6. Gas Giants & Water Worlds

Total Page:16

File Type:pdf, Size:1020Kb

6. Gas Giants & Water Worlds Astronomy 110: SURVEY OF ASTRONOMY 6. Gas Giants & Water Worlds 1. The Jovian Planets 2. Satellites and Rings The Solar System contains two planetary behemoths and two planets which are merely enormous by our standards. Jupiter & Saturn have hundreds of times the Earth's mass; both radiate more energy than they receive from the Sun, and this outflow of energy powers dramatic activity in their interiors and atmospheres. Uranus & Neptune, each about 15 times the Earth's mass, are less active. All four planets have satellite systems and rings shaped by subtle dynamical effects over trillions of orbits. Formation of Jovian Planets 1. Outside the frost line, icy planetesimals were very common, forming planets about 10 times the mass of Earth. 2. These planets attracted nearby gas, building up giant planets composed mostly of H and He. 3. The disks around these planets produced moons. Two Types of Jovian Planets “Gas Giants” “Water Worlds” 1. THE JOVIAN PLANETS a. Internal Structure b. Outward Appearance Internal Structure: Pressure Anywhere inside a planet (or star), the pressure is the weight per unit area of the material above that point. air 100 mi On Earth, a column of air 1 inch on a side, extending from sea-level to the top of the atmosphere, weighs 14.7 lbs: P = 1 bar 14.7 lbs per sq in = 14.7 psi = 1 bar. 32 ft A column of water 1 inch on a side and 32 ft water high also weighs 14.7 lbs, so 32 ft below sea level the total pressure is 29.4 psi = 2 bar. P = 2 bar Internal Structure: Pressure Balance Imagine a column of gas. Without gravity, gas is distributed uniformly along the column. With gravity, the gas at the bottom is compressed, while the gas at the top spreads out (like a spring). The compressed gas pushes upward, resisting the weight of the gas above. If these forces cancel, the gas is in pressure balance. without gravity with gravity Internal Structure: Mass vs Radius Adding a pillow squashes Adding mass adds gravity, which those already there. squashes the “stack” even more. Internal Structure: Jupiter Gaseous H + He; 1 125 0.0002 some NH3, H2O, CH4 5×105 2000 0.5 2×106 5000 1 Liquid H + He (due to extreme pressure) Metallic H (liquid) with dissolved He; good electrical conductor 4 Core (rock, metal); ~108 2×104 25 ~10 × Earth’s mass Internal Structure: Jupiter & Saturn Saturn’s structure is similar, but proportions differ . 1. Both Jupiter and Saturn contain metallic hydrogen. However, most of Jupiter’s interior is metallic, while most of Saturn’s is not. Why? A. Jupiter contains a larger fraction of hydrogen than Saturn. B. Jupiter is colder than Saturn. C. Jupiter’s internal pressure is higher because it has more mass. D. Saturn receives less heat from the Sun. Internal Structure: Uranus & Neptune Less mass than Jupiter or Saturn, so less internal pressure; H stays gaseous. Larger fraction of C, N, O, so molecules of CH4, NH3, H2O are common. Hydrogen compounds are probably liquids, forming “oceans” deep within the planet. Internal Structure: Heat Sources J. & S. put out lots of heat — U. puts out very little heat — not due to radioactivity since — lost during giant impact? H and He isotopes are stable. — bottled up in interior? — Jupiter: “left-over” heat. N. puts out more heat — — Saturn: He differentiation? — radioactivity in core? Internal Structure: Magnetic Fields J. & S. have strong fields which U. & N. have weaker fields are well-aligned with rotation. which are highly mis-aligned. — convection in metallic H! — local dynamo in “ocean”? Internal Structure: Magnetic Fields Outward Appearance 12 hours on Jupiter Outward Appearance: Cloud Colors NH3 50 km w cloud tops NH4SH Distance belo H2O 100 km Outward Appearance: Belts Convection and rapid rotation organize atmospheric motion. Belts: sinking Zones: rising gas exposes red gas forms white NH4SH clouds; NH3 clouds; circulates faster. circulates slower. Outward Appearance: