Variation in Transcript Abundance During Somatic Embryogenesis in Gymnosperms

Total Page:16

File Type:pdf, Size:1020Kb

Variation in Transcript Abundance During Somatic Embryogenesis in Gymnosperms Tree Physiology 24, 1073–1085 © 2004 Heron Publishing—Victoria, Canada Variation in transcript abundance during somatic embryogenesis in gymnosperms CLAUDIO STASOLLA,1,2 PETER V. BOZHKOV,3 TZU-MING CHU,4 LEONEL VAN ZYL,5 ULRIKA EGERTSDOTTER,6 MARIA F. SUAREZ,3 DEBORAH CRAIG,5 RUSS D. WOLFINGER,4 SARA VON ARNOLD3 and RONALD R. SEDEROFF5 1 Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada 2 Corresponding author ([email protected]) 3 Department of Plant Biology and Forest Genetics, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Box 7080, S-75007, 3 Uppsala, Sweden 4 SAS Institute Inc., Cary, NC 27513, USA 5 Forest Biotechnology Group, Department of Forestry, North Carolina State University, Raleigh, NC 27695-7247, USA 6 Institute of Paper Science and Technology, 500 10th Street NW, Atlanta, GA 30318, USA Received January 5, 2004; accepted March 13, 2004; published online August 2, 2004 Summary Somatic embryogenesis of Norway spruce (Picea Introduction abies L.) is a versatile model system to study molecular mecha- Plant embryogenesis begins with the division of the fertilized nisms regulating embryo development because it proceeds egg or zygote and culminates with the generation of a mature through defined developmental stages corresponding to spe- embryo, comprising an embryonic axis with shoot and root cific culture treatments. Normal embryonic development in- poles and cotyledon(s). In gymnosperms, the overall embryo volves early differentiation of proembryogenic masses (PEMs) development pathway can be divided in three distinct phases: into somatic embryos, followed by early and late embryogeny proembryogeny, which includes stages before the elongation leading to the formation of mature cotyledonary embryos. In of a suspensor; early embryogeny, which initiates with the some cell lines there is a developmental arrest at the PEM–so- elongation of the suspensor and terminates with the appear- matic embryo transition. To learn more about the molecular ance of the root meristem; and late embryogeny, which culmi- mechanisms regulating embryogenesis, we compared the tran- nates with the maturation of the embryo (Singh 1978). Despite script profiles of two normal lines and one developmentally ar- extensive knowledge on the physiological and molecular rested line. Ribonucleic acid, extracted from these cell lines at mechanisms regulating embryo maturation in angiosperms successive developmental stages, was analyzed on DNA (Kermode 1990, Girke et al. 2000, Ruuska et al. 2002), little is microarrays containing 2178 expressed sequence tags (ESTs) known about the mechanisms governing the early stages of (corresponding to 2110 unique cDNAs) from loblolly pine embryogenesis. In angiosperms, developmental arrest or aber- (Pinus taeda L.). Hybridization between spruce and pine spe- rations at the later stages of embryonic and post-embryonic de- cies on microarrays has been shown to be effective (van Zyl et velopment are typical consequences of disturbed regulation al. 2002, Stasolla et al. 2003). In contrast to the developmen- during the early stages of embryo development (Dunn et al. tally arrested line, the early phases of normal embryo develop- 1997, Scanlon et al. 1997, Hamann et al. 1999, Heckel et al. ment are characterized by a precise pattern of gene expression, 1999). The development of mutant analysis in Arabidopsis has i.e., repression followed by induction. Comparison of tran- identified several regulatory genes responsible for normal de- script levels between successive stages of embryogenesis al- velopment of the suspensor (Vernon and Meinke 1994, lowed us to identify several genes that showed unique expres- Yadegari et al. 1994, Zhang and Sommerville 1997, Rojo et al. sion responses during normal development. Several of these 2001) and embryo proper (reviewed by Jurgens 2001). In gym- genes encode proteins involved in detoxification processes, nosperms, long generation times make the selection of em- bryo-specific mutants practically impossible. methionine synthesis and utilization, and carbohydrate metab- Somatic embryogenesis, the process in which embryos, olism. The potential role of these genes in embryo develop- similar in morphology to their zygotic counterparts, are in- ment is discussed. duced to develop in culture from somatic cells, represents a suitable model system for investigating factors affecting em- Keywords: embryo development, gene expression, hybridiza- bryo growth. Through this process, a large number of embryos tion, microarray, Picea abies, Pinus taeda. at defined stages of development can easily be obtained. In 1074 STASOLLA ET AL. gymnosperms, the developmental