.berghahnbooks.com ©2016 Gregory V. Button and Mark Schuller Open access ebook edition published in 2019 All rights reserved. Except for the quotation of short passages for the purposes of criticism and review, no part of this book may be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system now known or to be invented, without written permission of the publisher. Library of Congress Cataloging-in-Publication Data Names: Button, Gregory, editor. | Schuller, Mark, 1973– editor. Title: Contextualizing disaster / edited by Gregory V. Button and Mark Schuller. Description: New York : Berghahn Books, [2016] | Series: Catastrophes in context ; v.
    [Show full text]
  • PRC.15.1.1 a Publication of AXA XL Risk Consulting
    Property Risk Consulting Guidelines PRC.15.1.1 A Publication of AXA XL Risk Consulting WINDSTORMS INTRODUCTION A variety of windstorms occur throughout the world on a frequent basis. Although most winds are related to exchanges of energy (heat) between different air masses, there are a number of weather mechanisms that are involved in wind generation. These depend on latitude, altitude, topography and other factors. The different mechanisms produce windstorms with various characteristics. Some affect wide geographical areas, while others are local in nature. Some storms produce cooling effects, whereas others rapidly increase the ambient temperatures in affected areas. Tropical cyclones born over the oceans, tornadoes in the mid-west and the Santa Ana winds of Southern California are examples of widely different windstorms. The following is a short description of some of the more prevalent wind phenomena. A glossary of terms associated with windstorms is provided in PRC.15.1.1.A. The Beaufort Wind Scale, the Saffir/Simpson Hurricane Scale, the Australian Bureau of Meteorology Cyclone Severity Scale and the Fugita Tornado Scale are also provided in PRC.15.1.1.A. Types Of Windstorms Local Windstorms A variety of wind conditions are brought about by local factors, some of which can generate relatively high wind conditions. While they do not have the extreme high winds of tropical cyclones and tornadoes, they can cause considerable property damage. Many of these local conditions tend to be seasonal. Cold weather storms along the East coast are known as Nor’easters or Northeasters. While their winds are usually less than hurricane velocity, they may create as much or more damage.
    [Show full text]
  • THE ARCHAEAN and Earllest PROTEROZOIC EVOLUTION and METALLOGENY of Australla
    Revista Brasileira de Geociências 12(1-3): 135-148, Mar.-Sel.. 1982 - Silo Paulo THE ARCHAEAN AND EARLlEST PROTEROZOIC EVOLUTION AND METALLOGENY OF AUSTRALlA DA VID I. OROVES' ABSTRACT Proterozoic fold belts in Austrália developed by lhe reworking of Archaean base­ mcnt. The nature of this basement and the record of Archaean-earliest Proterozoic evolution and metallogeny is best prescrved in the Western Australian Shield. ln the Yilgarn Craton. a poorly-mineralized high-grade gneiss terrain rccords a complex,ca. 1.0 b.y. history back to ca. 3.6b.y. This terrain is probably basement to lhe ca. 2.9~2.7 b.y. granitoid­ -greenstone terrains to lhe east-Cratonization was essentially complete by ca, 2.6 b.y. Evolution of the granitoid-greenstone terrains ofthe Pilbara Craton occurred between ca. 3.5b.y. ano 2.8 b.y. The Iectonic seuing of ali granitoid-greenstone terrains rcmains equivocaI. Despitc coincidcnt cale­ -alkalinc volcanism and granitoid emplacemcnt , and broad polarity analogous to modem are and marginal basin systcrns. thcre is no direct evidencc for plate tectonic processes. Important diffcrences in regional continuity of volcanic scqucnccs, lithofacies. regional tectonic pauerns and meta1Jogeny of lhe terrains may relate to the amount of crusta! extension during basin formation. At onc extreme, basins possibly reprcsenting low total cxrensíon (e.g. east Pilbara l are poorly mi­ ncralizcd with some porphyry-stylc Mo-Cu and small sulphute-rich volcanogenic 01' evaporitic deposits reflecting the resultam subaerial to shaJlow-water environment. ln contrast, basins inter­ prctcd to have formcd during greater crusta! cxrcnsion (e.g.
