Mammary Tumor Growth and Pulmonary Metastasis Are Enhanced in a Hyperlipidemic Mouse Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Endothelial Glycocalyx-Mediated Intercellular Interactions: Mechanisms and Implications for Health and Disease
ENDOTHELIAL GLYCOCALYX-MEDIATED INTERCELLULAR INTERACTIONS: MECHANISMS AND IMPLICATIONS FOR HEALTH AND DISEASE A Dissertation Presented By Solomon Arko Mensah To The Department of Bioengineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Bioengineering Northeastern University Boston, Massachusetts October 2019 Northeastern University Graduate School of Engineering Dissertation Signature Page Dissertation Title: Endothelial Glycocalyx-Mediated Intercellular Interactions: Mechanisms and Implications for Health and Disease Author: Solomon Arko Mensah NUID: 001753218 Department: Bioengineering Approved for Dissertation Requirement for the Doctor of Philosophy Degree Dissertation Advisor Dr. Eno. E. Ebong, Associate Professor Print Name, Title Signature Date Dissertation Committee Member Dr. Arthur J. Coury, Distinguished Professor Print Name, Title Signature Date Dissertation Committee Member Dr. Rebecca L. Carrier, Professor Print Name, Title Signature Date Dissertation Committee Member Dr. James Monaghan, Associate Professor Print Name, Title Signature Date Department Chair Dr. Lee Makowski, Professor and Chair Print Name, Title Signature Date Associate Dean of the Graduate School Dr. Waleed Meleis, Interim Associate Dean Associate Dean for Graduate Education Signature Date ii ACKNOWLEDGEMENTS First of all, I will like to thank God for how far he has brought me. I am grateful to you, God, for sending your son JESUS CHRIST to die for my sins. I do not take this substitutionary death of CHRIST for granted, and I am forever indebted to you for my salvation. I would like to express my sincerest gratitude to my PI, Dr. Eno Essien Ebong, for the mentorship, leadership and unwaivering guidance through my academic career and personal life. Dr Ebong, you taught me everything I know about scientific research and communication and I will not be where I am today if not for your leadership. -
The Snf1-Related Kinase, Hunk, Is Essential for Mammary Tumor Metastasis
The Snf1-related kinase, Hunk, is essential for mammary tumor metastasis Gerald B. W. Wertheima, Thomas W. Yanga, Tien-chi Pana, Anna Ramnea, Zhandong Liua, Heather P. Gardnera, Katherine D. Dugana, Petra Kristelb, Bas Kreikeb, Marc J. van de Vijverb, Robert D. Cardiffc, Carol Reynoldsd, and Lewis A. Chodosha,1 aDepartments of Cancer Biology, Cell and Developmental Biology, and Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160; bDepartment of Diagnostic Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; cCenter for Comparative Medicine, University of California, County Road 98 and Hutchison Drive, Davis, CA 95616; and dDivision of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905 Communicated by Craig B. Thompson, University of Pennsylvania, Philadelphia, PA, July 27, 2009 (received for review April 22, 2009) We previously identified a SNF1/AMPK-related protein kinase, Hunk, Results from a mammary tumor arising in an MMTV-neu transgenic mouse. Hunk Is Overexpressed in Aggressive Subsets of Human Cancers. To The function of this kinase is unknown. Using targeted deletion in investigate its role in human tumorigenesis, we cloned the human mice, we now demonstrate that Hunk is required for the metastasis homologue of Hunk from a fetal brain cDNA library. Sequence of c-myc-induced mammary tumors, but is dispensable for normal analysis yielded a composite cDNA spanning an ORF of 714 amino development. Reconstitution experiments revealed that Hunk is suf- acids (GenBank accession #NM014586). Review of this sequence ficient to restore the metastatic potential of Hunk-deficient tumor and of human genome data indicated that a single Hunk isoform cells, as well as defects in migration and invasion, and does so in a exists that is 92% identical to murine Hunk at the amino acid level manner that requires its kinase activity. -
Dysfunctional Mechanotransduction Through the YAP/TAZ/Hippo Pathway As a Feature of Chronic Disease
cells Review Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease 1, 2, 2,3, 4 Mathias Cobbaut y, Simge Karagil y, Lucrezia Bruno y, Maria Del Carmen Diaz de la Loza , Francesca E Mackenzie 3, Michael Stolinski 2 and Ahmed Elbediwy 2,* 1 Protein Phosphorylation Lab, Francis Crick Institute, London NW1 1AT, UK; [email protected] 2 Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; [email protected] (S.K.); [email protected] (L.B.); [email protected] (M.S.) 3 Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; [email protected] 4 Epithelial Biology Lab, Francis Crick Institute, London NW1 1AT, UK; [email protected] * Correspondence: [email protected] These authors contribute equally to this work. y Received: 30 November 2019; Accepted: 4 January 2020; Published: 8 January 2020 Abstract: In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions. -
Two-Dimensional Signal Transduction During the Formation of Invadopodia