pathway of somatic em- block at the PEM–somatic embryo transition. The employ- bryogenesis has been described for Norway spruce, consisting ment of a pine cDNA array for studies on gene expression in of a sequence of defined developmental stages corresponding spruce has been documented previously (van Zyl et al. 2002) to three specific treatments (Filonova et al. 2000a) (Fig- and implemented (Stasolla et al. 2003). The major objective of ure 1A). Maintenance of the embryogenic potential through this work was to identify genes involved in physiological re- proliferation of proembryogenic masses (PEMs) occurs in the sponses, which are required for the normal progression of em- presence of the exogenously supplied plant growth regulators bryo development. (PGR) auxin and cytokinin. Removal of these PGR from the medium reduces cell proliferation in PEMs and initiates early embryogeny through trans-differentiation of PEMs into so- Materials and methods matic embryos. From this developmental stage on, the path- way of somatic embryogenesis is similar to zygotic embryo Plant material development. Late embryogeny requires abscisic acid (ABA) Three lines of Norway spruce (Picea abies L. Karst.) were uti- and involves establishment of root and shoot meristems and lized: two normal lines, 61.21 (line N1) and 88.17 (line N2), differentiation of cotyledons (Figure 1A). A critical step dur- both of which passed through the PEM–somatic embryo tran- ing the overall embryogenic process appears to be the trans- sition, and one developmentally arrested line, 88.1 (line B), differentiation of PEMs into somatic embryos, requiring the where this transition was precluded (Figure 1A). All cell lines execution of several physiological events, including program- were stored in liquid nitrogen and thawed 5 months before med cell death (Filonova et al. 2000b, Bozhkov et al. 2002, starting the experiment. Maintenance of PEMs and initiation Smertenko et al. 2003). Normal passage of PEMs to somatic of embryo development were performed as previously re- embryos is precluded in some lines, resulting in a develop- ported (Bozhkov et al. 2002). Briefly, proliferation of PEMs mental arrest at the PEM stage (Filonova et al. 2000a, Smer- was stimulated using half-strength LP medium (modified after tenko et al. 2003). Preliminary studies on the molecular mech- Bozhkov and von Arnold 1998) supplemented with PGR anisms regulating the early phases of somatic embryogenesis auxin (9.0 µM 2,4-dichlorophenoxyacetic acid (2,4-D)) and have revealed several genes with differentially regulated ex- cytokinin (4.4 µM N6-benzyladenine (BA)). For maintenance pression between embryogenic and non-embryogenic tissue of embryogenic potential, PEMs were sub-cultured weekly (Bishop-Hurley et al. 2003, van Zyl et al. 2003). As an exten- into fresh PGR-containing medium. Trans-differentiation of sion of this work and to contribute to the understanding of the PEMs into somatic embryos was accomplished through two molecular events associated with gymnosperm embryo- successive washings of 3-ml settled cell aggregates with 10-ml genesis, this study compares the steady-state transcript levels samples of half-strength LP medium devoid of PGR, followed of more than 2000 cDNAs from loblolly pine in three cell lines by inoculation with 3 ml of washed cells into 47 ml of the same of Norway spruce. Of these lines, two were able to form so- PGR-free medium for 1 week. Continuation of embryo devel- matic embryos, whereas the third line had a developmental opment, i.e., generation of cotyledonary somatic embryos, Figure 1. (A) Developmental pathway of somatic embryo- genesis in Norway spruce (modified from Filonova et al. 2000a). In the two normal N1 and N2 lines, proembryogenic masses (PEMs) can success- fully differentiate into early somatic embryos (ESEs) upon removal of plant growth regu- lators (–PGR), and mature into somatic embryos (SE) and cot- yledonary embryos in the pres- ence of abscisic acid (ABA). Trans-differentiation of PEMs into ESEs is precluded in the developmentally blocked B line. Tissue was collected for gene expression analysis at six stages of embryo development. (B) Percentage composition of PEMs (solid bars) and ESEs + SEs (open bars) in the three cell lines during the first five stages of development. TREE PHYSIOLOGY VOLUME 24, 2004 EMBRYOGENESIS REGULATION IN GYMNOSPERMS 1075 was carried out by plating 1 ml of settled cell aggregates onto procedure developed by DeRisi (http://cmgm.stanford.edu/ Whatman No. 2 filter paper placed on solidified BMI-S1 mat- pbrown/protocols/index.html) was followed to label cDNA uration medium containing 30 µM ABA. Cotyledonary em- probes. The RNA from each sample was labeled with both Cy3 bryos were harvested after 35 days in culture. Sampling of and Cy5 dyes and used for reciprocal hybridizations.