Circulation Patterns Jupiter Unpeeled Outward Appearance: Great Red Spot Approaching Jupiter Outward AppearanceAppearance: Great Red Spot H Jupiter's Great Red Spot Region Outward Appearance: Saturn Bands like Jupiter’s, but less dramatic since atmosphere is deeper due to weaker gravity. Saturn … Four Years On Outward Appearance: Uranus & Neptune Their atmospheres are deep, methane-rich, and very cold. • Cloud layers are too deep to be easily seen. • Methane (CH4) absorbs red light, transmits blue. — blue planets with subtle cloud features. Outward Appearance: Uranus & Neptune Great Dark Spot 2. SATELLITES AND RINGS a. A mess of moons b. Activity and climate c. Ring systems + 59 more A Mess of Moons • 6 large moons (D>1500 km) + 53 more — most geologically active • 12 medium (D>300 km) — some activity in past? + 22 more • 145+ small (D>1 km) — no geological activity + 11 more Large & Medium Moons • spherical due to self-gravity • composed of ices & rock • formed in disks around parent planets (not Triton) • orbit in same direction as planets spin (not Triton) Small Moons of Saturn • too small to be spherical • orbit both directions! The Jupiter Satellite Page Activity: Galilean Satellites IO EUROPA GANYMEDE CALLISTO Wide range of geological activity: — Io is most volcanic object in solar system! — Callisto exhibits very little activity. Io: Volcanic Moon Loki Patera: active center Pele: Io’s largest volcanic pluume Topography and Volcanos on Io Io: Volcanic Moon Ongoing Volcanic Eruption at Tvashtar Catena Tvashtar’s Plume Why so active? Tides Tides Tidal Heating of Io Jupiter Io is alternately stretched and squeezed in its elliptical orbit around Jupiter, creating heat through friction. Over time, this friction should make Io’s orbit more and more circular; what keeps Io’s orbit elliptical? The Role of Resonance 2:1 resonance The inner moon makes 2 The inner moon gets a orbits in the same time the tug every other time outer moon makes 1, so around, so its orbit gets this is a 2:1 resonance. more elliptical with time. Jupiter’s Moons: the Laplace Resonance 4:2:1 resonance Jupiter’s three inner moons are in a 4:2:1 resonance. — this keeps Io’s orbit moderately elliptical. — Europa’s orbit is also slightly elliptical. Europa: an Ice-Covered Ocean? Fractures in crust Pwyll: Natural and False Impact Color Views of Europa crater Exaggerated colors “Natural” colors Europa: Rafts of Ice Europa - Ice Rafting View Europa: Rafts of Ice Tidal flexing opens up cracks, creating pairs of ridges, then closes them up, grinding ice sheets together. Europa - Ice Rafting View Europa: Internal Structure Heat from tidal friction can keep Europa’s insides warm. Ganymede and Callisto Global Callisto in Color Ganymede has a mixture of Callisto has a old and very old and new terrain, and hints heavily cratered terrain, with of tectonic activity. a possible subsurface ocean? Titan: a Moon With Atmosphere Thick smog of N2 and hydrocarbons (CH4, C2H6, etc)! Hydrocarbon Lakes on Titan Reflection of Sunlight off Titan Lake Radar Shows Evidence of Seas Meandering Riverbeds on Titan Xanadu's Meandering Rivers Titan’s Climate • Surface temperature: 94° K (-179° C) • Clouds of CH4, C2H6, other hydrocarbons • CH4 falls as rain, forms rivers & lakes • Seasonal changes in CH4 lakes • CH4 replenished by cryo-volcanism Wikipedia: Titan Ring Systems All Jovian planets have rings made of tiny “moonlets”. Saturn’s Rings Saturn Only 20 m thick, the rings are aligned with the equator. Inside Saturn’s Rings Outer Solar System Moons and Rings The moonlets in Saturn’s rings are composed mostly of ice. Collisions are slowly grinding them to dust. Structure in Saturn’s Rings Mimas Cassini Division Cassini’s division is due to a 2:1 resonance with Mimas: 2 PMimas = 2 PCassini ⇒ aMimas = ∛2 aCassini Other moons and resonances create other structures. Origin of Planetary Rings Ring formation may be ongoing or catastrophic. — moonlet fragmentation — tidal disruption of moon Tidal Disruption.
