Relative Investigation on Exploring Enterprise Blockchain of Kaleido, Azure Clouds and Deployment of Smart Contract

Total Page:16

File Type:pdf, Size:1020Kb

Relative Investigation on Exploring Enterprise Blockchain of Kaleido, Azure Clouds and Deployment of Smart Contract International Journal of Grid and Distributed Computing Vol. 13, No. 1, (2020), pp. 2785– 2791 Relative Investigation on Exploring Enterprise Blockchain of Kaleido, Azure Clouds and Deployment of Smart Contract ShaikMulla Almas1, K. Kavitha2, Y. Rajesh3, B. Arun Kumar4 1Research Scholar, Department of Computer Science & Engineering, Annamalai University, Annamalai Nagar, TamilNadu. [email protected] 2Associate Professor,Department of Computer Science & Engineering, Annamalai University, Annamalai Nagar, TamilNadu. [email protected] 3Assistant professor, Dept of IT, VVIT College, Nambur, Guntur (Dt), AP, [email protected] 4Assistant professor, Dept of IT, VVIT College, Nambur, Guntur (Dt), AP, India. [email protected] ABSTRACT Even though the Cloud computing technology is emerging since a decade and well establish, there are some challenges present. Where some of the primary challenges can overcome by integrating cloud computing with blockchain technology. Blockchain technology is a emergent technology which enables new form of decentralized software architectures, where distributed components can reach concurrence on shared system states without trusting a centralized integrated point. Blockchain as a service (BAAS) provides a blockchain service over cloud computing environments like network deployment, system monitoring, smart contract analysis and testing. By these services the developers can focus on business code that is to explore more on how to apply blockchain technology more appropriately to their business scenarios, without bothering much about maintance and monitoring of the system. Where cloud-based IT-partner manages all required tasks and activities to maintain the infrastructure to be healthy. Ethereum supports the Quorum protocol explicitly for private transactions and to build Enterprise blockchain. In this paper, enterprise blockchain of Kaleido, Azure clouds were built and deployed a Smart Contract as well, for the very first time. Work is done to compare, analyse user interface and block explorer of Azure and Kaleido blockchain environments. Index Terms – Cloud computing, Blockchain, BAAS, Kaleido, Ethereum, Quorum, Enterprise Blockchain 1. INTRODUCTION Cloud Computing: Cloud Computing is a bunch network services which is been enabled to provide scalability, quality of service, low-priced on-request computing facilities that can be accessed in a basic and penetrating manner. Cloud computing offers pay for what you use style to provide extendable, receptive, and distributed computing services (e.g. servers, storage, networks, software, Databases, etc.) to all the users of the network. Few of the top most IT companies offer this type of services designated as Cloud Computing Providers. Blockchain: Blockchain is kind of database storage, which is decentralized, reliable and complicated for bongus activities. It is a disseminated ledger arrangement which accesses, verifies, and transmits network data across scattered nodes. The decentralized approach of blockchain avoids dependency on a central service provider, such as using servers to hold storage databases. Transactions get logged into blocks, which is furtherly added to the blockchain. Each block has a unique signature. Blocks are mined for every few seconds and fall into the blockchain. All blockchain structures fall into three categories, Public blockcahin architecture, private blockchain architecture, consortium blockchain architecture as shown in the fig-1. ISSN: 2005-4262 IJGDC Copyright ⓒ2020 SERSC 2785 International Journal of Grid and Distributed Computing Vol. 13, No. 1, (2020), pp. 2785– 2791 Fig-1: Categories of Blockchain Architecture 2. BACKGROUND WORK Quorum Overview: Quorum is been developed by JP Morghan, which is a permissioned ledger implemented from Ethereum. Ethereum is a public permissionlessblockchain, which is used by multiple domains for implementing decentralized application. As Ethereum is public and permissionless, security issues will be looked after by the Proof-of-work (PoW) consensus algorithm and Ether. Where Ether is a internal cryptocurrency of Ethereum. To prevent Sybil attacks on Ethererumblockchain, PoW consensus algorithm adds intentional cryptographic difficulty. Quorum being a permissioned implementation of Ethereum, it has made following primary changes to the design of Ethereum. 