    [Show full text]
  • Explanatory Notes for the Tectonic Map of the Circum-Pacific Region Southwest Quadrant
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP CP-37 U.S. GEOLOGICAL SURVEY Explanatory Notes for the Tectonic Map of the Circum-Pacific Region Southwest Quadrant 1:10,000,000 ICIRCUM-PACIFIC i • \ COUNCIL AND MINERAL RESOURCES 1991 CIRCUM-PACIFIC COUNCIL FOR ENERGY AND MINERAL RESOURCES Michel T. Halbouty, Chairman CIRCUM-PACIFIC MAP PROJECT John A. Reinemund, Director George Gryc, General Chairman Erwin Scheibner, Advisor, Tectonic Map Series EXPLANATORY NOTES FOR THE TECTONIC MAP OF THE CIRCUM-PACIFIC REGION SOUTHWEST QUADRANT 1:10,000,000 By Erwin Scheibner, Geological Survey of New South Wales, Sydney, 2001 N.S.W., Australia Tadashi Sato, Institute of Geoscience, University of Tsukuba, Ibaraki 305, Japan H. Frederick Doutch, Bureau of Mineral Resources, Canberra, A.C.T. 2601, Australia Warren O. Addicott, U.S. Geological Survey, Menlo Park, California 94025, U.S.A. M. J. Terman, U.S. Geological Survey, Reston, Virginia 22092, U.S.A. George W. Moore, Department of Geosciences, Oregon State University, Corvallis, Oregon 97331, U.S.A. 1991 Explanatory Notes to Supplement the TECTONIC MAP OF THE CIRCUM-PACIFTC REGION SOUTHWEST QUADRANT W. D. Palfreyman, Chairman Southwest Quadrant Panel CHIEF COMPILERS AND TECTONIC INTERPRETATIONS E. Scheibner, Geological Survey of New South Wales, Sydney, N.S.W. 2001 Australia T. Sato, Institute of Geosciences, University of Tsukuba, Ibaraki 305, Japan C. Craddock, Department of Geology and Geophysics, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A. TECTONIC ELEMENTS AND STRUCTURAL DATA AND INTERPRETATIONS J.-M. Auzende et al, Institut Francais de Recherche pour 1'Exploitacion de la Mer (IFREMER), Centre de Brest, B.
    [Show full text]
  • Guidelines for Converting Between Various Wind Averaging Periods in Tropical Cyclone Conditions
    GUIDELINES FOR CONVERTING BETWEEN VARIOUS WIND AVERAGING PERIODS IN TROPICAL CYCLONE CONDITIONS For more information, please contact: World Meteorological Organization Communications and Public Affairs Office Tel.: +41 (0) 22 730 83 14 – Fax: +41 (0) 22 730 80 27 E-mail: [email protected] Tropical Cyclone Programme Weather and Disaster Risk Reduction Services Department Tel.: +41 (0) 22 730 84 53 – Fax: +41 (0) 22 730 81 28 E-mail: [email protected] 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int D-WDS_101692 WMO/TD-No. 1555 GUIDELINES FOR CONVERTING BETWEEN VARIOUS WIND AVERAGING PERIODS IN TROPICAL CYCLONE CONDITIONS by B. A. Harper1, J. D. Kepert2 and J. D. Ginger3 August 2010 1BE (Hons), PhD (James Cook), Systems Engineering Australia Pty Ltd, Brisbane, Australia. 2BSc (Hons) (Western Australia), MSc, PhD (Monash), Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne, Australia. 3BSc Eng (Peradeniya-Sri Lanka), MEngSc (Monash), PhD (Queensland), Cyclone Testing Station, James Cook University, Townsville, Australia. © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Long Term Landscape Evolution of the Western Australian Shield
    Joe Jennings: Father of modern Australian geomorphology BRAD PILLANS Research School of Earth Sciences, The Australian National University, Canberra, ACT, 0200, Australia ([email protected]) Joe Jennings was appointed to the Geography Department at the Australian National University (ANU) in 1953, and over the next three decades he had a profound and lasting effect on Australian geomorphology. Although best remembered as a karst geomorphologist, Joe had wide-ranging research interests and boundless enthusiasm for the entire discipline of geomorphology. Nowhere is this better evidenced than in the graduate students he supervised (with year of completion in brackets), including Eric Bird (1959), Nel Caine (1966), Ian Douglas (1966), Martin Williams (1969), Jim Bowler (1970), Bud Frank (1972), John Chappell (1973), Colin Pain (1973), Ross Coventry (1973), Chris Whitaker (1976), Joyce Lundberg (1976) and David Gillieson (1982). As a PhD student of John Chappell, and therefore an academic grandson of Joe, I was privileged to know him in the late 1970’s and early 1980’s at ANU. In this paper I have constructed a “family tree” of Joe’s academic descendents. Introduction Joseph Newell Jennings (1916-1984), or Joe to everyone who knew him (Fig. 1), was appointed to the fledgling Geography Department at the Australian National University (ANU) in 1953, and over the next three decades he had a profound and lasting effect on Australian geomorphology. Joe is best remembered as a karst geomorphologist, but in fact he had wide-ranging research interests and boundless enthusiasm for the entire discipline of geomorphology - see obituary and publication list in Spate & Spate (1985).