Malaysian Journal of Mathematical Sciences 13(2): 155164 (2019) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Two-Dimensional Signal Transduction during the Formation of Invadopodia Noor Azhuan, N. A.1, Poignard, C.2, Suzuki, T.3, Shae, S.1, and Admon, M. A. ∗1 1Department of Mathematical Sciences, Universiti Teknologi Malaysia, Malaysia 2INRIA de Bordeaux-Sud Ouest, Team MONC, France 3Center for Mathematical Modeling and Data Science, Osaka University, Japan E-mail: [email protected] ∗ Corresponding author Received: 6 November 2018 Accepted: 7 April 2019 ABSTRACT Signal transduction is an important process associated with invadopodia formation which consequently leads to cancer cell invasion. In this study, a two-dimensional free boundary problem in a steady-case of signal trans- duction during the formation of invadopodia is investigated. The signal equation is represented by a Laplace equation with Dirichlet boundary condition. The plasma membrane is taken as zero level set function. The level set method is used to solve the complete model numerically. Our results showed that protrusions are developed on the membrane surface due to the presence of signal density inside the cell. Keywords: Invadopodia formation, Signal transduction, Free boundary problem and Level set method. Noor Azhuan,N. A. et. al 1. Introduction Normally, human cells grow and divide to form new cells as required by the body. Cells grow old or become damaged and die, and new cells take their place. However, this orderly process breaks down when a cancer cell formed through multiple mutation in an individual's normal cell key genes. -
Surgically-Induced Multi-Organ Metastasis in an Orthotopic Syngeneic Imageable Model of 4T1 Murine Breast Cancer
ANTICANCER RESEARCH 35: 4641-4646 (2015) Surgically-Induced Multi-organ Metastasis in an Orthotopic Syngeneic Imageable Model of 4T1 Murine Breast Cancer YONG ZHANG1, NAN ZHANG1, ROBERT M. HOFFMAN1,2 and MING ZHAO1 1AntiCancer, Inc., San Diego, CA, U.S.A.; 2Department of Surgery, University of California, San Diego, CA, U.S.A. Abstract. Background/Aim: Murine models of breast cancer When implanted orthotopically, 4T1 has been shown to with a metastatic pattern similar to clinical breast cancer in metastasize to organs similarly to clinical breast cancer in humans would be useful for drug discovery and mechanistic humans, including to lungs, liver, brain and bone (3-6). Tao studies. The 4T1 mouse breast cancer cell line was developed et al. transformed the 4T1 cell line to express luciferase for by Miller et al. in the early 1980s to study tumor metastatic longitudinal detection of primary growth and metastases (7). heterogeneity. The aim of the present study was to develop a In their study, metastasis at high rates, including the lungs, multi-organ-metastasis imageable model of 4T1. Materials and liver and bone, occurred in most animals within six weeks Methods: A stable 4T1 clone highly-expressing red fluorescent with lower frequency of metastasis to brain and other sites. protein (RFP) was injected orthotopically into the right second This imageable model is limited by the weak signal of mammary fat pad of BALB/c mice. The primary tumor was luciferase which requires photon-counting of anesthetized resected on day 18 after tumor implantation, when the average animals. The weak signal of luciferase cannot produce a true tumor volume reached approximately 500-600 mm3. -
Cell and Molecular Biology of Invadopodia
CHAPTER ONE Cell and Molecular Biology of Invadopodia Giusi Caldieri, Inmaculada Ayala, Francesca Attanasio, and Roberto Buccione Contents 1. Introduction 2 2. Biogenesis, Molecular Components, and Activity 3 2.1. Structure 4 2.2. The cell–ECM interface 5 2.3. Actin-remodeling machinery 7 2.4. Signaling to the cytoskeleton 11 2.5. Interaction with and degradation of the ECM 19 3. Open Questions and Concluding Remarks 23 3.1. Podosomes versus invadopodia 23 3.2. Invadopodia in three dimensions 24 3.3. Invadopodia as a model for drug discovery 24 Acknowledgments 25 References 25 Abstract The controlled degradation of the extracellular matrix is crucial in physiological and pathological cell invasion alike. In vitro, degradation occurs at specific sites where invasive cells make contact with the extracellular matrix via specialized plasma membrane protrusions termed invadopodia. Considerable progress has been made in recent years toward understanding the basic molecular components and their ultrastructural features; generating substantial interest in invadopodia as a paradigm to study the complex interactions between the intracellular trafficking, signal transduction, and cytoskeleton regulation machi- neries. The next level will be to understand whether they may also represent valid biological targets to help advance the anticancer drug discovery process. Current knowledge will be reviewed here together with some of the most important open questions in invadopodia biology. Tumor Cell Invasion Laboratory, Consorzio Mario Negri Sud, S. Maria Imbaro (Chieti) 66030, Italy International Review of Cell and Molecular Biology, Volume 275 # 2009 Elsevier Inc. ISSN 1937-6448, DOI: 10.1016/S1937-6448(09)75001-4 All rights reserved. 1 2 Giusi Caldieri et al. -
Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels
gels Review Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels Xabier Morales †, Iván Cortés-Domínguez † and Carlos Ortiz-de-Solorzano * IDISNA, Ciberonc and Solid Tumors and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; [email protected] (X.M.); [email protected] (I.C.-D.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Understanding how cancer cells migrate, and how this migration is affected by the me- chanical and chemical composition of the extracellular matrix (ECM) is critical to investigate and possibly interfere with the metastatic process, which is responsible for most cancer-related deaths. In this article we review the state of the art about the use of hydrogel-based three-dimensional (3D) scaffolds as artificial platforms to model the mechanobiology of cancer cell migration. We start by briefly reviewing the concept and composition of the extracellular matrix (ECM) and the materials commonly used to recreate the cancerous ECM. Then we summarize the most relevant knowledge about the mechanobiology of cancer cell migration that has been obtained using 3D hydrogel scaf- folds, and relate those discoveries to what has been observed in the clinical management of solid tumors. Finally, we review some recent methodological developments, specifically the use of novel bioprinting techniques and microfluidics to create realistic hydrogel-based models of the cancer ECM, and some of their applications in the context of the study of cancer cell migration. Keywords: hydrogel; collagen; Matrigel; extracellular matrix; mechanobiology; amoeboid-mesenchymal transition; cancer; cell migration; microfluidic devices; bioprinting Citation: Morales, X.; Cortés-Domínguez, I.; Ortiz-de-Solorzano, C. -
Cholesterol Targeting in Cancer Therapy
Oncogene (2010) 29, 3745–3747 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc COMMENTARY The Rafts of the Medusa: cholesterol targeting in cancer therapy MR Freeman1,2,3,4, D Di Vizio1,2,3 and KR Solomon1,2,5 1Urological Diseases Research Center, Children’s Hospital Boston, Boston, MA, USA; 2Department of Urology, Children’s Hospital Boston–Harvard Medical School, Boston, MA, USA; 3Department of Surgery, Children’s Hospital Boston–Harvard Medical School, Boston, MA, USA; 4Department of Biological Chemistry and Molecular Pharmacology, Children’s Hospital Boston–Harvard Medical School, Boston, MA, USA and 5Department of Orthopaedic Surgery, Children’s Hospital Boston–Harvard Medical School, Boston, MA, USA In this issue of Oncogene, Mollinedo and co-workers present promising evidence that cholesterol-sensitive signaling pathways involving lipid rafts can be therapeutically targeted in multiple myeloma. Because the pathways considered in their study are used by other types of tumor cells, one implication of this report is that cholesterol-targeting approaches may be applicable to other malignancies. Oncogene (2010) 29, 3745–3747; doi:10.1038/onc.2010.132; published online 3 May 2010 Cholesterol is a sterol that serves targeted therapeutically in the case androgens are generally thought to as a metabolic precursor to other of certain malignancies. promote prostate cancer disease bioactive sterols, such as nuclear Published evidence suggests that progression, the relative clarity of receptor ligands, and also has a a cholesterol-focused approach the epidemiological data in pros- major role in plasma membrane might work in some clinical scenar- tate cancer in comparison to other structure. -
Canine Mammary Carcinoma
Oncology Services Lloyd Veterinary Medical Center Hixson-Lied Small Animal Hospital Canine Mammary Carcinoma What is a canine mammary carcinoma? Tumors of the mammary gland develop when the cells associated with the mammary gland become cancerous and grow uncontrollably. In dogs, approximately 50% of mammary tumors are malignant (have the potential to spread to other areas of the body). The other half are considered to be benign. The most common type of malignant mammary tumor is a carcinoma. What are the clinical signs of a mammary tumor? This tumor is often identified during a routine physical exam, or you may notice it at home. They usually manifest as a swelling of the mammary gland or the nearby tissues/skin. They can be firm or soft. How is a mammary tumor diagnosed? Biopsy is required to diagnose a mammary gland tumor. Prior to making definitive treatment options, full staging with an abdominal ultrasound, chest x-rays, and evaluation of the local lymph nodes are recommended to look for any spread of disease. How is a mammary tumor treated? Treatment of mammary tumors is aimed at both local control (removing the primary tumor and minimizing the likelihood of local recurrence) and systemic control (delaying the onset of spread of disease). Each tumor should be removed with a wide band of normal tissue around the tumor to result in the best possible outcome. If this type of surgery is not possible, a combination of surgery and radiation therapy may be discussed. Based on the type of tumor, and several factors evaluated on biopsy, chemotherapy may be recommended in addition to surgical removal. -