1. Privacy Support: Transactions and smart contract that are going to be deployed in the blockchain will be private. 2. Peer/Node permissioning: Only the authorized nodes are given right to bind with Quorum blockchain, authenticate transactions,to run smart contracts and to preserve ledger state. 3. Consensus Algorithms: Initially Quorum entitles RAFT consensus Algorithm for collision fault tolerance and Istanbul BFT concensus for Byzantine fault tolerance. RAFT and Istanbul BFT leads to quicker consensus, transaction conclusiveness in short while, being an apt choice for implementing permissioned blockchain. 4. Unpaid Transactions: Quorum abolished the conception to include cost to a transaction through gas. Consequently, Quorum is not associated with any cryptocurrency cost to run transactions on the Quorum network. 5. Increased Scalability and Network Performance: As mining is done by theclouds itself, not by the miner. Hence, scalability increases as number of blocks can be mined, which leads to high Network Performance. Istanbul BFT (IBFT): Istanbul BFT is modelled after Practical Byzantine Fault Tolerance [PBFT], which is consensus algorithm introduced by Barbara Liskov and Miguel Castro. ISSN: 2005-4262 IJGDC Copyright ⓒ2020 SERSC 2786 International Journal of Grid and Distributed Computing Vol. 13, No. 1, (2020), pp. 2785– 2791 Fig-2: Practical Byzantine Fault tolerance Fig-2 shows the flow of PBFT, consider a running node called DApp Node, which sends a transaction to a Leader Node. By receiving the transaction sent, Leader Node sends it to Node1, Node2, Node3 requesting for validation. These three nodes perform validation algorithm and reply to the Leader Node in the form of voting-based consensus mechanism. Consequently, Leader Node considers the majority of votings and triggers the DApp Node to commit the transaction. Furtherly, sends request to Node1, Node2, Node3 to commit the transactions at their end. If majority of voting is not attained, then Leader Node throws back the transaction to DApp Node, as it is considered as unauthorised transaction. PBFT is energy efficient, leads to higher transactional throughput, when compared to PoW. Where PoW consumes excessive power. Smart Contract: Smart Contract is a programming codes that autoruns on the top of the blockchain. Smart contract is written by using Solidity programming language. As smart contract is build by the bundle of cryptographic logics, it facilitates the blockchain network to set out trustful and authority to the parties that are involved in transaction. Remix, a powerful open source tool to write Solidity smart contracts directly from the browser. It also supports testing, debugging and deployment of smart contracts. By using this Remix, a sample Simple Storage smart contract was deployed into the private blockchain of Azure and Kaliedo clouds. As fig-3 shows sample Simple Storage Smart Contract. Fig-3: Simple Storage Smart Contract 3. PROPOSED ALGORITHM Kaliedo Cloud: Kaliedo is a blockchain business cloud, which is an award winning platform to build and run contemporary bussiness network, being blockchain as core. Kaliedo is a full stack SaaS platform that is desgined to build consortia and to deploy private blockchain network .The services provided by Kaliedo is permissioned, which is been implemented from Ethereum protocol, where participants are authenticated. Kalideo delivers trust and transparency to maximize the finality and speed of transactions by using efficient consensus Algorithms. Environment is configured to run any of the three consensus ISSN: 2005-4262 IJGDC Copyright ⓒ2020 SERSC 2787 International Journal of Grid and Distributed Computing Vol. 13, No. 1, (2020), pp. 2785– 2791 algorithms-Proof of Authority, Raft or IBFT. Enterprise Ethereum clients available on kaliedo are Quorum, Go Ethereum and Pantheon. Quorum is a established enterprise Ethereum implementation with privacy extensions. Go Ethereum is most popular Ethereum client, configured for a private network. Pantheon is Ethereum implementation built from scratch to meet Enterprise requirements. Mechanism for building aEnterprize Blockchain on Kaleido and deployment of smart contract Fig-4: Operational flow to build enterprise blockchain and Smart Contract deploement on to kaliedo cloud Fig-4 