Recommended publications
  • Axis Formation in Plant Embryogenesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 81, 467-470, May 19, 1995, Copyright 0 1995 by Cell Press Axis Formation Minireview in Plant Embryogenesis: Cues and Clues Gerd Jiirgens focus on pattern formation in the embryo that establishes Lehrstuhl fur Entwicklungsgenetik the basic body organization of flowering plants. Universitat Ttibingen The Shoot Me&tern: Linking Up the Embryo D-72076 Tiibingen with the Flower Federal Republic of Germany Pattern formation in animals is largely confined to em- bryogenesis such that the future adult form is represented in the body organization of the mature embryo. By con- Imagine a textbook entitled Developmental Biology that trast, plant embryogenesis produces a juvenile form, the focuses entirely on plants, mentioning animals only for seedling, that lacks most structures of the adult plant. Em- their peculiar way of making germ cells by setting aside bryogenesis in essence organizes two groups of stem cells a group of precursor cells early in the embryo. The con- at the opposite ends of the body axis, the primary meri- verse has been, and still is, common practice. It is true stems of the shoot and the root. These meristems then that the regenerative potential of plants, which is indeed add new structures to the seedling, thus generating the impressive, sets them apart from the more familiar animal species-specific adult form during postembryonic devel- models: individual cells can give rise to embryos in culture; opment (Steeves and Sussex, 1989). Regardless of the localized groups of stem cells called meristems make the appearance of the adult plant, the shoot meristem is orga- adult plant in a seemingly autonomous fashion not only nized essentially the same way in different plant species.
    [Show full text]
  • Signaling in Plant Embryogenesis John J Harada
    23 Signaling in plant embryogenesis John J Harada Embryogenesis is a critical stage of the sporophytic life cycle heart-stage of embryogenesis, localized cell divisions gen- during which the basic body plan of the plant is established. erate the cotyledons, embryonic storage organs. Fifth, by Although positional information is implicated to play a major the torpedo-stage, both the shoot and root apical meristems role in determining embryo cell fate, little is known about the are visible as organized structures (Figure 1g). nature of positional signals. Recent studies show that the monopterous and hobbit mutations reveal signaling during Although progress has been made in establishing a frame- patterning of the embryonic axis. The LEAFY COTYLEDON1 work for understanding the mechanisms involved in and PICKLE genes have been implicated to play important embryo development, many questions remain. Little is roles in controlling embryo development. known about the molecular processes that induce embryo formation. The morphogenetic events that underlie forma- Addresses tion of the embryo also remain to be defined. Because cell Section of Plant Biology, Division of Biological Sciences, University of fate is largely determined by positional information in California, One Shields Avenue, Davis, CA 95616, USA; plants, signaling and intercellular communication play crit- e-mail: [email protected] ical roles in development [8,9]. In this article, I review Current Opinion in Plant Biology 1999, 2:23–27 primarily information published during the past year that provide examples of signaling during plant embryogenesis. http://biomednet.com/elecref/1369526600200023 Due to space limitations, this review will not be compre- © Elsevier Science Ltd ISSN 1369-5266 hensive but will focus on specific examples.
