Storm Surge Propagation and Flooding in Small Tidal Rivers During Events of Mixed Coastal and Fluvial Influence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Saco River Saco & Biddeford, Maine
Environmental Assessment Finding of No Significant Impact, and Section 404(b)(1) Evaluation for Maintenance Dredging DRAFT Saco River Saco & Biddeford, Maine US ARMY CORPS OF ENGINEERS New England District March 2016 Draft Environmental Assessment: Saco River FNP DRAFT ENVIRONMENTAL ASSESSMENT FINDING OF NO SIGNIFICANT IMPACT Section 404(b)(1) Evaluation Saco River Saco & Biddeford, Maine FEDERAL NAVIGATION PROJECT MAINTENANCE DREDGING March 2016 New England District U.S. Army Corps of Engineers 696 Virginia Rd Concord, Massachusetts 01742-2751 Table of Contents 1.0 INTRODUCTION ........................................................................................... 1 2.0 PROJECT HISTORY, NEED, AND AUTHORITY .......................................... 1 3.0 PROPOSED PROJECT DESCRIPTION ....................................................... 3 4.0 ALTERNATIVES ............................................................................................ 6 4.1 No Action Alternative ..................................................................................... 6 4.2 Maintaining Channel at Authorized Dimensions............................................. 6 4.3 Alternative Dredging Methods ........................................................................ 6 4.3.1 Hydraulic Cutterhead Dredge....................................................................... 7 4.3.2 Hopper Dredge ........................................................................................... 7 4.3.3 Mechanical Dredge .................................................................................... -
Coastal and Marine Ecological Classification Standard (2012)
FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ...................................................... -
Physicsof Estuariesand Coastal Seas
1 August 12-16 2012 n New York City The Physics of Estuaries and Coastal Seas Symposium 2 3 Assessing Suspended Sediment Dynamics in the San Francisco Bay-Delta System: Coupling Landsat Satellite Imagery, in situ Data and a Numerical Model Fernanda Achete1, Mick van der Wegen1, Dave Schoellhamer2, Bruce E. Jaffe2 1 UNESCO-IHE, Delft, Netherlands 2 U.S. Geological Survey Rivers draining the Central Valley and Sierras of California, including the Sacramento and San Joaquin Rivers, meet in the Delta before discharging into the northeastern end of the San Francisco Estuary. The Bay-Delta system is an important region for a) economic activities (ports, agriculture, and industry), b) human settling (the San Francisco Bay area hosts 7.15 million inhabitants) and c) ecosystems (the Delta area hosts several endemic species and is an important regional breeding and feeding environment). Human activities, including hydraulic mining and agriculture development have affected the Bay-Delta system over the past 150 years. Other examples of anthropogenic influence on the system are damming of rivers, channels dredging, land reclamation and levee construction. Suspended sediment concentration (SSC) has varied considerably as a result of these activities. The change in SSC has a high impact on ecosystems by influencing light penetration that is closely related to primary production, contaminants distribution and marshland development. Better understanding of the spatial distribution and temporal variation of SSC opens the way to improved understanding ecosystem dynamics in the Bay-Delta system and to assess the impact of future developments such as water export, sea level rise and decreasing SSC levels. -
EARTH Title Description ENTITIES ATTRIBUTES DYNAMIC ASPECTS
EARTH Title Description ENTITIES ATTRIBUTES DYNAMIC ASPECTS DIMENSIONS ACCESSORY TERMS <EFFECTS AND SINGLE EVENTS> <STRUCTURE AND MORPHOLOGY> ACTIVITIES COMPOSITION CONDITIONS GENERAL TERMS IMMATERIAL ENTITIES MATERIAL ENTITIES PROCESSES PROPERTIES TIME <ABIOTIC ENVIRONMENT PROCESSES> <BIOECOLOGICAL PROCESSES> <COGNITIVE PROCESSES> <COMPLEX> <MENTAL CONSTRUCTS> <PHYSICAL AND CHEMICAL PROCESSES> <PHYSICAL OPERATIONS> <POLICY ACTIVITIES> <PROCESSES OF COMPLEX SYSTEMS (BY GENERAL TYPE)> <PROCESSES RELATED TO MATERIALS AND PRODUCTS> <PRODUCTIVE SECTORS> <SOCIAL AND CULTURAL ACTIVITIES> <SOCIAL, CULTURAL AND POLICY PROCESSES> INDUSTRY LIVING ENTITIES NON LIVING ENTITIES <ABSTRACT CONCEPTS AND PRINCIPLES> <DISPOSAL AND RESTORATION> <KNOWLEDGE SYSTEMS> <MANIPULATION, PRODUCTION, CONSUMPTION> <MEASURES> <METHODS AND TECHNIQUES> <PARAMETERS, CRITERIA AND FACTORS> <REPRESENTATION AND ELABORATION SYSTEMS> ARTIFICIAL ENTITIES BIOECOLOGICAL ENTITIES DATA NATURAL ENTITIES NATURAL SPACES BY GENERAL TYPES SOCIAL ENTITIES <ABIOTIC ENVIRONMENT> <BUILT ENVIRONMENT> <EARTH CONSTITUENTS AND MATERIALS> <MATERIALS AND PRODUCTS> <OPEN SPACES, CULTURAL LANDSCAPES> <PARTS> <PHYSICAL AND CHEMICAL CONSTITUENTS> <WHOLE> EQUIPMENT AND TECHNOLOGICAL SYSTEMS symbiotic organisms technological systems <ATMOSPHERE ENVIRONMENT> <ECOSYSTEM ABIOTIC COMPONENTS> <EXTRATERRESTRIAL ENVIRONMENT> <GEOGRAPHICAL REGIONS AND CLIMATIC ZONES> <TERRESTRIAL ENVIRONMENT> <WATER ENVIRONMENT> <CONTINENTAL WATER ENVIRONMENT> <OCEANIC WATER ENVIRONMENT> <TERRESTRIAL AREAS AND LANDFORMS> geological -