is the step by step procedure, firstly login into the kaliedo Cloud, create a consortium. Once the consortium with the membership nodes are been created, empty blocks are been mined for every 10 seconds, which fall into the enterprise blockchain of kaliedo cloud. This can be seen in the Block Explorer, as shown in fig-5, where the blocks are empty with zero transactions. Fig-5: Block explorer service of kaliedoblockchain cloud Now, the kaliedo cloud is been connected to the metamask by access keys and metamask is connected to the remix, where smart contract is deployed into the blocks of kaliedo, which is shown in fig-6. ISSN: 2005-4262 IJGDC Copyright ⓒ2020 SERSC 2788 International Journal of Grid and Distributed Computing Vol. 13, No. 1, (2020), pp. 2785– 2791 Fig-6: Falling of a transaction into the block of enterprise blockchain of kaliedo cloud Fig-7: Transaction
Recommended publications
  • Using Blockchain Technology to Secure the Internet of Things
    Using Blockchain Technology to Secure the Internet of Things Presented by the Blockchain/ Distributed Ledger Working Group © 2018 Cloud Security Alliance – All Rights Reserved. You may download, store, display on your computer, view, print, and link to Using Blockchain Technology to Secure the Internet of Things subject to the following: (a) the Document may be used solely for your personal, informational, non- commercial use; (b) the Report may not be modified or altered in any way; (c) the Document may not be redistributed; and (d) the trademark, copyright or other notices may not be removed. You may quote portions of the Document as permitted by the Fair Use provisions of the United States Copyright Act, provided that you attribute the portions to the Using Blockchain Technology to Secure the Internet of Things paper. Blockchain/Distributed Ledger Technology Working Group | Using Blockchain Technology to Secure the Internet of Things 2 © Copyright 2018, Cloud Security Alliance. All rights reserved. ABOUT CSA The Cloud Security Alliance is a not-for-profit organization with a mission to promote the use of best practices for providing security assurance within Cloud Computing, and to provide education on the uses of Cloud Computing to help secure all other forms of computing. The Cloud Security Alliance is led by a broad coalition of industry practitioners, corporations, associations and other key stakeholders. For further information, visit us at www.cloudsecurityalliance.org and follow us on Twitter @cloudsa. Blockchain/Distributed Ledger Technology Working Group | Using Blockchain Technology to Secure the Internet of Things 3 © Copyright 2018, Cloud Security Alliance. All rights reserved.
    [Show full text]
  • Models to Evaluate Service Provisioning Over Cloud
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archives of the Faculty of Veterinary Medicine UFRGS Revista de Informatica´ Teorica´ e Aplicada - RITA - ISSN 2175-2745 Vol. 26, Num. 3 (2019) 65-74 RESEARCH ARTICLE Models to evaluate service Provisioning over Cloud Computing Environments - A Blockchain-As-A-Service case study Modelos para o provimento de Servic¸os em Ambientes de Computac¸ao˜ em Nuvem - Um estudo de caso aplicado a Blockchain como Servic¸o Carlos Melo1*, Jamilson Dantas2, Paulo Pereira3, Ronierison Maciel4, Paulo Maciel5 Abstract: The strictness of the Service Level Agreements (SLAs) is mainly due to a set of constraints related to performance and dependability attributes, such as availability. This paper shows that system’s availability values may be improved by deploying services over a private environment, which may obtain better availability values with improved management, security, and control. However, how much a company needs to afford to keep this improved availability? As an additional activity, this paper compares the obtained availability values with the infrastructure deployment expenses and establishes a cost × benefit relationship. As for the system’s evaluation technique, we choose modeling; while for the service used to demonstrate the models’ feasibility, the blockchain-as-a-service was the selected one. This paper proposes and evaluate four different infrastructures hosting blockchains: (i) baseline; (ii) double redundant; (iii) triple redundant, and (iv) hyper-converged. The obtained results pointed out that the hyper-converged architecture had an advantage over a full triple redundant environment regarding availability and deployment cost.