    [Show full text]
  • Different Roles of Auxins in Somatic Embryogenesis Efficiency In
    International Journal of Molecular Sciences Article Different Roles of Auxins in Somatic Embryogenesis Efficiency in Two Picea Species Teresa Hazubska-Przybył * , Ewelina Ratajczak , Agata Obarska and Emilia Pers-Kamczyc Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland; [email protected] (E.R.); [email protected] (A.O.); [email protected] (E.P.-K.) * Correspondence: [email protected]; Tel.: +48-61-8170-033 Received: 3 April 2020; Accepted: 9 May 2020; Published: 11 May 2020 Abstract: The effects of auxins 2,4-D (2,4-dichlorophenoxyacetic acid), NAA (1-naphthaleneacetic acid) or picloram (4-amino-3,5,6-trichloropicolinic acid; 9 µM) and cytokinin BA (benzyloadenine; 4.5 µM) applied in the early stages of somatic embryogenesis (SE) on specific stages of SE in Picea abies and P. omorika were investigated. The highest SE initiation frequency was obtained after 2,4-D application in P. omorika (22.00%) and picloram application in P. abies (10.48%). NAA treatment significantly promoted embryogenic tissue (ET) proliferation in P. abies, while 2,4-D treatment reduced it. This reduction was related to the oxidative stress level, which was lower with the presence of NAA in the proliferation medium and higher with the presence of 2,4-D. The reduced oxidative stress level after NAA treatment suggests that hydrogen peroxide (H2O2) acts as a signalling molecule and promotes ET proliferation. NAA and picloram in the proliferation medium decreased the further production and maturation of P. omorika somatic embryos compared with that under 2,4-D. The quality of the germinated P.
    [Show full text]
  • Patterning During Embryo Development in Pinus
    Patterning During Embryo Development in Pinus With Special Emphasis on Somatic Embryogenesis in Scots pine (Pinus sylvestris L.) Malin Abrahamsson Faculty of Natural Resources and Agricultural Sciences Department of Plant Biology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2016 Acta Universitatis agriculturae Sueciae 2016:48 Cover: Scanning electron microscopy picture of a cotyledonary somatic embryo from cell line 12:12 ISSN 1652-6880 ISBN (print version) 978-91-576-8598-8 ISBN (electronic version) 978-91-576-8599-5 © 2016 Malin Abrahamsson, Uppsala Print: SLU Service/Repro, Uppsala 2016 Embryoutveckling hos släktet Pinus – med särskild tonvikt på somatisk embyoutveckling i tall (Pinus sylvestris L.) Sammanfattning Skogsindustrin har ett stort intresse av att kunna föröka ekonomiskt viktiga trädslag vegetativt, då det innebär stora fördelar i både förädlingsarbetet och för massförökning av det förädlade materialet. Somatisk embryogenes är en relativt ny metod för vegetativ förökning, där man från ett enda frö kan producera ett obegränsat antal genetiskt identiska plantor. Metoden innebär att somatiska celler stimuleras att utvecklas till embryogena celler som kan bilda embryon, så kallade somatiska embryon, som motsvarar fröembryon. Gran, men inte tall, kan förökas effektivt via somatiska embryon. Till skillnad från gran, så multipliceras fröembryot i tall på ett tidigt stadium genom delning. Embryona börjar tävla för sin överlevnad, och så småningom blir ett embryo dominant medan de resterande underordnade embryona succesivt bryts ner. Embryogena cellkulturer av tall kan endast etableras från omogna fröembryon, under en tvåveckorsperiod varje sommar, när multipliceringen av fröembryot sker. Embryogena cellkulturer av tall växer mycket snabbt, men det är svårt att stimulera utvecklingen och mognad av somatiska embryon.