Preparing for Tomorrow's High Tide
Preparing for Tomorrow’s High Tide Sea Level Rise Vulnerability Assessment for the State of Delaware July 2012 Other Documents in the Preparing for Tomorrow’s High Tide Series A Progress Report of the Delaware Sea Level Rise Advisory Committee (November 2011) A Mapping Appendix to the Delaware Sea Level Rise Vulnerability Assessment (July 2012) Preparing for Tomorrow’s High Tide Sea Level Rise Vulnerability Assessment for the State of Delaware Prepared for the Delaware Sea Level Rise Advisory Committee by the Delaware Coastal Programs of the Department of Natural Resources and Environmental Control i About This Document This Vulnerability Assessment was developed by members of Delaware’s Sea Level Rise Advisory Committee and by staff of the Delaware Coastal Programs section of the Department of Natural Resources and Environmental Control. It contains background information about sea level rise, methods used to determine vulnerability and a comprehensive accounting of the extent and impacts that sea level rise will have on 79 resources in the state. The information contained within this document and its appendices will be used by the Delaware Sea Level Rise Advisory Committee and other stakeholders to guide development of sea level rise adaptation strategies. Users of this document should carefully read the introductory materials and methods to understand the assumptions and trade-offs that have been made in order to describe and depict vulnerability information at a statewide scale. The Delaware Coastal Programs makes no warranty and promotes no other use of this document other than as a preliminary planning tool. This project was funded by the Delaware Department of Natural Resources and Environmental Control, in part, through a grant from the Delaware Coastal Programs with funding from the Offi ce of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administrations, under award number NA11NOS4190109. -
Maine Guide Training
Maine Guide Training 2021 History of Maine Guides ● First hired guides in Maine were Abenaki people who led European explorers, military officials, traders, priests and lumbermen. ● Guiding industry emerged in late 1900s as people in more urban and industrialized regions sought wilderness for recreation ● Cornelia “Fly Rod” Crosby was first guide licensed in 1897; 1700 others were licensed that year. Maine’s Legal Definition of “Guide” Any person who receives any form of remuneration for his services in accompanying or assisting any person in the fields, forests or on the waters or ice within the jurisdiction of the State while hunting, fishing, trapping, boating, snowmobiling or camping at a primitive camping area. Sea Kayaking Guide Specialization Guides can lead paddlesports trips on the State's territorial seas and tributaries of the State up to the head of tide and out to the three mile limit. This classification includes overnight camping trips in conjunction with those sea-kayaking and paddlesports. Testing Process 1. Criminal Background Check 2. Oral Examination ■ Chart and compass work ■ Catastrophic scenario 3. Written Examination (minimum score of 70 to pass) What Maine Sea Kayak Guides CAn Do ● Lead commercial sea kayaking and SUP trips on Maine’s coastal waters ● Lead overnight camping trips associated with these trips (new as of 2005) ● Lead trips with up to 12 people per guide What Sea Kayak Guides CAN’T Do ● Lead paddling trips on inland waters (by kayak, canoe, SUP or raft) ● Take clients fishing or hunting ● Lead trips that require another type of guide license What are the qualities that you most appreciated in guides you’ve encountered? ● Wilderness Guide Association’s Definition of a Guide A trained and experienced professional with a high level of nature awareness. -
Species and Community Profiles to Six Clutches of Eggs, Totaling About 861 Eggs During California Vernal Pool Tadpole Her Lifetime (Ahl 1991)
