Floating Point Representations

Total Page:16

File Type:pdf, Size:1020Kb

Floating Point Representations c ENEE 350 C. B. Silio, Jan., 2000 FLOATING POINT REPRESENTATIONS It is assumed that the student is familiar with the discussion in App endix B of the text byA.Tanenbaum, Structured Computer Organization, 4th Ed., Prentice-Hall, 1999. Here we are concerned in particular with the discussion of oating-p ointnumb ers and normalization in pp. 643{651. In the notation used here oating p oint representations for real numb ers have the form: E M R ; where M is a signed mantissa, Ristheradix of normalization, and E is a signed exponent. It is the signed values M and E that are typically packed into computer \words" of varying length to enco de single, double, and extended precision short, long, and extended oating p ointnumb ers. The numb er of bits used in the representation of M determines the precision of the representation. The number of bits used to represent the signed value E determines the range of the representation. Only a nite number of values among those in the representable range can be enco ded in the n bits available, and this number is determined by the precision. To facilitate xed-p oint comparisons of oating-p oint data representations such as might o ccur in sorting applications three things are usually done. The rst is to place the sign of the mantissa M denoted S on the M left in the same lo cation as in the sign representation for xed p ointnumb ers. This provides easy detection of the sign of the oating-p oint data in the same manner as for xed-p oint data. The second thing is to place the signed exp onent representation b etween S and M just to the left of M as packed in the high M order word, and the third thing is to bias the k-bit representation of the signed exp onent so as to shift the represented range. In a k-bit eld the range of signed exp onents is: k 1 k 1 2 1 E +2 1: One of the more common ways of biasing the exp onent but not the only wayaswe shall see in the examples k 1 is to add to the signed exp onent a bias of 2 This bias is appropriately subtracted in unpacking for output conversion and other arithmetic op erations. The biased exp onent is called the characteristic E of the b representation. Biasing the number in this way alleviates the need to examine the sign of the exp onent explicitly in making xed p oint comparisons such as in sorting. The range of the characteristic or biased exp onent is then: k 1 k 1 k 1 k 1 k 1 2 +2 +1 E +2 2 +2 1 ; which is equivalentto k 1 E 2 1: b k 1 The term usually used is that the characteristic represents the exp onent excess 2 . Some computer manufacturers do not use a symmetric range and p ermit one more negative exp onent in the representation of the characteristic by allowing a zero characteristic to b e a valid representation. A oating p ointnumb er packed into a single word would then have the following form: S C H AR AC T E R I S T I C MANTISSA M 1 k j The purp ose of normalization is to preserve as many signi cant digits in the representation as p ossible in the j bits available to represent the normalized mantissa. The greatest number of signi cant bits are preserved j of them when the radix of normalization is binary R = 2. When R = 16, the most signi cant non-zero hexadecimal digit in the normalized mantissa mayhaveasmany as three leading zeros in the j -bit binary representation in a binary computer. Some representations assume a normalized fraction, in which case the radix p oint is assumed to lie at the b oundary b etween the characteristic and the mantissa. Other representations assume the mantissa is 1 normalized as an integer e.g., the CDC 6600, CYBER 70 and successor series machines so that the radix p oint is assumed to lie immediately to the right of the mantissa. In the case of binary normalization some representations assume the numb er to b e normalized only if the most signi cant binary digit is a one. If this digit is always a one, there is no uncertainty and therefore no need to devote a bit in the j bits available to represent this digit; it can thus b e represented implicitly as a hidden-bit so that the remaining lower order j binary digits in which there is some uncertainty from number to numb er can be represented. By using a hidden bit the representation p ermits a precision of j + 1 bits for the mantissa, but at the exp ense of p ossibly giving up an explicit representation for zero. For example, hidden bits are used in the DEC PDP-11 series oating p ointnumb er representations and in the IEEE Standard Floating Point representations. In other representations zero is usually handled as a sp ecial case by letting a word with all zeros represent the value zero or equivalently, in one's complement machines letting a vector of all one's represent minus zero. The p ortion of the real line represented by oating p oint formats app ears as follows: N eg ativ e E xpr essibl e N eg ativ e P ositiv e E xpr essibl e P ositiv e O v er f l ow N eg ativ e U nder f l ow U nder f l ow P ositiv e O v