Recommended publications
  • Lab 7: Gravity and Jupiter's Moons
    Lab 7: Gravity and Jupiter's Moons Image of Galileo Spacecraft Gravity is the force that binds all astronomical structures. Clusters of galaxies are gravitationally bound into the largest structures in the Universe, Galactic Superclusters. The galaxies themselves are held together by gravity, as are all of the star systems within them. Our own Solar System is a collection of bodies gravitationally bound to our star, Sol. Cutting edge science requires the use of Einstein's General Theory of Relativity to explain gravity. But the interactions of the bodies in our Solar System were understood long before Einstein's time. In chapter two of Chaisson McMillan's Astronomy Today, you went over Kepler's Laws. These laws of gravity were made to describe the interactions in our Solar System. P2=a3/M Where 'P' is the orbital period in Earth years, the time for the body to make one full orbit. 'a' is the length of the orbit's semi-major axis, for nearly circular orbits the orbital radius. 'M' is the total mass of the system in units of Solar Masses. Jupiter System Montage picture from NASA ID = PIA01481 Jupiter has over 60 moons at the last count, most of which are asteroids and comets captured from Written by Meagan White and Paul Lewis Page 1 the Asteroid Belt. When Galileo viewed Jupiter through his early telescope, he noticed only four moons: Io, Europa, Ganymede, and Callisto. The Jupiter System can be thought of as a miniature Solar System, with Jupiter in place of the Sun, and the Galilean moons like planets.
    [Show full text]
  • Problems of Metallic Hydrogen and Room Temperature Superconductivity
    EHPRG 2019 - Abstracts Problems of metallic hydrogen and room temperature superconductivity M.I. Eremets Max-Planck-Institut fur Chemie, Hahn-Meitner Weg 1, 55128 Mainz, Germany Keywords: high pressure, mrtallic hydrogen, room temperature superconductivity. *e-mail: [email protected] Metallic Hydrogen and Room-temperature hydrides at high pressures. We will present recent studies superconductivity (RTSC) are one the most challenging on YHx, CaHx, MgHx- other compounds which are and very long standing problems in solid-state physics. In considered as potential RTSCs. both, there is a significant progress over the recent years. We will consider various directions to explore high temperature conventional superconductivity at low and In 1935, Wigner and Huntington [1] predicted that ambient pressures. solid molecular hydrogen would dissociate at high pressure to form a metallic atomic solid at pressures Acknowledgments: This work was supported by the Max P370-500 GPa [1-3]. Besides the ultimate simplicity, Planck Society. atomic metallic hydrogen is attractive because of the 1. Wigner, E. and H.B. Huntington, On the possibility of predicted very high, room temperature for a metallic modification of hydrogen. J. Chem. Phys., 1935. 3: p. 764-770. superconductivity [4]. In another scenario, the 2. Pickard, C.J. and R.J. Needs, Structure of phase III of metallization first occurs in the 250-500 GPa pressure solid hydrogen. Nature Physics, 2007. 3. range in molecular hydrogen through overlapping of 3. McMinis, J., et al., Molecular to Atomic Phase electronic bands [5-8]. The calculations are not accurate Transition in Hydrogen under High Pressure. Phys. enough to predict which option is realized.