3 Invertebrates their effects on this species are currently being investi- Franciscan Brine Shrimp gated (Maiss and Harding-Smith 1992). Artemia franciscana Kellogg Reproduction, Growth, and Development Invertebrates Brita C. Larsson Artemia franciscana has two types of reproduction, ovovi- General Information viparous and oviparous. In ovoviviparous reproduction, the fertilized eggs in a female can develop into free-swim- The Franciscan brine shrimp, Artemia franciscana (for- ming nauplii, which are set free by the mother. In ovipa- merly salina) (Bowen et al. 1985, Bowen and Sterling rous reproduction, however, the eggs, when reaching the 1978, Barigozzi 1974), is a small crustacean found in gastrula stage, become surrounded by a thick shell and highly saline ponds, lakes or sloughs that belong to the are deposited as cysts, which are in diapause (Sorgeloos order Anostraca (Eng et al. 1990, Pennak 1989). They 1980). In the Bay area, cysts production is generally are characterized by stalked compound eyes, an elongate highest during the fall and winter, when conditions for body, and no carapace. They have 11 pairs of swimming Artemia development are less favorable. The cysts may legs and the second antennae are uniramous, greatly en- persist for decades in a suspended state. Under natural larged and used as a clasping organ in males. The aver- conditions, the lifespan of Artemia is from 50 to 70 days. age length is 10 mm (Pennak 1989). Brine shrimp com- In the lab, females produced an average of 10 broods, monly swim with their ventral side upward. A. franciscana but the average under natural conditions may be closer lives in hypersaline water (70 to 200 ppt) (Maiss and to 3-4 broods, although this has not been confirmed. -
Fishery Bulletin of the Fish and Wildlife Service V.53
'I', . FISRES OF '!'RE GULF OF MAINE. 101 Description.-The hickory shad differs rather Bay, though it is found in practically all of them. noticeably from the sea herring in that the point This opens the interesting possibility that the of origin of its dorsal fin is considerably in front of "green" fish found in Chesapeake Bay, leave the the mid-length of its trunk; in its deep belly (a Bay, perhaps to spawn in salt water.65 hickory shad 13~ in. long is about 4 in. deep but a General range.-Atlantic coast of North America herring of that length is only 3 in. deep) ; in the fact from the Bay of Fundy to Florida. that its outline tapers toward both snout and tail Occurrence in the Gulf oj Maine.-The hickory in side view (fig. 15); and in that its lower jaw shad is a southern fish, with the Gulf of Maine as projects farther beyond the upper when its mouth the extreme northern limit to its range. It is is closed; also, by the saw-toothed edge of its belly. recorded in scientific literature only at North Also, it lacks the cluster of teeth on the roof of the· Truro; at Provincetown; at Brewster; in Boston mouth that is characteristic of the herring. One Harbor; off Portland; in Casco Ba3T; and from the is more likely to confuse a hickory shad with a shad mouth of the Bay of Fundy (Huntsman doubts or with the alewives, which it resembles in the this record), and it usually is so uncommon within position of its dorsal fin, in the great depth of its our limits that we have seen none in the Gulf body, in its saw-toothed belly and in the lack of ourselves. -
Public Facilities and Services
NAPA COUNTY BASELINE DATA REPORT CHAPTER 13 PUBLIC FACILITIES AND SERVICES CHRONOLOGY OF UPDATE PURPOSE NOVEMBER 30, 2005—VERSION 1 The purpose of this chapter is to provide a comprehensive inventory of the existing public facilities and services in Napa County. Additionally, this chapter also provides a scientific basis for future Countywide, regional, and site-specific level assessments of project impacts and the evaluation of mitigation measures, conservation proposals, and enhancement opportunities for public facilities and services in Napa County. PARK PLAYGROUND NAPA COUNTY BASELINE DATA REPORT: PUBLIC FACILITIES AND SERVICES TABLE OF CONTENTS LIST OF ACRONYMS.......................................................................................................................13-ii Capacity ..............................................................................................................................13-19 Planned Improvements .......................................................................................................13-19 INTRODUCTION ..............................................................................................................................13-1 Service Standards...............................................................................................................13-19 Purpose ................................................................................................................................13-1 Specialized Terms ................................................................................................................13-1 -