er f l ow R eg ion N umber s R eg ion R eg ion N umber s R eg ion 1 Zero ! +1 Using an n-bit word to represent a single precision oating-p ointword, we note that there are exactly n 2 values in the sets of Positive and Negative Expressible Numb ers that can b e represented including zero. Positive and negative oating p ointnumb ers are usually represented in one of twoways dep ending on the computer's choice of arithmetic circuitry and representation for xed p ointnumb ers. Machines that use one's complement representations for xed p ointnumb ers and have one's complement adders in their arithmetic units typically pack the p ositive oating p oint number into one or more words and then complement all bits in this these words to represent the negative oating p oint numb er. Examples of these one's complement representations include the UNIVAC 1100 series machines and the CDC 6600, CYBER 70 series and successor machines. Machines that represent xed p oint numb ers in two's complement form and have two's complement adders in their arithmetic units typically use a sign magnitude representation for p ositive and negative oating p ointnumb ers with S = 0 for p ositivenumb ers and S = 1 for negativenumb ers. The negative M M mantissas are typically converted to their two's complement representations when the oating p ointnumber is unpacked for oating p oint arithmetic op erations; the result's mantissa is then converted back to a sign- magnitude format when it is repacked into the oating p oint representation after an arithmetic op eration or up on input conversion. Machines that use this sign magnitude representation for oating p ointnumb ers include the IBM 360/370 and compatible instruction set architectures, the DEC PDP-11 series and upward compatible machines, the Cray-1 and successors and machines that use the IEEE Floating Point Standard representation. Wenow consider sp eci c examples to illustrate the concepts. Floating p oint formats used on machines of various manufacturers are considered; namely, the UNIVAC 1100 series, the IBM 360/370 series, the DEC PDP-11/VAX-11 series, the CDC 6600/CYBER 70 series, and the IEEE Floating Point Standard series such as the Intel 8087 series numeric data pro cessors.For each machine format considered we shall present oating- p oint representations of the numb ers +29:2 and 29:2 ; and of the numb ers +0:03125 and 0:03125 : 10 10 10 10 Recall that 29:2 =35:1463 =1D:3 = 11101:0011 : 10 8 16 2 Furthermore, recall that 1 =0:00001 =0:02 =0:08 : 0:03125 = 2 8 16 10 32 10 2 UNIVAC 1100 The UNIVAC 1100 series machines use 36-bit words to represent instructions and xed p oint data and a one's complement representation for negativenumb ers with one's complement arithmetic circuitry. A single precision oating p oint datum is packed into a single 36-bit word, and a double precision oating p oint datum is packed into two consecutive 36-bit words with the second 36-bit word representing a continuation of the low order bits in the mantissa. The mantissa is a binary normalized fraction of the form 0:1xxxxxx or is either 2 all zeros or all ones. A single precision datum has an 8-bit characteristic that represents a signed exp onent with bias excess 128 = 200 , and a double precision datum has an 11-bit characteristic that represents 10 8 the signed exp onent excess 1024 = 2000 . Negative oating-p oint numb ers are represented by packing 10 8 the p ositive representation into the single or double words and then taking the one's complement of this these words by logically complementing each of the 36 72 bit p ositions including the characteristic eld.
Recommended publications
  • Arithmetic Algorithms for Extended Precision Using Floating-Point Expansions Mioara Joldes, Olivier Marty, Jean-Michel Muller, Valentina Popescu
    Arithmetic algorithms for extended precision using floating-point expansions Mioara Joldes, Olivier Marty, Jean-Michel Muller, Valentina Popescu To cite this version: Mioara Joldes, Olivier Marty, Jean-Michel Muller, Valentina Popescu. Arithmetic algorithms for extended precision using floating-point expansions. IEEE Transactions on Computers, Institute of Electrical and Electronics Engineers, 2016, 65 (4), pp.1197 - 1210. 10.1109/TC.2015.2441714. hal- 01111551v2 HAL Id: hal-01111551 https://hal.archives-ouvertes.fr/hal-01111551v2 Submitted on 2 Jun 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 1 Arithmetic algorithms for extended precision using floating-point expansions Mioara Joldes¸, Olivier Marty, Jean-Michel Muller and Valentina Popescu Abstract—Many numerical problems require a higher computing precision than the one offered by standard floating-point (FP) formats. One common way of extending the precision is to represent numbers in a multiple component format. By using the so- called floating-point expansions, real numbers are represented as the unevaluated sum of standard machine precision FP numbers. This representation offers the simplicity of using directly available, hardware implemented and highly optimized, FP operations.