    [Show full text]
  • Will Solid Hydrogen Ever Be a Metal?
    news and views tures. The consequences of squeezing solid hydrogen are clearly a good deal more subtle Will solid hydrogen than at first thought, and it turns out that this, the ‘simplest’ of all molecular solids, has a rich and remarkably complex phase ever be a metal? diagram2,4,5 (Fig. 2). In phase I of solid hydrogen, the so-called orientationally disordered state, the individ- Peter P. Edwards and Friedrich Hensel ual molecules execute complete rotational At ultra-high pressures, liquid hydrogen becomes metallic. So should motion in addition to the usual molecular solid hydrogen, yet it stubbornly resists. A newly predicted vibrations. spontaneous asymmetry of molecules in the solid may be the reason. Below a temperature of about 120 K, solid hydrogen undergoes a transition at about n 1926 J. D. Bernal proposed that all The pressure-induced metallization of 1.5 million atmospheres to phase II, a state matter, when subjected to a high enough solid hydrogen can be viewed in terms of in which the constituent H2 molecules Ipressure, will inevitably become metallic electronic band theory. At low pressures the become ‘frozen’ in a random orientation in — that is, it will be permeated by a sea of solid is an infinite crystalline assembly of iso- the crystal. completely free electrons that conduct elec- lated H2 molecules, all weakly interacting. Phase III is undoubtedly the most tricity easily. The most enticing substance for The electrons are all bound to their mole- intriguing, because elemental hydrogen pressure-induced metallization is, in fact, cules, and need to be freed to conduct elec- remains in this state up to the highest pres- the lightest and supposedly the simplest of all tricity: in band-theory terms, we have a com- sures yet achieved, and still does not become the elements in the periodic table — hydro- pletely filled valence band separated by a very metallic.
    [Show full text]
  • Saturn — from the Outside In
    Saturn — From the Outside In Saturn — From the Outside In Questions, Answers, and Cool Things to Think About Discovering Saturn:The Real Lord of the Rings Saturn — From the Outside In Although no one has ever traveled ing from Saturn’s interior. As gases in from Saturn’s atmosphere to its core, Saturn’s interior warm up, they rise scientists do have an understanding until they reach a level where the tem- of what’s there, based on their knowl- perature is cold enough to freeze them edge of natural forces, chemistry, and into particles of solid ice. Icy ammonia mathematical models. If you were able forms the outermost layer of clouds, to go deep into Saturn, here’s what you which look yellow because ammonia re- trapped in the ammonia ice particles, First, you would enter Saturn’s up- add shades of brown and other col- per atmosphere, which has super-fast ors to the clouds. Methane and water winds. In fact, winds near Saturn’s freeze at higher temperatures, so they equator (the fat middle) can reach turn to ice farther down, below the am- speeds of 1,100 miles per hour. That is monia clouds. Hydrogen and helium rise almost four times as fast as the fast- even higher than the ammonia without est hurricane winds on Earth! These freezing at all. They remain gases above winds get their energy from heat ris- the cloud tops. Saturn — From the Outside In Warm gases are continually rising in Earth’s Layers Saturn’s atmosphere, while icy particles are continually falling back down to the lower depths, where they warm up, turn to gas and rise again.
    [Show full text]
  • The Acceler the Accelerating Circulation of Jupiter's Great Red
    The accelerating circulation of Jupiter’s Great Red Spot John H. Rogers A report of the Jupiter Section (Director: John H. Rogers) Jupiter’s Great Red Spot (GRS) has been evolving, with fluctuations, since it was first observed in the 19th century. It has shown trends of decreasing length, decelerating drift rate, and possibly accelerating internal circulation. This paper documents how these trends have pro- gressed since the time of the Voyager encounters in 1979, up to 2006, from ground-based amateur observations.1 The trends in length and drift rate have continued; the GRS is now smaller than ever before.2 The internal circulation period was directly measured in 2006 for the first time since the Voyager flybys, and is now 4.5 days, which confirms that the period is shortening.3 In contrast, the 90-day oscillation of the GRS in longitude continues unchanged, and may be accompanied by a very small oscillation in latitude. Introduction =–110, +105°/month: the mean speed of the SEBs and STBn jets) through 63 m/s (DL2 = +130°/month: the mean speed of the SEBs jet when a STropD is present) to 110–140 m/s (the The Great Red Spot (GRS) is a giant anticyclone in Jupiter’s maximum internal wind speed recorded in the Voyager im- atmosphere, circulating anticlockwise, with winds that are ages: Table 1a). Images by the Galileo Orbiter in 2000 re- among the most rapid in the solar system (see reference 1, corded a further acceleration to ~145–190 m/s.11,12 pp.188-197). The circulation was already suspected in the These wind speeds were derived by tracking small cloud early 20th century (ref.1, p.256), and the first tentative obser- tracers over short intervals in spacecraft images.