    [Show full text]
  • A Scoping Review of Integrated Blockchain-Cloud (Bcc) Architecture for Healthcare: Applications, Challenges and Solutions
    sensors Review A Scoping Review of Integrated Blockchain-Cloud (BcC) Architecture for Healthcare: Applications, Challenges and Solutions Leila Ismail 1,2,∗ , Huned Materwala 1,2 and Alain Hennebelle 3 1 Intelligent Distributed Computing and Systems Research Laboratory, Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, Abu Dhabi 15551, United Arab Emirates; [email protected] 2 National Water and Energy Center, United Arab Emirates University, Al Ain, Abu Dhabi 15551, United Arab Emirates 3 Independent Researcher, Al Ain, Abu Dhabi 15551, United Arab Emirates; [email protected] * Correspondence: [email protected] Abstract: Blockchain is a disruptive technology for shaping the next era of a healthcare system striving for efficient and effective patient care. This is thanks to its peer-to-peer, secure, and transparent characteristics. On the other hand, cloud computing made its way into the healthcare system thanks to its elasticity and cost-efficiency nature. However, cloud-based systems fail to provide a secured and private patient-centric cohesive view to multiple healthcare stakeholders. In this situation, blockchain provides solutions to address security and privacy concerns of the cloud because of its decentralization feature combined with data security and privacy, while cloud provides solutions to the blockchain scalability and efficiency challenges. Therefore a novel paradigm of blockchain-cloud integration (BcC) emerges for the domain of healthcare. In this paper, we provide an in-depth Citation: Ismail, L.; Materwala, H.; analysis of the BcC integration for the healthcare system to give the readers the motivations behind Hennebelle, A.
    [Show full text]
  • A Centralized Ledger Database for Universal Audit and Verification
    LedgerDB: A Centralized Ledger Database for Universal Audit and Verification Xinying Yangy, Yuan Zhangy, Sheng Wangx, Benquan Yuy, Feifei Lix, Yize Liy, Wenyuan Yany yAnt Financial Services Group xAlibaba Group fxinying.yang,yuenzhang.zy,sh.wang,benquan.ybq,lifeifei,yize.lyz,[email protected] ABSTRACT certain consensus protocol (e.g., PoW [32], PBFT [14], Hon- The emergence of Blockchain has attracted widespread at- eyBadgerBFT [28]). Decentralization is a fundamental basis tention. However, we observe that in practice, many ap- for blockchain systems, including both permissionless (e.g., plications on permissioned blockchains do not benefit from Bitcoin, Ethereum [21]) and permissioned (e.g., Hyperledger the decentralized architecture. When decentralized architec- Fabric [6], Corda [11], Quorum [31]) systems. ture is used but not required, system performance is often A permissionless blockchain usually offers its cryptocur- restricted, resulting in low throughput, high latency, and rency to incentivize participants, which benefits from the significant storage overhead. Hence, we propose LedgerDB decentralized ecosystem. However, in permissioned block- on Alibaba Cloud, which is a centralized ledger database chains, it has not been shown that the decentralized archi- with tamper-evidence and non-repudiation features similar tecture is indispensable, although they have been adopted to blockchain, and provides strong auditability. LedgerDB in many scenarios (such as IP protection, supply chain, and has much higher throughput compared to blockchains. It merchandise provenance). Interestingly, many applications offers stronger auditability by adopting a TSA two-way peg deploy all their blockchain nodes on a BaaS (Blockchain- protocol, which prevents malicious behaviors from both users as-a-Service) environment maintained by a single service and service providers.