    [Show full text]
  • Floating Points
    Jin-Soo Kim ([email protected]) Systems Software & Architecture Lab. Seoul National University Floating Points Fall 2018 ▪ How to represent fractional values with finite number of bits? • 0.1 • 0.612 • 3.14159265358979323846264338327950288... ▪ Wide ranges of numbers • 1 Light-Year = 9,460,730,472,580.8 km • The radius of a hydrogen atom: 0.000000000025 m 4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim ([email protected]) 2 ▪ Representation • Bits to right of “binary point” represent fractional powers of 2 • Represents rational number: 2i i i–1 k 2 bk 2 k=− j 4 • • • 2 1 bi bi–1 • • • b2 b1 b0 . b–1 b–2 b–3 • • • b–j 1/2 1/4 • • • 1/8 2–j 4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim ([email protected]) 3 ▪ Examples: Value Representation 5-3/4 101.112 2-7/8 10.1112 63/64 0.1111112 ▪ Observations • Divide by 2 by shifting right • Multiply by 2 by shifting left • Numbers of form 0.111111..2 just below 1.0 – 1/2 + 1/4 + 1/8 + … + 1/2i + … → 1.0 – Use notation 1.0 – 4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim ([email protected]) 4 ▪ Representable numbers • Can only exactly represent numbers of the form x / 2k • Other numbers have repeating bit representations Value Representation 1/3 0.0101010101[01]…2 1/5 0.001100110011[0011]…2 1/10 0.0001100110011[0011]…2 4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim ([email protected]) 5 Fixed Points ▪ p.q Fixed-point representation • Use the rightmost q bits of an integer as representing a fraction • Example: 17.14 fixed-point representation
    [Show full text]
  • Hacking in C 2020 the C Programming Language Thom Wiggers
    Hacking in C 2020 The C programming language Thom Wiggers 1 Table of Contents Introduction Undefined behaviour Abstracting away from bytes in memory Integer representations 2 Table of Contents Introduction Undefined behaviour Abstracting away from bytes in memory Integer representations 3 – Another predecessor is B. • Not one of the first programming languages: ALGOL for example is older. • Closely tied to the development of the Unix operating system • Unix and Linux are mostly written in C • Compilers are widely available for many, many, many platforms • Still in development: latest release of standard is C18. Popular versions are C99 and C11. • Many compilers implement extensions, leading to versions such as gnu18, gnu11. • Default version in GCC gnu11 The C programming language • Invented by Dennis Ritchie in 1972–1973 4 – Another predecessor is B. • Closely tied to the development of the Unix operating system • Unix and Linux are mostly written in C • Compilers are widely available for many, many, many platforms • Still in development: latest release of standard is C18. Popular versions are C99 and C11. • Many compilers implement extensions, leading to versions such as gnu18, gnu11. • Default version in GCC gnu11 The C programming language • Invented by Dennis Ritchie in 1972–1973 • Not one of the first programming languages: ALGOL for example is older. 4 • Closely tied to the development of the Unix operating system • Unix and Linux are mostly written in C • Compilers are widely available for many, many, many platforms • Still in development: latest release of standard is C18. Popular versions are C99 and C11. • Many compilers implement extensions, leading to versions such as gnu18, gnu11.