    [Show full text]
  • Planets of the Solar System
    Chapter Planets of the 27 Solar System Chapter OutlineOutline 1 ● Formation of the Solar System The Nebular Hypothesis Formation of the Planets Formation of Solid Earth Formation of Earth’s Atmosphere Formation of Earth’s Oceans 2 ● Models of the Solar System Early Models Kepler’s Laws Newton’s Explanation of Kepler’s Laws 3 ● The Inner Planets Mercury Venus Earth Mars 4 ● The Outer Planets Gas Giants Jupiter Saturn Uranus Neptune Objects Beyond Neptune Why It Matters Exoplanets UnderstandingU d t di theth formationf ti and the characteristics of our solar system and its planets can help scientists plan missions to study planets and solar systems around other stars in the universe. 746 Chapter 27 hhq10sena_psscho.inddq10sena_psscho.indd 774646 PDF 88/15/08/15/08 88:43:46:43:46 AAMM Inquiry Lab Planetary Distances 20 min Turn to Appendix E and find the table entitled Question to Get You Started “Solar System Data.” Use the data from the How would the distance of a planet from the sun “semimajor axis” row of planetary distances to affect the time it takes for the planet to complete devise an appropriate scale to model the distances one orbit? between planets. Then find an indoor or outdoor space that will accommodate the farthest distance. Mark some index cards with the name of each planet, use a measuring tape to measure the distances according to your scale, and place each index card at its correct location. 747 hhq10sena_psscho.inddq10sena_psscho.indd 774747 22/26/09/26/09 111:42:301:42:30 AAMM These reading tools will help you learn the material in this chapter.
    [Show full text]
  • Jupiter's “Red Spot Jr.”
    National Aeronautics and Space Administration Jupiter’s “Red Spot Jr.” Astronomers Watch the Birth of a Monster Storm Monstrous hurricanes on Earth can stretch across in the close-up image are clouds being shaped by the entire eastern United States. These storms, how- high-speed winds. ever, would be considered timid on Jupiter, where an On Earth, meteorologists routinely watch hur- oval-shaped spot about the size of Earth has recently ricanes form off the African coast, sweep across the emerged. Dubbed Red Spot Jr., this gigantic storm is Atlantic Ocean, and fall apart when they reach the only the little brother of Jupiter’s trademark Great Red colder waters of the northern Atlantic. Astronomers, Spot. however, rarely get the chance to witness the birth of The Great Red Spot is a mammoth oval disturbance storms on our solar system neighbors. Other planets that is so large it could swallow nearly three Earths. are far away from Earth, so astronomers need power- First spotted in 1664 by Robert Hooke, the storm has ful telescopes like the Hubble Space Telescope to been raging on the planet for at least 342 years. track planetary weather. Storms on other planets also Red Spot Jr. is the first storm that astronomers may take years to form. watched develop on a gas giant planet. The huge spot Amateur and professional astronomers eagerly formed between 1998 and 2000, when three small, watched the emerging new red spot. Months later, white, oval-shaped storms merged together. Two of Hubble snapped the first detailed images of Red Spot the white spots have been observed since about 1915, Jr.
