Symposium U: 2004 MRS Fall Meeting (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter Template
Copyright by Jianhe Guo 2018 The Dissertation Committee for Jianhe Guo Certifies that this is the approved version of the following Dissertation: High-Performance Artificial Micro/Nanomachines and Their Bioapplications Committee: Donglei (Emma) Fan, Supervisor Paulo Jorge Ferreira Brian Korgel Desiderio Kovar Arumugam Manthiram High-Performance Artificial Micro/Nanomachines and Their Bioapplications by Jianhe Guo Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2018 Dedication This dissertation is dedicated to my wife, Jing Liu, my parents, Jianmin Guo and Shuzhen Lin, my grandparents, Jinbang Guo and Yajin Huang, for their constant support and unconditional love. Acknowledgements First and foremost, I would like to express my sincere gratitude and appreciation to my supervisor Dr. Donglei Fan. Thanks to her creative inspirations in generating ideas, valuable suggestions in solving problems, patient guidance in revising writings, and constant support in recommending me for awards/fellowships to ensure my funding, without which it would have never been possible for me to complete my graduate study. She has also shown a lot of grace and support to me beyond research, such as treating us with delicious food on festivals, and helping me find jobs upon graduation. As a scientist and researcher, she is a combination of beauty, integrity, talent and diligence that I rarely see in others. I am very fortunate to be one of her Ph.D. students. In addition, I wish to acknowledge all my colleagues in Dr. -
Electric-Field-Guided Precision Manipulation of Catalytic
Article Cite This: ACS Nano 2018, 12, 1179−1187 www.acsnano.org Electric-Field-Guided Precision Manipulation of Catalytic Nanomotors for Cargo Delivery and Powering Nanoelectromechanical Devices † ‡ ‡ † ‡ Jianhe Guo, Jeremie June Gallegos, Ashley Robyn Tom, and Donglei Fan*, , † ‡ Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States *S Supporting Information ABSTRACT: We report a controllable and precision approach in manipulating catalytic nanomotors by strategi- cally applied electric (E-) fields in three dimensions (3-D). With the high controllability, the catalytic nanomotors have demonstrated versatility in capturing, delivering, and releasing of cargos to designated locations as well as in situ integration with nanomechanical devices (NEMS) to chemically power the actuation. With combined AC and DC E-fields, catalytic nanomotors can be accurately aligned by the AC E-fields and effectively change their speeds instantly by the DC E-fields. Within the 3-D orthogonal microelectrode sets, the in-plane transport of catalytic nanomotors can be swiftly turned on and off, and these catalytic nanomotors can also move in the vertical direction. The interplaying nanoforces that govern the propulsion and alignment are investigated. The modeling of catalytic nanomotors proposed in previous works has been confirmed quantitatively here. Finally, the prowess of the precision manipulation of catalytic nanomotors by E-fields is demonstrated in two applications: the capture, transport, and release of cargos to prepatterned microdocks, and the assembly of catalytic nanomotors on NEMS to power the continuous rotation. The concepts and approaches reported in this work could further advance applications of catalytic nanomotors, e.g., for assembling and powering nanomachines, nanorobots, and complex NEMS devices. -
Final Program
______ WelcomePROGRAM Letter Dear Attendee of NEMB2018: On behalf of the organizers, we would like to welcome you to Los Angeles to the 6th American Society for Mechanical Engineers (ASME) NanoEngineering in Medicine and Biology Conference (NEMB 2018). At this meeting, you will have the opportunity to discuss the most recent advances in nanobiotechnology and nanomedicine with luminaries and pioneers of the field. Whether it’s a tutorial, plenary, keynote and theme presentation, a poster presentation, or a social event, we believe that you will enjoy these exciting elements of the conference. We hope you will benefit from the academic and industrial breadth of the meeting. Applications of Nanoengineering for medicine and biology are having a dramatic impact on a myriad of healthcare needs, product development and biomedical research. These include nanoparticle-based imaging probes and drug/gene carriers for new and improved disease diagnostics and therapeutics, bio-inspired nanomaterials and nanostructures, and novel Nanoengineering tools for biologicalConference and medical applications. | August These 21-24, frontiers 2018 of engineering, biology and medicine at the micro- and nano-scale will be highlighted at NEMB 2018. In addition, work contributing to completely new fundamental understandingExhibition of |biological August processes 22-23, and2018 phenomenon at the nanoscale will also be presented. Together these fundamental and applied aspects of the meeting provide the basis for solving grand challenge problems in cancer, infectious disease, cardiovascular, neurological diseases and global health. NanoengineersOMNI and Los nanoscientists Angeles areHotel indeed, changing the world and are having a profound impact on medicine and biology! California Plaza, We would like to acknowledge support for the conference from the National Science Foundation, Purdue University, WashingtonLos Angeles University ,at CA St. -
Fabrication and Robotization of Ultrasensitive Plasmonic Nanosensors for Molecule Detection with Raman Scattering
Sensors 2015, 15, 10422-10451; doi:10.3390/s150510422 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Fabrication and Robotization of Ultrasensitive Plasmonic Nanosensors for Molecule Detection with Raman Scattering Xiaobin Xu 1, Kwanoh Kim 2, Chao Liu 1 and Donglei Fan 1,2,* 1 Materials Science and Engineering Program, the University of Texas at Austin, Austin, TX 78712, USA; E-Mails: [email protected] (X.X.); [email protected] (C.L.) 2 Department of Mechanical Engineering, the University of Texas at Austin, Austin, TX 78712, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +1-512-471-5874. Academic Editor: Shinya Maenosono Received: 4 January 2015 / Accepted: 14 April 2015 / Published: 4 May 2015 Abstracts: In this work, we introduce the history and mechanisms of surface enhanced Raman scattering (SERS), discuss various techniques for fabrication of state-of-the-art SERS substrates, and review recent work on robotizing plasmonic nanoparticles, especially, the efforts we made on fabrication, characterization, and robotization of Raman nanosensors by design. Our nanosensors, consisting of tri-layer nanocapsule structures, are ultrasensitive, well reproducible, and can be robotized by either electric or magnetic tweezers. Three applications using such SERS nanosensors were demonstrated, including location predictable detection, single-cell bioanalysis, and tunable molecule release and monitoring. The integration of SERS and nanoelectromechanical system (NEMS) devices is innovative in both device concept and fabrication, and could potentially inspire a new device scheme for various bio-relevant applications. Keywords: SERS; sensors; NEMS; nanomotors; drug delivery; manipulation Sensors 2015, 15 10423 1.