    [Show full text]
  • Floating Point Formats
    Telemetry Standard RCC Document 106-07, Appendix O, September 2007 APPENDIX O New FLOATING POINT FORMATS Paragraph Title Page 1.0 Introduction..................................................................................................... O-1 2.0 IEEE 32 Bit Single Precision Floating Point.................................................. O-1 3.0 IEEE 64 Bit Double Precision Floating Point ................................................ O-2 4.0 MIL STD 1750A 32 Bit Single Precision Floating Point............................... O-2 5.0 MIL STD 1750A 48 Bit Double Precision Floating Point ............................. O-2 6.0 DEC 32 Bit Single Precision Floating Point................................................... O-3 7.0 DEC 64 Bit Double Precision Floating Point ................................................. O-3 8.0 IBM 32 Bit Single Precision Floating Point ................................................... O-3 9.0 IBM 64 Bit Double Precision Floating Point.................................................. O-4 10.0 TI (Texas Instruments) 32 Bit Single Precision Floating Point...................... O-4 11.0 TI (Texas Instruments) 40 Bit Extended Precision Floating Point................. O-4 LIST OF TABLES Table O-1. Floating Point Formats.................................................................................... O-1 Telemetry Standard RCC Document 106-07, Appendix O, September 2007 This page intentionally left blank. ii Telemetry Standard RCC Document 106-07, Appendix O, September 2007 APPENDIX O FLOATING POINT
    [Show full text]
  • Extended Precision Floating Point Arithmetic
    Extended Precision Floating Point Numbers for Ill-Conditioned Problems Daniel Davis, Advisor: Dr. Scott Sarra Department of Mathematics, Marshall University Floating Point Number Systems Precision Extended Precision Patriot Missile Failure Floating point representation is based on scientific An increasing number of problems exist for which Patriot missile defense modules have been used by • The precision, p, of a floating point number notation, where a nonzero real decimal number, x, IEEE double is insufficient. These include modeling the U.S. Army since the mid-1960s. On February 21, system is the number of bits in the significand. is expressed as x = ±S × 10E, where 1 ≤ S < 10. of dynamical systems such as our solar system or the 1991, a Patriot protecting an Army barracks in Dha- This means that any normalized floating point The values of S and E are known as the significand • climate, and numerical cryptography. Several arbi- ran, Afghanistan failed to intercept a SCUD missile, number with precision p can be written as: and exponent, respectively. When discussing float- trary precision libraries have been developed, but leading to the death of 28 Americans. This failure E ing points, we are interested in the computer repre- x = ±(1.b1b2...bp−2bp−1)2 × 2 are too slow to be practical for many complex ap- was caused by floating point rounding error. The sentation of numbers, so we must consider base 2, or • The smallest x such that x > 1 is then: plications. David Bailey’s QD library may be used system measured time in tenths of seconds, using binary, rather than base 10.
    [Show full text]
  • A Variable Precision Hardware Acceleration for Scientific Computing Andrea Bocco
    A variable precision hardware acceleration for scientific computing Andrea Bocco To cite this version: Andrea Bocco. A variable precision hardware acceleration for scientific computing. Discrete Mathe- matics [cs.DM]. Université de Lyon, 2020. English. NNT : 2020LYSEI065. tel-03102749 HAL Id: tel-03102749 https://tel.archives-ouvertes.fr/tel-03102749 Submitted on 7 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : 2020LYSEI065 THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON Opérée au sein de : CEA Grenoble Ecole Doctorale InfoMaths EDA N17° 512 (Informatique Mathématique) Spécialité de doctorat :Informatique Soutenue publiquement le 29/07/2020, par : Andrea Bocco A variable precision hardware acceleration for scientific computing Devant le jury composé de : Frédéric Pétrot Président et Rapporteur Professeur des Universités, TIMA, Grenoble, France Marc Dumas Rapporteur Professeur des Universités, École Normale Supérieure de Lyon, France Nathalie Revol Examinatrice Docteure, École Normale Supérieure de Lyon, France Fabrizio Ferrandi Examinateur Professeur associé, Politecnico di Milano, Italie Florent de Dinechin Directeur de thèse Professeur des Universités, INSA Lyon, France Yves Durand Co-directeur de thèse Docteur, CEA Grenoble, France Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf © [A.
    [Show full text]
  • Effectiveness of Floating-Point Precision on the Numerical Approximation by Spectral Methods
    Mathematical and Computational Applications Article Effectiveness of Floating-Point Precision on the Numerical Approximation by Spectral Methods José A. O. Matos 1,2,† and Paulo B. Vasconcelos 1,2,∗,† 1 Center of Mathematics, University of Porto, R. Dr. Roberto Frias, 4200-464 Porto, Portugal; [email protected] 2 Faculty of Economics, University of Porto, R. Dr. Roberto Frias, 4200-464 Porto, Portugal * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: With the fast advances in computational sciences, there is a need for more accurate compu- tations, especially in large-scale solutions of differential problems and long-term simulations. Amid the many numerical approaches to solving differential problems, including both local and global methods, spectral methods can offer greater accuracy. The downside is that spectral methods often require high-order polynomial approximations, which brings numerical instability issues to the prob- lem resolution. In particular, large condition numbers associated with the large operational matrices, prevent stable algorithms from working within machine precision. Software-based solutions that implement arbitrary precision arithmetic are available and should be explored to obtain higher accu- racy when needed, even with the higher computing time cost associated. In this work, experimental results on the computation of approximate solutions of differential problems via spectral methods are detailed with recourse to quadruple precision arithmetic. Variable precision arithmetic was used in Tau Toolbox, a mathematical software package to solve integro-differential problems via the spectral Tau method. Citation: Matos, J.A.O.; Vasconcelos, Keywords: floating-point arithmetic; variable precision arithmetic; IEEE 754-2008 standard; quadru- P.B.