Suppression Ofautochthonous Grafts Ofspontaneous Mammary Tumor by Induced Allogeneic Graft Rejection Mechanism
[CANCER RESEARCH 33, 645-647, April 1973] Suppression of Autochthonous Grafts of Spontaneous Mammary Tumor by Induced Allogeneic Graft Rejection Mechanism Reiko Tokuzen and Waro Nakahara National Cancer Center Research Institute, Tsukiji 5-chome, Chuo-ku, Tokyo, Japan SUMMARY existing between the allogeneic and autochthonous grafts are involved in determining the different susceptibilities to the Autochthonous grafts of spontaneous mammary adenocar- host-mediated antitumor effect of plant polysaccharides. cinoma of mice give 100% takes with no spontaneous More recently, we examined local cellular reactions around regression. However, the growth of these autografts was Sarcoma 180 grafts during the process of regression under markedly inhibited with a high rate of complete regression polysaccharide treatment, and we found a massive outpouring when the grafts were mixed with ascitic Sarcoma 180 and of lymphoid cells 1 week after tumor implantation. No such implanted under i.p. treatment with lentinan. Lentinan is one cellular reaction was noted in untreated controls or in mice of the so-called antitumor-active plant polysaccharides; it treated with inactive polysaccharides. Similarly, autoch strongly inhibits Sarcoma 180 but has no effect on thonous grafts of spontaneous mammary tumors, not at all autochthonous grafts. Without the lentinan treatment, the inhibited by polysaccharides, called forth no local lymphoid mixed autografts and Sarcoma 180 or Sarcoma 180 alone cell infiltration. constantly produced large tumors. These results indicate that a The question arose as to what would happen to autoch local rejection mechanism against allogeneic tumor (Sarcoma thonous grafts if such local cell reaction were induced around 180), induced by injections of lentinan, failed to recognize them as in that which occurred around Sarcoma 180 under autografts as "self and destroyed them along with the polysaccharide treatment. -
Understanding the Etiology of Inflammatory Breast
UNDERSTANDING THE ETIOLOGY OF INFLAMMATORY BREAST CANCER by Lauren M. Shuman A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences Spring 2015 © 2015 Lauren M. Shuman All Rights Reserved ProQuest Number: 1596894 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 1596894 Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 UNDERSTANDING THE ETIOLOGY OF INFLAMMATORY BREAST CANCER by Lauren M. Shuman Approved: ____________________________________________________ Kenneth L. van Golen, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: ____________________________________________________ Robin W. Morgan, Ph.D. Chair of the Department of Biological Sciences Approved: ____________________________________________________ George H. Watson, Ph.D. Dean of the College of Arts and Sciences Approved: ____________________________________________________ James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education ACKNOWLEDGMENTS First and foremost, I would like to thank Dr. Kenneth van Golen for a list of things, but namely for the opportunity to work in this lab that gave me my first experience in cancer research. -
Compressive Stress Enhances Invasive Phenotype of Cancer Cells Via Piezo1 Activation Mingzhi Luo1,2, Kenneth K. Y. Ho2, Zhaowen
bioRxiv preprint doi: https://doi.org/10.1101/513218; this version posted January 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Compressive Stress Enhances Invasive Phenotype of Cancer Cells via Piezo1 Activation Mingzhi Luo1,2, Kenneth K. Y. Ho2, Zhaowen Tong3, Linhong Deng1,*, Allen P. Liu2,3,4,5,* 1 Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, P. R. China 2 Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States 3 Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States 4 Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States 5 Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States * Corresponding author: Linhong Deng, +86-13685207009, [email protected]; Allen P. Liu, +1-734-764-7719, [email protected] bioRxiv preprint doi: https://doi.org/10.1101/513218; this version posted January 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Uncontrolled growth in solid tumor generates compressive stress that drives cancer cells into invasive phenotypes, but little is known about how such stress affects the invasion and matrix degradation of cancer cells and the underlying mechanisms. Here we show that compressive stress enhanced invasion, matrix degradation, and invadopodia formation of breast cancer cells. We further identified Piezo1 channels as the putative mechanosensitive cellular components that transmit the compression to induce calcium influx, which in turn triggers activation of RhoA, Src, FAK, and ERK signaling, as well as MMP-9 expression.