    [Show full text]
  • K. Daigremontiana As a Model Plant for the Study of Auxin Effects In
    iochemis t B try n & la P P h f y o s l Benjamín Rodríguez-Garay et al., J Plant Biochem Physiol 2014, 2:1 i Journal of o a l n o r g u y DOI: 10.4172/2329-9029.1000e120 o J ISSN: 2329-9029 Plant Biochemistry & Physiology EditorialResearch Article OpenOpen Access Access Kalanchoë daigremontiana as a Model Plant for the Study of Auxin Effects in Plant Morphology José González-Hernández, José Manuel Rodríguez-Domínguez and Benjamín Rodríguez-Garay* Biotecnología Vegetal Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de la Normal, Guadalajara, Jalisco, México The ability to regenerate a plant from a single cell is known as totipotency, and such phenomenon occurs not only in in vitro tissue and cell culture but in specialized somatic cells that are part of whole plants in ex vitro natural conditions, constituting this asexual or vegetative processes their only means of reproduction [1]. A large number of studies have been conducted in order to understand the mechanisms by which shoots, plantlets and vegetative propagules are produced. According to the first studies reported by Yarbrough [2, 3], in the fern species Camptosorus rhizophyllus (which has two different kinds of leaves), shoots are produced at the tip of long acuminate leaves, while in the species Tolmiea menziesii shoots are originated in a notch near the junction of the petiole and the leaf blade; in both cases, the shoots are produced from meristematic tissue and once they are mature are naturally detached from the leaf and fall to the ground originating a new plant.
    [Show full text]
  • Ovule and Embryo Development, Apomixis and Fertilization Abdul M Chaudhury, Stuart Craig, ES Dennis and WJ Peacock
    26 Ovule and embryo development, apomixis and fertilization Abdul M Chaudhury, Stuart Craig, ES Dennis and WJ Peacock Genetic analyses, particularly in Arabidopsis, have led to Figure 1 the identi®cation of mutants that de®ne different steps of ovule ontogeny, pollen stigma interaction, pollen tube growth, and fertilization. Isolation of the genes de®ned by these Micropyle mutations promises to lead to a molecular understanding of (a) these processes. Mutants have also been obtained in which Synergid processes that are normally triggered by fertilization, such as endosperm formation and initiation of seed development, Egg cell occur without fertilization. These mutants may illuminate Polar Nuclei apomixis, a process of seed development without fertilization extant in many plants. Antipodal cells Chalazi Address Female Gametophyte CSIRO Plant Industry, GPO BOX 1600, ACT 2601, Australia; e-mail:[email protected] (b) (c) Current Opinion in Plant Biology 1998, 1:26±31 Pollen tube Funiculus http://biomednet.com/elecref/1369526600100026 Integument Zygote Fusion of Current Biology Ltd ISSN 1369-5266 egg and Primary sperm nuclei Endosperm Abbreviations cell ®s fertilization-independent seed Fused Polar ®e fertilization-independent endosperm Nuclei and Sperm Double Fertilization Introduction Ovules are critical in plant sexual reproduction. They (d) (e) contain a nucellus (the site of megasporogenesis), one or two integuments that develop into the seed coat and Globular a funiculus that connects the ovule to the ovary wall. embryo Embryo The nucellar megasporangium produces meiotic cells, one of which subsequently undergoes megagametogenesis to Endosperm produce the mature female gametophyte containing eight haploid nuclei [1] (Figure 1). One of these eight nuclei becomes the egg.
    [Show full text]
  • Development of the Embryo Proper and the Suspensor During Plant Embryogenesis‡
    Plant Biotechnology 22, 253–260 (2005) Review Development of the embryo proper and the suspensor during plant embryogenesis‡ Mikihisa Umeharaa*, Hiroshi Kamada Gene Research Center, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan * E-mail: [email protected] Tel: ϩ81-92-924-2970 Fax: ϩ81-92-924-2981 Received June 3, 2005; accepted September 14, 2005 (Edited by M. Mii) Abstract Seed plant zygotes differentiate into two components, the embryo proper and the suspensor. Previous studies have led to the generally accepted view that development of the embryo proper is regulated by the suspensor connecting the embryo proper to donor tissue. However, biochemical, biological, and molecular analyses of embryogenesis are difficult, since zygotic embryos in higher plants are deeply embedded in mother tissues. To find a way out of the difficulties, some embryo-defective mutants of Arabidopsis have been used to discuss embryogenesis and suspensor function. On the other hand, somatic embryogenesis is widely used as a model system for studying the process of zygotic embryo formation. Because somatic embryo of gymnosperms has a well-developed suspensor, it has been successfully used to observe the suspensor directly and to identify factors modulating the interaction between the embryo proper and the suspensor. Various stimulatory and inhibitory factors are correlated with the interaction. Here, we review the results of studies employing Arabidopsis mutants and some gymnosperm tissue culture, and we discuss the possibility of using somatic embryogenesis as a new model for studies of suspensor biology. Key words: Embryogenesis, embryo proper, gymnosperm tissue culture, suspensor.