Tidal Wetland Vegetation in the San Francisco Bay Estuary: Modeling Species Distributions with Sea-Level Rise
Tidal Wetland Vegetation in the San Francisco Bay Estuary: Modeling Species Distributions with Sea-Level Rise By Lisa Marie Schile A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Maggi Kelly, Chair Professor Katharine Suding Professor Wayne Sousa Fall 2012 Tidal Wetland Vegetation in the San Francisco Bay Estuary: Modeling Species Distributions with Sea-Level Rise Copyright © 2012 by Lisa Marie Schile Abstract Tidal Wetland Vegetation in the San Francisco Bay Estuary: Modeling Species Distributions with Sea-Level Rise by Lisa Marie Schile Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Maggi Kelly, Chair Tidal wetland ecosystems are dynamic coastal habitats that, in California, often occur at the complex nexus of aquatic environments, diked and leveed baylands, and modified upland habitat. Because of their prime coastal location and rich peat soil, many wetlands have been reduced, degraded, and/or destroyed, and yet their important role in carbon sequestration, nutrient and sediment filtering, flood control, and as habitat requires us to further research, conserve, and examine their sustainability, particularly in light of predicted climate change. Predictions of regional climate change effects for the San Francisco Bay Estuary present a future with reduced summer freshwater -
550. Regulations for General Public Use Activities on All State Wildlife Areas Listed
550. Regulations for General Public Use Activities on All State Wildlife Areas Listed Below. (a) State Wildlife Areas: (1) Antelope Valley Wildlife Area (Sierra County) (Type C); (2) Ash Creek Wildlife Area (Lassen and Modoc counties) (Type B); (3) Bass Hill Wildlife Area (Lassen County), including the Egan Management Unit (Type C); (4) Battle Creek Wildlife Area (Shasta and Tehama counties); (5) Big Lagoon Wildlife Area (Humboldt County) (Type C); (6) Big Sandy Wildlife Area (Monterey and San Luis Obispo counties) (Type C); (7) Biscar Wildlife Area (Lassen County) (Type C); (8) Buttermilk Country Wildlife Area (Inyo County) (Type C); (9) Butte Valley Wildlife Area (Siskiyou County) (Type B); (10) Cache Creek Wildlife Area (Colusa and Lake counties), including the Destanella Flat and Harley Gulch management units (Type C); (11) Camp Cady Wildlife Area (San Bernadino County) (Type C); (12) Cantara/Ney Springs Wildlife Area (Siskiyou County) (Type C); (13) Cedar Roughs Wildlife Area (Napa County) (Type C); (14) Cinder Flats Wildlife Area (Shasta County) (Type C); (15) Collins Eddy Wildlife Area (Sutter and Yolo counties) (Type C); (16) Colusa Bypass Wildlife Area (Colusa County) (Type C); (17) Coon Hollow Wildlife Area (Butte County) (Type C); (18) Cottonwood Creek Wildlife Area (Merced County), including the Upper Cottonwood and Lower Cottonwood management units (Type C); (19) Crescent City Marsh Wildlife Area (Del Norte County); (20) Crocker Meadow Wildlife Area (Plumas County) (Type C); (21) Daugherty Hill Wildlife Area (Yuba County) -
25 JUL 2021 Index Aaron Creek 17385 179 Aaron Island
26 SEP 2021 Index 401 Angoon 17339 �� � � � � � � � � � 287 Baranof Island 17320 � � � � � � � 307 Anguilla Bay 17404 �� � � � � � � � 212 Barbara Rock 17431 � � � � � � � 192 Index Anguilla Island 17404 �� � � � � � � 212 Bare Island 17316 � � � � � � � � 296 Animal and Plant Health Inspection Ser- Bar Harbor 17430 � � � � � � � � 134 vice � � � � � � � � � � � � 24 Barlow Cove 17316 �� � � � � � � � 272 Animas Island 17406 � � � � � � � 208 Barlow Islands 17316 �� � � � � � � 272 A Anita Bay 17382 � � � � � � � � � 179 Barlow Point 17316 � � � � � � � � 272 Anita Point 17382 � � � � � � � � 179 Barnacle Rock 17401 � � � � � � � 172 Aaron Creek 17385 �� � � � � � � � 179 Annette Bay 17428 � � � � � � � � 160 Barnes Lake 17382 �� � � � � � � � 172 Aaron Island 17316 �� � � � � � � � 273 Annette Island 17434 � � � � � � � 157 Baron Island 17420 �� � � � � � � � 122 Aats Bay 17402� � � � � � � � � � 277 Annette Point 17434 � � � � � � � 156 Bar Point Basin 17430� � � � � � � 134 Aats Point 17402 �� � � � � � � � � 277 Annex Creek Power Station 17315 �� � 263 Barren Island 17434 � � � � � � � 122 Abbess Island 17405 � � � � � � � 203 Appleton Cove 17338 � � � � � � � 332 Barren Island Light 17434 �� � � � � 122 Abraham Islands 17382 � � � � � � 171 Approach Point 17426 � � � � � � � 162 Barrie Island 17360 � � � � � � � � 230 Abrejo Rocks 17406 � � � � � � � � 208 Aranzazu Point 17420 � � � � � � � 122 Barrier Islands 17386, 17387 �� � � � 228 Adams Anchorage 17316 � � � � � � 272 Arboles Islet 17406 �� � � � � � � � 207 Barrier Islands 17433