    [Show full text]
  • REFORMING AUSTRALIAN SHIELD LAWS Press Freedom Policy Papers
    Press Freedom Policy Papers Reform Briefing 2/2021 Anna Kretowicz REFORMING AUSTRALIAN SHIELD LAWS Press Freedom Policy Papers SUMMARY KEY POINTS • Shield laws allow journalists to maintain the confidentiality of information that would disclose the identity of a confidential source. • Shield laws are necessary to enable a free flow of information between members of the public and the news media. Sources, including whistleblowers, are less likely to supply the media with information if they believe that journalists will be unable to maintain their anonymity. • The scope of the protection conferred by Australia’s existing shield laws varies between different jurisdictions. This is in part due to the absence of a uniform definition of ‘journalist’. • In most Australian jurisdictions, shield laws do not prevent law enforcement agencies from accessing a journalist’s confidential information under a regular search and seizure warrant. REFORM CONSIDERATIONS • Shield laws should be harmonised nationwide. • Shield laws should be extended to police investigations. • The terms ‘journalist’ and ‘news medium’ should be defined in a consistent and broad way in order to maximise the protection of confidential sources in the modern media environment. law.uq.edu.au/research/press-freedom 2 Press Freedom Policy Papers REFORMING AUSTRALIAN SHIELD LAWS Reform Briefing 2/2021 “Journalists are bound by their code of ethics not to disclose sources, and to demand that they do is asking them to break a covenant recognised the world over as crucial to uncovering misconduct – when authorities would prefer the public to stay in the dark.”1 - The Board of the National Press Club of Australia This statement was released the day after the that could identify a source.
    [Show full text]
  • When Repatriation Doesn't Happen: Relationships Created Through Cultural Property Negotiations
    University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 2020 When Repatriation Doesn’t Happen: Relationships Created Through Cultural Property Negotiations Ellyn DeMuynck Follow this and additional works at: https://digitalcommons.du.edu/etd Part of the Museum Studies Commons, and the Social and Cultural Anthropology Commons When Repatriation Doesn’t Happen: Relationships Created Through Cultural Property Negotiations __________________ A Thesis Presented to the Faculty of the College of Arts, Humanities and Social Sciences University of Denver __________________ In Partial Fulfillment of the Requirements for the Degree Master of Arts ___________________ by Ellyn DeMuynck March 2020 Advisor: Christina Kreps Author: Ellyn DeMuynck Title: When Repatriation Doesn’t Happen: Relationships Created Through Cultural Property Negotiations Advisor: Christina Kreps Degree Date: March 2020 Abstract This thesis analyzes the discourse of repatriation in connection to the Encounters exhibition held by the National Museum of Australia in 2015. Indigenous Australian and Torres Strait Islander artifacts were loaned to the Australian museum by the British Museum. At the close of the exhibition, one item, the Gweagal shield, was claimed for repatriation. The repatriation request had not been approved at the time of this research. The Gweagal shield is a historically significant artifact for Indigenous and non- Indigenous Australians. Analysis takes into account the political economy of the two museums and situates the exhibition within the relevant museum policies. This thesis argues that, while the shield has not yet returned to Australia, the discussions about what a return would mean are part of the larger process of repatriation. It is during these discussions that the rights to material culture are negotiated.
    [Show full text]
  • Components and Structure of the Yilgarn Craton, As Interpreted from Aeromagnetic Data
    536 Components and structure of the Yilgarn Craton, as interpreted from aeromagnetic data A.J. Whitaker Australian Geological Survey Organisation Canberra, ACT, Australia xisting geological models of the structure and evolution of the Yilgarn Craton are poorly constrained with E extensive regolith (weathering and surficial cover) a significant factor in limiting understanding. Regional aeromagnetic data acquired with a ground clearance of 60 metres or greater are little effected by this regolith, and their interpretation provides a continuous model of the distribution of the Archaean rocks. Five distinct regionally distributed geophysical map units are defined (undivided gneiss-migmatite-granite, banded gneiss, granite plutons, sinuous gneiss, and greenstone) which in various proportions comprise eight large domains that may equate with geological provinces. The domain boundaries coincide with abrupt changes in magnetisation and or structural trends. Boundaries of geologically-based models commonly occur in areas where there is no geophysical evidence for changes in crustal structure or composition. Interlinking shears in the Norseman-Wiluna Belt define a craton scale shear zone with less deformed crust to the east and west. Background Gee et al. (1981) subdivided the Yilgarn Craton on geological grounds into four provinces, the Western Gneiss Terrane, and three granite-greenstone provinces to the east (Murchison, Southern Cross and the Eastern Goldfields Provinces). Subsequent zircon dating has yielded ages of 3.7 to 3.3 Ga for gneiss in the northern Western Gneiss Terrane, 3.00 to 2.70 Ga for greenstone deposition in the Murchison and Southern Cross Provinces, and 2.74 to 2.63 Ga for greenstone deposition and granite intrusion in the Eastern Goldfields Province.