    [Show full text]
  • A Milestone in the Hunt for Metallic Hydrogen
    News & views e-mails: [email protected]; Catterall, W. A. Sci. Signal. 3, ra70 (2010). Conventional techniques have been the [email protected] 11. Lemke, T. et al. J. Biol. Chem. 283, 34738–34744 (2008). bottleneck in applying extreme pressures to 12. Brandmayr, J. et al. J. Biol. Chem. 287, 22584–225924 1. Cannon, W. B. Bodily Changes in Pain, Hunger, Fear, and (2012). highly compressible materials such as hydro- Rage: An Account of Recent Researches into the Function 13. Fu, Y., Westenbroek, R. E., Scheuer, T. & Catterall, W. A. gen. Over the past few decades, research of Emotional Excitement (Appleton, 1915). Proc. Natl Acad. Sci. USA 110, 19621–19626 (2013). groups around the world have pushed the 2. Reuter, H. J. Physiol. (Lond.) 192, 479–492 (1967). 14. Rhee, H.-W. et al. Science 339, 1328–1331 (2013). 3. Liu, G. et al. Nature 577, 695–700 (2020). 15. Finlin, B. S., Crump, S. M., Satin, J. & Andres, D. A. boundaries of pressure generation. They have 4. Tsien, R. W., Giles, W. & Greengard, P. Nature New Biol. Proc. Natl Acad. Sci. USA 100, 14469–14474 (2003). also refined the tools and methods needed 240, 181–183 (1972). 16. Manning, J. R. et al. J. Am. Heart Assoc. 2, e000459 (2013). to accurately estimate pressures applied to a 5. Reuter, H. J. Physiol. (Lond.) 242, 429–451 (1974). 17. Yang, L. et al. J. Clin. Invest. 129, 647–658 (2019). 6. Osterrieder, W. et al. Nature 298, 576–578 (1982). 18. Bean, B. P., Nowycky, M. C. & Tsien, R.
    [Show full text]
  • The Solar System Cause Impact Craters
    ASTRONOMY 161 Introduction to Solar System Astronomy Class 12 Solar System Survey Monday, February 5 Key Concepts (1) The terrestrial planets are made primarily of rock and metal. (2) The Jovian planets are made primarily of hydrogen and helium. (3) Moons (a.k.a. satellites) orbit the planets; some moons are large. (4) Asteroids, meteoroids, comets, and Kuiper Belt objects orbit the Sun. (5) Collision between objects in the Solar System cause impact craters. Family portrait of the Solar System: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, (Eris, Ceres, Pluto): My Very Excellent Mother Just Served Us Nine (Extra Cheese Pizzas). The Solar System: List of Ingredients Ingredient Percent of total mass Sun 99.8% Jupiter 0.1% other planets 0.05% everything else 0.05% The Sun dominates the Solar System Jupiter dominates the planets Object Mass Object Mass 1) Sun 330,000 2) Jupiter 320 10) Ganymede 0.025 3) Saturn 95 11) Titan 0.023 4) Neptune 17 12) Callisto 0.018 5) Uranus 15 13) Io 0.015 6) Earth 1.0 14) Moon 0.012 7) Venus 0.82 15) Europa 0.008 8) Mars 0.11 16) Triton 0.004 9) Mercury 0.055 17) Pluto 0.002 A few words about the Sun. The Sun is a large sphere of gas (mostly H, He – hydrogen and helium). The Sun shines because it is hot (T = 5,800 K). The Sun remains hot because it is powered by fusion of hydrogen to helium (H-bomb). (1) The terrestrial planets are made primarily of rock and metal.
    [Show full text]
  • Thermal Structure and Composition of Jupiter's Great Red Spot from High-Resolution Thermal Imaging
    Thermal Structure and Composition of Jupiter’s Great Red Spot from High-Resolution Thermal Imaging Leigh N. Fletchera,b, G. S. Ortona, O. Mousisc,d, P. Yanamandra-Fishera, P. D. Parrishe,a, P. G. J. Irwinb, B. M. Fishera, L. Vanzif, T. Fujiyoshig, T. Fuseg, A.A. Simon-Millerh, E. Edkinsi, T.L. Haywardj, J. De Buizerk aJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA bAtmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK cInstitut UTINAM, CNRS-UMR 6213, Observatoire de Besan¸con, Universit´ede Franche-Comt´e, Besan¸con, France dLunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA eSchool of GeoScience, University of Edinburgh, Crew Building, King’s Buildings, Edinburgh, EH9 3JN, UK fPontificia Universidad Catolica de Chile, Department of Electrical Engineering, Av. Vicuna Makenna 4860, Santiago, Chile. gSubaru Telescope, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 650 North A’ohoku Place, Hilo, Hawaii 96720, USA hNASA/Goddard Spaceflight Center, Greenbelt, Maryland, 20771, USA iUniversity of California, Santa Barbara, Santa Barbara, CA 93106, USA jGemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena, Chile. kSOFIA - USRA, NASA Ames Research Center, Moffet Field, CA 94035, USA. Abstract Thermal-IR imaging from space-borne and ground-based observatories was used to investigate the temperature, composition and aerosol structure of Jupiter’s Great Red Spot (GRS) and its temporal variability between 1995-2008. An elliptical warm core, extending over 8◦ of longitude and 3◦ of latitude, was observed within the cold anticyclonic vortex at 21◦S.