    [Show full text]
  • Factors Affecting Somatic Embryogenesis and Transformation in Modern Plant Breeding
    CSIRO PUBLISHING The South Pacific Journal of Natural and Applied Sciences, 28 , 27-40, 2010 www.publish.csiro.au/journals/spjnas 10.1071/SP10002 Factors affecting somatic embryogenesis and transformation in modern plant breeding Pradeep C. Deo 1, 2 , Anand P. Tyagi 1, Mary Taylor 3, Rob Harding 2 and Doug Becker 2 1Faculty of Science, Technology and Environment (SBCS), The University of the South Pacific, Suva, Fiji. 2Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia. 3Centre for Pacific Crops and Trees, Secretariat of the Pacific Community, Suva, Fiji. Abstract Somatic embryogenesis and transformation systems are indispensable modern plant breeding components since they provide an alternative platform to develop control strategies against the plethora of pests and diseases affecting many agronomic crops. This review discusses some of the factors affecting somatic embryogenesis and transformation, highlights the advantages and limitations of these systems and explores these systems as breeding tools for the development of crops with improved agronomic traits. The regeneration of non-chimeric transgenic crops through somatic embryogenesis with introduced disease and pest-resistant genes for instance, would be of significant benefit to growers worldwide. Keywords: Somatic embryogenesis, transformation, plant growth regulators, Agrobacterium, microprojectiles 1. Introduction developed radicals with very fine root hairs (Zimmerman, In plants, embryo-like structures can be generated from 1993). cells other than gametes (i.e. somatic cells) by In monocotyledonous embryogenesis, especially in circumventing the normal fertilization process, hence the graminaceous species, the transition from globular stage term somatic embryos (Parrott, 2000). As somatic follows a series of events all occurring simultaneously.
    [Show full text]
  • Secreted Molecules and Their Role in Embryo Formation in Plants : a Min-Review
    Secreted molecules and their role in embryo formation in plants : a min-review. Elisabeth Matthys-Rochon To cite this version: Elisabeth Matthys-Rochon. Secreted molecules and their role in embryo formation in plants : a min- review.. acta Biologica Cracoviensia, 2005, pp.23-29. hal-00188834 HAL Id: hal-00188834 https://hal.archives-ouvertes.fr/hal-00188834 Submitted on 31 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright ACTA BIOLOGICA CRACOVIENSIA Series Botanica 47/1: 23–29, 2005 SECRETED MOLECULES AND THEIR ROLE IN EMBRYO FORMATION IN PLANTS: A MINI-REVIEW ELISABETH MATTHYS-ROCHON* Reproduction et développement des plantes (RDP), UMR 5667 CNRS/INRA/ENS/LYON1, 46 Allée d’Italie, 69364 Lyon Cedex 07, France Received January 15, 2005; revision accepted April 2, 2005 This short review emphasizes the importance of secreted molecules (peptides, proteins, arabinogalactan proteins, PR proteins, oligosaccharides) produced by cells and multicellular structures in culture media. Several of these molecules have also been identified in planta within the micro-environment in which the embryo and endosperm develop. Questions are raised about the parallel between in vitro systems (somatic and androgenetic) and in planta zygotic development.