    [Show full text]
  • Accelerating Software Delivery with Cloudbees
    BLOCKCHAIN-AS-A-SERVICE ACCELERATINGTaking POCs to production with SOFTWARE BlockApps and Red DELIVERY Hat WITH CLOUDBEES JENKINS & RED HAT OPENSTACK SOLUTION BRIEF SOLUTION BRIEF BLOCKAPPS EXPERIENCE BUILD AND TEST NEW ENTERPRISE BLOCKCHAIN APPS RAPIDLY • Over 1,000 BlockApps blockchain Pressure to meet the growing demands of international customers are driving financial services organi- projects in development zations to look for innovative software solutions to distinguish themselves in the marketplace. One of the • Over 100 enterprises building most significant technologies to emerge is the blockchain application, a disruptive shift in architecture solutions on BlockApps that will change how enterprises manage their data, applications, transactions, and business processes. • Contributing member of Ethereum developer community Until now, it has been costly to test and prove the value of blockchain applications in a secure, enterprise- ready environment built on proprietary software. Red Hat and BlockApps are removing those barriers. We have joined forces to help you build innovative proofs-of-concepts and enterprise-ready blockchain applications— RED HAT OPENSHIFT all running on Red Hat® Enterprise Linux® in an OpenShift container. BUSINESS VALUE According to IDC,1 Red Hat The BlockApps STRATO Blockchain Platform includes Ethereum-based features and tools that are designed OpenShift customers experienced: specifically for enterprise businesses to build proofs-of-concepts (POCs) quickly and cost-effectively. Using Red • 66% faster application Hat Enterprise Linux and Red Hat OpenShift Container Platform, you can seamlessly move from development development life cycles and test to full production of your blockchain applications. • 35% less IT staff per applications • 38% lower IT infrastructure costs per application BLOCKAPPPS STRATO BLOCKCHAIN PLATFORM The BlockApps STRATO Blockchain Platform offers customizable transaction processing capabilities and con- 1 IDC White Paper – “The Business Value of Red Hat OpenShift,” Oct.
    [Show full text]
  • Blockchain Deployment Toolkit
    Redesigning Trust: Blockchain Deployment Toolkit Supply Chain Focus April 2020 EXPERIENCE THE INTERACTIVE VERSION AT: wef.ch/blockchain-toolkit World Economic Forum 91-93 route de la Capite CH-1223 Cologny/Geneva Switzerland Tel.: +41 (0)22 869 1212 Fax: +41 (0)22 786 2744 Email: [email protected] www.weforum.org © 2020 World Economic Forum. This publication has been published by the World Economic Forum All rights reserved. No part of this as a contribution to a project, insight areas or interaction. The publication may be reproduced findings, interpretations and conclusions expressed herein area or transmitted in any form or by result of a collaborative process facilitated and endorsed by the any means, including World Economic Forum, but whose results do not necessarily photocopying and recording, or represent the views of the World Economic Forum, nor the entirety of by any information storage and its Members, Partners or other stakeholders. retrieval system. Preface The emergence of blockchain technology holds great promise for supply-chain organisations, perhaps as much as any new development in the industry’s infrastructure since it switched to standardised containers decades ago. The case for blockchain is stronger as the COVID-19 pandemic underscores the need for more resilient global supply chains, trusted data and an economic recovery enabled through trade digitization. At the same time, blockchain may engender a fair share of puzzlement and anxiety among supply-chain leaders unfamiliar with it as a new and unfamiliar digitisation tool. This toolkit is designed to help with the deployment journey, whether your organisation is seeking to gain increased efficiency, greater trust with counterparties, or other potential benefits offered by blockchain technology.
    [Show full text]
  • Blockchain As a Service for Iot Cloud Versus Fog
    2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) Blockchain as a Service for IoT Cloud versus Fog Mayra Samaniego, Uurtsaikh Jamsrandorj Ralph Deters Department of Computer Science Department of Computer Science University of Saskatchewan University of Saskatchewan Saskatoon, Canada Saskatoon, Canada [email protected], [email protected] [email protected] Abstract—A blockchain is a distributed and decentralized ledger that preceding block is entered. Once a new block is formed, any contains connected blocks of transactions. Unlike other ledger changes to a previous block would result in different hashcode approaches, blockchain guarantees tamper proof storage of approved transactions. Due to its distributed and decentralized organization, and would thus be immediately visible to all participants in the blockchain is beeing used within IoT e.g. to manage device configuration, blockchain. Consequently, blockchains are considered store sensor data and enable micro-payments. A key challenge in the tamperproof distributed transaction ledgers. Originally deployment of blockchain technology is the hosting location. This paper designed as the distributed transaction ledger for BitCoin [3], evaluates the use of cloud and fog as hosting platforms. the idea of using blockchains has spread. Keywords—IoT, Virtual Resource, Software-Defined IoT, Edge The ability to create/store/transfer digital assets in a distributed, Computing, Multi-Tenancy decentralized and tamper-proof way is of a large practical value for IoT systems. While micro-payments in IoT may be the most obvious use of blockchain technology, we consider the I.