    [Show full text]
  • MIPS Floating Point
    CS352H: Computer Systems Architecture Lecture 6: MIPS Floating Point September 17, 2009 University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell Floating Point Representation for dynamically rescalable numbers Including very small and very large numbers, non-integers Like scientific notation –2.34 × 1056 +0.002 × 10–4 normalized +987.02 × 109 not normalized In binary yyyy ±1.xxxxxxx2 × 2 Types float and double in C University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2 Floating Point Standard Defined by IEEE Std 754-1985 Developed in response to divergence of representations Portability issues for scientific code Now almost universally adopted Two representations Single precision (32-bit) Double precision (64-bit) University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3 IEEE Floating-Point Format single: 8 bits single: 23 bits double: 11 bits double: 52 bits S Exponent Fraction x = (!1)S "(1+Fraction)"2(Exponent!Bias) S: sign bit (0 ⇒ non-negative, 1 ⇒ negative) Normalize significand: 1.0 ≤ |significand| < 2.0 Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit) Significand is Fraction with the “1.” restored Exponent: excess representation: actual exponent + Bias Ensures exponent is unsigned Single: Bias = 127; Double: Bias = 1203 University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4 Single-Precision Range Exponents 00000000 and 11111111 reserved Smallest
    [Show full text]
  • FPGA Based Quadruple Precision Floating Point Arithmetic for Scientific Computations
    International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970) Volume-2 Number-3 Issue-5 September-2012 FPGA Based Quadruple Precision Floating Point Arithmetic for Scientific Computations 1Mamidi Nagaraju, 2Geedimatla Shekar 1Department of ECE, VLSI Lab, National Institute of Technology (NIT), Calicut, Kerala, India 2Asst.Professor, Department of ECE, Amrita Vishwa Vidyapeetham University Amritapuri, Kerala, India Abstract amounts, and fractions are essential to many computations. Floating-point arithmetic lies at the In this project we explore the capability and heart of computer graphics cards, physics engines, flexibility of FPGA solutions in a sense to simulations and many models of the natural world. accelerate scientific computing applications which Floating-point computations suffer from errors due to require very high precision arithmetic, based on rounding and quantization. Fast computers let IEEE 754 standard 128-bit floating-point number programmers write numerically intensive programs, representations. Field Programmable Gate Arrays but computed results can be far from the true results (FPGA) is increasingly being used to design high due to the accumulation of errors in arithmetic end computationally intense microprocessors operations. Implementing floating-point arithmetic in capable of handling floating point mathematical hardware can solve two separate problems. First, it operations. Quadruple Precision Floating-Point greatly speeds up floating-point arithmetic and Arithmetic is important in computational fluid calculations. Implementing a floating-point dynamics and physical modelling, which require instruction will require at a generous estimate at least accurate numerical computations. However, twenty integer instructions, many of them conditional modern computers perform binary arithmetic, operations, and even if the instructions are executed which has flaws in representing and rounding the on an architecture which goes to great lengths to numbers.