    [Show full text]
  • Embryogenesis. Meristems
    BLGY1115 Plant cell & tissue biology Prof. Paul Knox [email protected] Books • BIOLOGY th Campbell et al., 10 Global edition, Pearson Publishers • Chapter 35 (p 816). Plant Structure & Growth Also Chapters 36-39 Plants………... major source of biomass on Earth ….. a source of food……….. …….. and drink! • Special features of plant growth & development • Embryogenesis. Meristems • Primary and secondary growth. Wood formation • Plant cell walls • Plant tissues and cell types • Plasticity and plant development Plants are complex multi-cellular organisms Distinctive features of plant development • Post-embryonic development • Plant cells do not migrate • Plant cells are totipotent & have developmental plasticity Post-embryonic development • The plant embryo has a simplified body plan • Most of the plant body is produced post- embryonically by the activity of meristems • Morphogenesis occurs continuously throughout the life of a plant • Plants can respond to the environment with changes in growth and development Development of a human embryo Late stage plant embryo future SAM future RAM SAM – shoot apical meristem RAM – root apical meristem Plant cells cannot migrate - because of the cell wall • The relative positions of cells in the plant body is always important • Cellular processes must be highly co-ordinated in both space and time • CELL DIVISION: timing and orientation • CELL EXPANSION: extent and direction • CELL DIFFERENTIATION: spatial relationships of cell types important The plant kingdom & plant diversity • The flowering plants (Angiosperms) are an extremely widespread, successful & diverse group of organsims • They are structurally the most complex plants & have evolved from structurally less complex plants • The table shows a summary of the major extant groups of the plant kingdom Division/Class # species Angiosperms Dicotyledons 300,000 Monocotyledons 65,000 Gymnosperms Seed Conifers 550 Cycads 100 Ginkgo 1 Vascular Ferns (Pteridophytes) 12,000 Horsetails & club mosses 1,000 Seedless Non- Mosses & liverworts 16,000 (Bryophytes) vasc.
    [Show full text]
  • History of the 19Th Century Cell Theory in the Light of Philip Kitcher's Theory of Unification
    HISTORY OF THE 19TH CENTURY CELL THEORY IN THE LIGHT OF PHILIP KITCHER'S THEORY OF UNIFICATION A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF SOCIAL SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY ŞAHİN ALP TAŞKAYA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS IN THE DEPARTMENT OF PHILOSOPHY JANUARY 2013 Approval of the Graduate School of Social Sciences Prof. Dr. Meliha Altunışık Director I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Arts Prof. Dr. Ahmet İnam Head of Department This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Arts Assoc. Prof Samet Bağçe Supervisor Examining Committee Members Assoc. Prof. Barış Parkan (METU,PHIL) Assoc. Prof. Samet Bağçe (METU,PHIL) Assoc. Prof. Erdoğan Yıldırım (METU,SOC) PLAGIARISM I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Signature : iii ABSTRACT HISTORY OF THE 19TH CENTURY CELL THEORY IN THE LIGHT OF PHILIP KITCHER'S THEORY OF UNIFICATION Taşkaya, Şahin Alp M.A., Graduate School of Social Sciences Supervisor: Assoc. Prof. Samet Bağçe January 2013, 47 pages In the turn of 19th century, Biology as a scientific discipline emerged; focused on every aspect of organisms, there was no consensus on the basic entity where the observed phenomena stemmed from.
    [Show full text]
  • Small Non-Coding Rnas at the Crossroads of Regulatory Pathways Controlling Somatic Embryogenesis in Seed Plants
    plants Review Small Non-Coding RNAs at the Crossroads of Regulatory Pathways Controlling Somatic Embryogenesis in Seed Plants Ana Alves 1,2 , Daniela Cordeiro 3, Sandra Correia 3 and Célia Miguel 1,4,* 1 BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal; [email protected] 2 Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal 3 Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; [email protected] (D.C.); [email protected] (S.C.) 4 iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal * Correspondence: [email protected] Abstract: Small non-coding RNAs (sncRNAs) are molecules with important regulatory functions during development and environmental responses across all groups of terrestrial plants. In seed plants, the development of a mature embryo from the zygote follows a synchronized cell division sequence, and growth and differentiation events regulated by highly regulated gene expression. However, given the distinct features of the initial stages of embryogenesis in gymnosperms and angiosperms, it is relevant to investigate to what extent such differences emerge from differential regulation mediated by sncRNAs. Within these, the microRNAs (miRNAs) are the best characterized class, and while many miRNAs are conserved and significantly represented across angiosperms and other seed plants during embryogenesis, some miRNA families are specific to some plant lineages. Citation: Alves, A.; Cordeiro, D.; Being a model to study zygotic embryogenesis and a relevant biotechnological tool, we systematized Correia, S.; Miguel, C.
    [Show full text]