    [Show full text]
  • Models to Evaluate Service Provisioning Over
    Revista de Informatica´ Teorica´ e Aplicada - RITA - ISSN 2175-2745 Vol. 26, Num. 3 (2019) 65-74 RESEARCH ARTICLE Models to evaluate service Provisioning over Cloud Computing Environments - A Blockchain-As-A-Service case study Modelos para o provimento de Servic¸os em Ambientes de Computac¸ao˜ em Nuvem - Um estudo de caso aplicado a Blockchain como Servic¸o Carlos Melo1*, Jamilson Dantas2, Paulo Pereira3, Ronierison Maciel4, Paulo Maciel5 Abstract: The strictness of the Service Level Agreements (SLAs) is mainly due to a set of constraints related to performance and dependability attributes, such as availability. This paper shows that system’s availability values may be improved by deploying services over a private environment, which may obtain better availability values with improved management, security, and control. However, how much a company needs to afford to keep this improved availability? As an additional activity, this paper compares the obtained availability values with the infrastructure deployment expenses and establishes a cost × benefit relationship. As for the system’s evaluation technique, we choose modeling; while for the service used to demonstrate the models’ feasibility, the blockchain-as-a-service was the selected one. This paper proposes and evaluate four different infrastructures hosting blockchains: (i) baseline; (ii) double redundant; (iii) triple redundant, and (iv) hyper-converged. The obtained results pointed out that the hyper-converged architecture had an advantage over a full triple redundant environment regarding availability and deployment cost. Keywords: Availability — Blockchain-as-a-Service — Hyper-converged — Virtualization Resumo: O rigor nos Acordos de N´ıvel de Servic¸o (ANS) deve-se a um conjunto de restric¸oes˜ nos principais atributos de desempenho e dependabilidade de sistemas.
    [Show full text]
  • NOAH Berlin 2018
    Table of Contents Program 6 Venture Capital 10 Growth 107 Buyout 124 Debt 137 Trading Comparables 143 2 Table of Contents Venture Capital Buyout 3TS Capital Partners 11 Frog Capital 50 SevenVentures 90 Apax 125 83North 12 General Catalyst 51 Speedinvest 91 Ardian 126 Accel Partners 13 German Media Pool 52 SpeedUp Venture Capital 92 Bain Capital 127 Acton Capital Partners 14 German Startup Group 53 Group Capvis Equity Partners 128 Astutia Ventures 15 Global Founders Capital 54 STS Ventures 93 EQT Partners 129 Atlantic Labs 16 GPS Ventures 55 Swisscom Ventures 94 FSN Capital Partners 130 AVentures Capital 17 GR Capital 56 TA Ventures 95 GENUI 131 AXA Venture Partners 18 Griffon Capital 57 Target Partners 96 KKR 132 b10 I Venture Capital 19 High-Tech Gruenderfonds 58 Tengelmann Ventures 97 Macquarie Capital 133 BackBone Ventures 20 HV Holtzbrinck Ventures 59 Unternehmertum Venture 98 Maryland 134 Balderton Capital 21 IBB 60 Capital Partners Oakley Capital 135 Berlin Technologie Holding 22 Beteiligungsgesellschaft Vealerian Capital Partners 99 Permira 136 idinvest Partners 61 Ventech 100 Bessemer Venture 23 Partners InMotion Ventures 62 Via ID 101 BCG Digital Ventures 24 Innogy Ventures 63 Vito Ventures 102 BFB Brandenburg Kapital 25 Inovo.vc 64 Vorwerk Ventures 103 Intel Capital 65 W Ventures 104 BMW iVentures 26 Iris Capital 66 WestTech Ventures 105 Boerste Stuttgart - Digital 27 Kizoo Technology Capital 67 XAnge 106 Ventures Debt btov Partners 28 Kreos Capital 68 LeadX Capital Partners 69 Buildit Accelerator 29 Lakestar 70 CapHorn Invest
    [Show full text]
  • Blockchain Technology Adoption Status and Strategies