    [Show full text]
  • Object Pascal Language Guide
    Object Pascal Language Guide Borland® Object Pascal Borland Software Corporation 100 Enterprise Way, Scotts Valley, CA 95066-3249 www.borland.com Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. COPYRIGHT © 1983, 2002 Borland Software Corporation. All rights reserved. All Borland brand and product names are trademarks or registered trademarks of Borland Software Corporation. Other brand and product names are trademarks or registered trademarks of their respective holders. Printed in the U.S.A. ALP0000WW21000 1E0R0102 0203040506-9 8 7654321 D3 Contents Chapter 1 Qualified identifiers . 4-2 Introduction 1-1 Reserved words . 4-3 Directives. 4-3 What’s in this manual? . 1-1 Numerals. 4-4 Using Object Pascal . 1-1 Labels . 4-4 Typographical conventions . 1-2 Character strings . 4-4 Other sources of information . 1-2 Comments and compiler directives. 4-5 Software registration and technical support . 1-3 Expressions . 4-5 Part I Operators. 4-6 Arithmetic operators . 4-6 Basic language description Boolean operators . 4-7 Logical (bitwise) operators . 4-8 Chapter 2 String operators . 4-9 Overview 2-1 Pointer operators. 4-9 Program organization . 2-1 Set operators . 4-10 Pascal source files . 2-1 Relational operators . 4-11 Other files used to build applications . 2-2 Class operators. 4-12 Compiler-generated files . 2-3 The @ operator . 4-12 Example programs. 2-3 Operator precedence rules . 4-12 A simple console application . 2-3 Function calls . 4-13 A more complicated example .
    [Show full text]
  • Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates
    Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates Jonathan Richard Shewchuk October 1, 1997 CMU-CS-96-140R From Discrete & Computational Geometry 18(3):305–363, October 1997. School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract Exact computer arithmetic has a variety of uses, including the robust implementation of geometric algorithms. This article has three purposes. The first is to offer fast software-level algorithms for exact addition and multiplication of arbitrary precision floating-point values. The second is to propose a technique for adaptive precision arithmetic that can often speed these algorithms when one wishes to perform multiprecision calculations that do not always require exact arithmetic, but must satisfy some error bound. The third is to use these techniques to develop implementations of several common geometric calculations whose required degree of accuracy depends on their inputs. These robust geometric predicates are adaptive; their running time depends on the degree of uncertainty of the result, and is usually small. These algorithms work on computers whose floating-point arithmetic uses radix two and exact rounding, including machines complying with the IEEE 754 standard. The inputs to the predicates may be arbitrary single or double precision floating-point numbers. C code is publicly available for the 2D and 3D orientation and incircle tests, and robust Delaunay triangulation using these tests. Timings of the implementations demonstrate their effectiveness. Supported in part by the Natural Sciences and Engineering Research Council of Canada under a 1967 Science and Engineering Scholarship and by the National Science Foundation under Grant CMS-9318163.
    [Show full text]
  • A New Multiplication Algorithm for Extended Precision Using floating-Point Expansions
    A new multiplication algorithm for extended precision using floating-point expansions Valentina Popescu, Jean-Michel Muller, Ping Tak Peter Tang ARITH 23 July 2016 AM AR CudA Multiple PrecisionP ARithmetic librarY Chaotic dynamical systems: bifurcation analysis; compute periodic orbits (e.g., finding sinks in the H´enonmap, iterating the Lorenz attractor); celestial mechanics (e.g., long term stability of the solar system). Experimental mathematics: ill-posed SDP problems in computational geometry (e.g., computation of kissing numbers); quantum chemistry/information; polynomial optimization etc. Target applications 1 Need massive parallel computations ! high performance computing using graphics processors { GPUs; 2 Need more precision than standard available (up to few hundred bits) ! extend precision using floating-point expansions. 1 / 13 Target applications 1 Need massive parallel computations ! high performance computing using graphics processors { GPUs; 2 Need more precision than standard available (up to few hundred bits) ! extend precision using floating-point expansions. Chaotic dynamical systems: 0.4 bifurcation analysis; 0.2 0 x2 compute periodic orbits (e.g., finding sinks in the -0.2 H´enonmap, iterating the Lorenz attractor); -0.4 -1.5 -1 -0.5 0 0.5 1 1.5 x1 celestial mechanics (e.g., long term stability of the solar system). Experimental mathematics: ill-posed SDP problems in computational geometry (e.g., computation of kissing numbers); quantum chemistry/information; polynomial optimization etc. 1 / 13 What we need: support for arbitrary precision; runs both on CPU and GPU; easy to use. CAMPARY { CudaA Multiple Precision ARithmetic librarY { Extended precision Existing libraries: GNU MPFR - not ported on GPU; GARPREC & CUMP - tuned for big array operations: data generated on host, operations on device; QD & GQD - limited to double-double and quad-double; no correct rounding.
    [Show full text]