    [Show full text]
  • Liquid Metallic Hydrogen and the Structure of Brown Dwarfs and Giant Planets W.B
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server Liquid metallic hydrogen and the structure of brown dwarfs and giant planets W.B. Hubbard, T. Guillot, J.I. Lunine Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 [email protected] A. Burrows Departments of Physics and Astronomy, University of Arizona, Tucson, AZ 85721 D. Saumon Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 M.S. Marley Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 R.S. Freedman Sterling Software, NASA Ames Research Center, Moffett Field, CA 94035 ABSTRACT Electron-degenerate, pressure-ionized hydrogen (usually referred to as metallic hydrogen) is the principal constituent of brown dwarfs, the long-sought objects which lie in the mass range between the lowest-mass stars (about eighty times the mass of Jupiter) and the giant planets. The thermodynamics and transport properties of metallic hydrogen are important for understanding the properties of these objects, which, unlike stars, continually and slowly cool from initial nondegenerate (gaseous) states. Within the last year, a brown dwarf (Gliese 229 B) has been detected and its spectrum observed and analyzed, and several examples of extrasolar giant planets have been discovered. The brown dwarf appears to have a mass of about forty to fifty Jupiter masses and is now too cool to be fusing hydrogen or deuterium, although we predict that it will have consumed all of its primordial deuterium. This paper reviews the current understanding of the interrelationship between its interior properties and its observed spectrum, and also discusses the current status of research on the structure of giant planets, both in our solar system and elsewhere.
    [Show full text]
  • Download Student Activities Objects from the Area Around Its Orbit, Called Its Orbital Zone; at Amnh.Org/Worlds-Beyond-Earth-Educators
    INSIDE Essential Questions Synopsis Missions Come Prepared Checklist Correlation to Standards Connections to Other Halls Glossary ONLINE Student Activities Additional Resources amnh.org/worlds-beyond-earth-educators EssentialEssential Questions Questions What is the solar system? In the 20th century, humans began leaving Earth. NASA’s Our solar system consists of our star—the Sun—and all the Apollo space program was the first to land humans on billions of objects that orbit it. These objects, which are bound another world, carrying 12 human astronauts to the Moon’s to the Sun by gravity, include the eight planets—Mercury, surface. Since then we’ve sent our proxies—robots—on Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune; missions near and far across our solar system. Flyby several dwarf planets, including Ceres and Pluto; hundreds missions allow limited glimpses; orbiters survey surfaces; of moons orbiting the planets and other bodies, including landers get a close-up understanding of their landing Jupiter’s four major moons and Saturn’s seven, and, of course, location; and rovers, like human explorers, set off across the Earth’s own moon, the Moon; thousands of comets; millions surface to see what they can find and analyze. of asteroids; and billions of icy objects beyond Neptune. The solar system is shaped like a gigantic disk with the Sun at The results of these explorations are often surprising. With its center. Everywhere we look throughout the universe we the Moon as our only reference, we expected other worlds see similar disk-shaped systems bound together by gravity. to be cold, dry, dead places, but exploration has revealed Examples include faraway galaxies, planetary systems astonishing variety in our solar system.
    [Show full text]