    Journal of International Technology and Information Management Volume 26 Issue 2 Article 4 2017 Blockchain Technology Adoption Status and Strategies Joseph M. Woodside Stetson University, [email protected] Fred K. Augustine Jr. Stetson University Will Giberson Stetson University Follow this and additional works at: https://scholarworks.lib.csusb.edu/jitim Part of the Management Information Systems Commons, Strategic Management Policy Commons, and the Technology and Innovation Commons Recommended Citation Woodside, Joseph M.; Augustine, Fred K. Jr.; and Giberson, Will (2017) "Blockchain Technology Adoption Status and Strategies," Journal of International Technology and Information Management: Vol. 26 : Iss. 2 , Article 4. Available at: https://scholarworks.lib.csusb.edu/jitim/vol26/iss2/4 This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International Technology and Information Management by an authorized editor of CSUSB ScholarWorks. For more information, please contact [email protected]. Blockchain Technology Adoption Status and Strategies Joseph M. Woodside et al BLOCKCHAIN TECHNOLOGY ADOPTION STATUS AND STRATEGIES Joseph M. Woodside [email protected], Stetson University Fred K. Augustine Jr. Stetson University Will Giberson Stetson University ABSTRACT Purpose: The purpose of this paper is to review the acceptance and future use of blockchain technology. Given the rapid technological changes, this paper focuses on a managerial overview and framework of how the blockchain, including its implementations such as Bitcoin have advanced and how blockchain can be utilized in large-scale, enterprise environments. The paper begins with a technological overview that covers the history of the technology, as well as describing the computational, cryptographic theory that serves as the basis for its notable security features.
    [Show full text]
  • Blockchain for Dummies
    Blockchain For Dummies® Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com Copyright © 2017 by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions . Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book. LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES.
    [Show full text]
  • Microsoft Blockchain Strategy and Roadmap
    Microsoft Blockchain in Healthcare David Houlding MASc CISSP CIPP Principal Healthcare Lead | Microsoft Chair | HIMSS Blockchain Task Force Advisor | British Blockchain Association Blockchain in Healthcare - Layered View Healthcare Healthcare Blockchain Architecture Key Org A Org B Blockchain Node Decentralized Ledger Enterprise System Enterprise Internal Firewall Blockchain Network Secure “B2B Middleware” Link (Private / Consortium, Org C Permissioned, Validated) Org D Blockchain Node Deployment On premises In cloud Heterogeneous deployment options Consistent consensus Organization A Today Private Blockchain Organization A Data Common Blockchain Data Node A Private Organization B Data Organization B Blockchain Blockchain Common Node B Shared Ledger for Private Data Common Data Data Private Organization C Data Blockchain Node C Common Data Private Organization C Data Private • Redundant Maintenance of Common Data Data • Common Data Maintained by Consortium • Inconsistencies, Causing Friction • Update Once, Near Realtime Visibility Across Is Blockchain a Missing Cog in Health IT? • Major healthcare benefits in secure, targeted sharing of patient data • Today enterprise systems and data siloed within healthcare organizations • Only limited sharing of healthcare data • Blockchain • Enables secure targeted sharing of healthcare information • Co-exists and integrates with enterprise systems • Can provide the “missing cog” for secure exchange of data • Enables new levels of collaboration to reduce costs and improve outcomes, engagement,
    [Show full text]