    [Show full text]
  • 14. Australia and Oceania – Geomorphology, Climate and Hydrology
    14. Australia and Oceania – geomorphology, climate and hydrology Geomorphology = the flattest and driest (except of Antarctica) of all the continents Australia´s inland = “outback” = plains and low plateaux. Coastal plains of SE AUS = most populous, divided by Great Dividing Range, in the S = Blue mts. and Snowy mts. (Mt. Kosciusko – 2,228 m) Other geomorphological units to remember: • Cape York • Arnhem Land • Great Sandy Desert • Great Victoria Desert • Nullarbor Plain • Macdonnel Ranges Climate AUS is bisected by the tropic of Capricorn; much of Australia is closer to the equator than any part of the USA. N AUS enjoys a tropical climate and S Australia a temperate one. Winter = typical daily maximums are from 20 to 24 degrees Celsius and rain is rare. The beaches and tropical islands of Queensland and the Great Barrier Reef most pleasant at this time of year. Further south, the weather is less dependable in Melbourne in August maximums as low as 13°C are possible, but can reach as high as 23°C. Summer = northern states are hotter and wetter, while the southern states are simply hotter, with temperatures up to 41°C in Sydney, Adelaide, and Melbourne but generally between 25 and 33°C => very pleasant climate too. Snow is rare in Melbourne and Hobart, falling less than once every ten years, and in the other capitals it is unknown. However, there are extensive, well- developed ski fields in the Great Dividing Range a few hours drive from Melbourne and Sydney. Late August marks the peak of the snow season, and the ski resorts are a popular destination.
    [Show full text]
  • Air Quality Impact Assessment.Pdf
    Perdaman Urea Project Cardno (WA) Pty Ltd Air Quality Impact Assessment Final | Revision 7 16 March 2020 Air Quality Impact Assessment Perdaman Urea Project Project No: IW213400 Document Title: Air Quality Impact Assessment Document No.: Final Revision: Revision 7 Date: 16 March 2020 Client Name: Cardno (WA) Pty Ltd Project Manager: Lisa Boulden Author: Matthew Pickett, Maria Murphy & Andrew Boyd File Name: Perdaman-AQ-Assessment-Rev7_issued Jacobs Group (Australia) Pty Limited ABN 37 001 024 095 Level 6, 30 Flinders Street Adelaide SA 5000 Australia T +61 8 8113 5400 F +61 8 8113 5440 www.jacobs.com © Copyright 2020 Jacobs Group (Australia) Pty Limited. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright. Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs’ client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party. Document history and status Revision Date Description By Review Approved A 12 Aug 2019 Preliminary draft M Pickett, M Murphy, A Boyd S Lakmaker, L Boulden L Boulden B 6 Sep 2019 Draft report M Pickett, M Murphy, A Boyd S Lakmaker, L Boulden D Malins 0 26 Sep 2019 Draft report M Pickett, M Murphy, A Boyd L Boulden D Malins
    [Show full text]
  • University of Canberra Handbook 1996
    University of Canberra Handbook 1996 University of Canberra, AUSTRALIA HANDBOOK 1996 Contents * Principal dates for 1996 * How to use this Handbook * The University * Information for Students * Faculty of Applied Science * Faculty of Communication * Faculty of Education * Faculty of Environmental Design * Faculty of Information Sciences and Engineering * Faculty of Management * Electives * Unit Availability * Keyword search 1996 Handbook * Search Description of Units file:////warsaw/www/uc/hb/handbook96/index.html [11/09/2013 1:51:16 PM] University of Canberra 1996 - Principal dates for 1996 University of Canberra, AUSTRALIA HANDBOOK 1996 Principal dates for 1996 ● Semester 1 ● Semester 2 ● Dates to Note: Semester 1 26 February - 01 March Orientation/Registration Week 04 - 08 March Week 1 11 - 15 March Week 2 19 - 22 March Week 3 25 - 29 March Week 4 01 - 04 April Week 5 09 - 12 April Week 6 15 - 19 April Week 7 22 April - 3 May Class free period 06 - 10 May Week 10 13 - 17 May Week 11 20 - 24 May Week 12 27 - 31 May Week 13 03 - 07 June Week 14 11 - 14 June Week 15 19 June - 06 July Examination Period Semester 2 15 - 19 July Registration Week 22 - 26 July Week 1 29 July - 02 August Week 2 05 - 09 August Week 3 12 - 16 August Week 4 19 - 23 August Week 5 26 - 30 August Week 6 02 - 06 September Week 7 09 - 13 September Week 8 16 - 20 September Week 9 23 September - 07 October Class free period 08 - 11 October Week 12 14 - 18 October Week 13 21 - 25 October Week 14 28 October - 1 November Week 15 06 - 23 November Examination Period Dates
    [Show full text]