Genomics 99 (2012) 132–137
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Novel Consensus DNA-Binding Sequence for BRCA1 Protein Complexes
MOLECULAR CARCINOGENESIS 38:85–96 (2003) Novel Consensus DNA-Binding Sequence for BRCA1 Protein Complexes P. LouAnn Cable,1* Cindy A. Wilson,2 Frank J. Calzone,3 Frank J. Rauscher III,4 Ralph Scully,5 David M. Livingston,5 Leping Li,6 Courtney B. Blackwell,1 P. Andrew Futreal,7 and Cynthia A. Afshari3 1Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 2Department of Medicine, UCLA School of Medicine, Los Angeles, California 3Amgen Inc., Amgen Center, Thousand Oaks, California 4The Wistar Institute, Philadelphia, Pennsylvania 5Charles A. Dana Division of Human Cancer Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts 6Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 7Sanger Center, The Wellcome Trust Sanger Institute, Cambridge, United Kingdom Increasing evidence continues to emerge supporting the early hypothesis that BRCA1 might be involved in transcriptional processes. BRCA1 physically associates with more than 15 different proteins involved in transcription and is paradoxically involved in both transcriptional activation and repression. However, the underlying mechanism by which BRCA1 affects the gene expression of various genes remains speculative. In this study, we provide evidence that BRCA1 protein complexes interact with specific DNA sequences. We provide data showing that the upstream stimul- atory factor 2 (USF2) physically associates with BRCA1 and is a component of this DNA-binding complex. Interestingly, these DNA-binding complexes are downregulated in breast cancer cell lines containing wild-type BRCA1, providing a critical link between modulations of BRCA1 function in sporadic breast cancers that do not involve germline BRCA1 mutations. The functional specificity of BRCA1 tumor suppression for breast and ovarian tissues is supported by our experiments, which demonstrate that BRCA1 DNA-binding complexes are modulated by serum and estrogen. -
Gene Regulation and Speciation in House Mice
Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Research Gene regulation and speciation in house mice Katya L. Mack,1 Polly Campbell,2 and Michael W. Nachman1 1Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California 94720-3160, USA; 2Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA One approach to understanding the process of speciation is to characterize the genetic architecture of post-zygotic isolation. As gene regulation requires interactions between loci, negative epistatic interactions between divergent regulatory elements might underlie hybrid incompatibilities and contribute to reproductive isolation. Here, we take advantage of a cross between house mouse subspecies, where hybrid dysfunction is largely unidirectional, to test several key predictions about regulatory divergence and reproductive isolation. Regulatory divergence between Mus musculus musculus and M. m. domesticus was charac- terized by studying allele-specific expression in fertile hybrid males using mRNA-sequencing of whole testes. We found ex- tensive regulatory divergence between M. m. musculus and M. m. domesticus, largely attributable to cis-regulatory changes. When both cis and trans changes occurred, they were observed in opposition much more often than expected under a neutral model, providing strong evidence of widespread compensatory evolution. We also found evidence for lineage-specific positive se- lection on a subset of genes related to transcriptional regulation. Comparisons of fertile and sterile hybrid males identified a set of genes that were uniquely misexpressed in sterile individuals. Lastly, we discovered a nonrandom association between these genes and genes showing evidence of compensatory evolution, consistent with the idea that regulatory interactions might contribute to Dobzhansky-Muller incompatibilities and be important in speciation. -
Datasheet Blank Template
SAN TA C RUZ BI OTEC HNOL OG Y, INC . LysRS (H-300): sc-98559 BACKGROUND APPLICATIONS The fidelity of protein synthesis requires efficient discrimination of amino LysRS (H-300) is recommended for detection of LysRS of mouse, rat and acid substrates by aminoacyl-tRNA synthetases. Aminoacyl-tRNA synthetases human origin by Western Blotting (starting dilution 1:200, dilution range function to catalyze the aminoacylation of tRNAs by their corresponding amino 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein acids, thus linking amino acids with tRNA-contained nucleotide triplets. LysRS (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution (lysyl-tRNA synthetase), also known as KARS, KRS or KARS2, exists as both range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution mitochondrial and cytoplasmic isoforms (625 and 576 amino acids, respec - range 1:30-1:3000). tively) that belong to the tRNA synthetase family and are thought to play a LysRS (H-300) is also recommended for detection of LysRS in additional role in autoimmune diseases, such as polymyositis or dermatomyositis. The species, including equine, canine, bovine and porcine. gene encoding LysRS maps to human chromosome 16, which encodes over 900 genes and comprises nearly 3% of the human genome. Suitable for use as control antibody for LysRS siRNA (h): sc-75718, LysRS siRNA (m): sc-75719, LysRS shRNA Plasmid (h): sc-75718-SH, LysRS shRNA REFERENCES Plasmid (m): sc-75719-SH, LysRS shRNA (h) Lentiviral Particles: sc-75718-V and LysRS shRNA (m) Lentiviral Particles: sc-75719-V. -
Glucose Increases Hepatic Lipase Expression in Hepg2 Liver Cells Through Upregulation of Upstream Stimulatory Factors 1 and 2
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Erasmus University Digital Repository Diabetologia (2008) 51:2078–2087 DOI 10.1007/s00125-008-1125-6 ARTICLE Glucose increases hepatic lipase expression in HepG2 liver cells through upregulation of upstream stimulatory factors 1 and 2 D. van Deursen & H. Jansen & A. J. M. Verhoeven Received: 20 June 2008 /Accepted: 17 July 2008 / Published online: 30 August 2008 # The Author(s) 2008. This article is published with open access at Springerlink.com Abstract bodies. Co-transfection with USF1 or USF2 cDNA stimu- Aims/hypothesis Elevated hepatic lipase (HL, also known lated HL promoter activity 6- to 16-fold. USF and glucose as LIPC) expression is a key factor in the development of responsiveness were significantly reduced by removal of the atherogenic lipid profile in type 2 diabetes and insulin the −310E-box from the HL promoter. Silencing of the resistance. Recently, genetic screens revealed a possible USF1 gene by RNA interference reduced glucose respon- association of type 2 diabetes and familial combined hyper- siveness of the HL (−685/+13) promoter region by 50%. lipidaemia with the USF1 gene. Therefore, we investigated The hyperglycaemia in streptozotocin-treated rats was the role of upstream stimulatory factors (USFs) in the regula- associated with similar increases in USF abundance in rat tion of HL. liver nuclei, but not with increased binding of USF to the Methods Levels of USF1, USF2 and HL were measured in rat Hl promoter region. HepG2 cells cultured in normal- or high-glucose medium Conclusions/interpretation Glucose increases HL expres- (4.5 and 22.5 mmol/l, respectively) and in livers of sion in HepG2 cells via elevation of USF1 and USF2. -
Insights Into Functional Connectivity in Mammalian Signal Transduction Pathways by Pairwise
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.30.891200; this version posted December 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Insights into Functional Connectivity in Mammalian Signal Transduction Pathways by Pairwise Comparison of Protein Interaction Partners of Critical Signaling Hubs Chilakamarti V. Ramana * Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA *Correspondence should be addressed: Chilakamarti V .Ramana, Telephone. (603)-738-2507, E-mail: [email protected] ORCID ID: /0000-0002-5153-8252 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.30.891200; this version posted December 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Growth factors and cytokines activate signal transduction pathways and regulate gene expression in eukaryotes. Intracellular domains of activated receptors recruit several protein kinases as well as transcription factors that serve as platforms or hubs for the assembly of multi-protein complexes. The signaling hubs involved in a related biologic function often share common interaction proteins and target genes. This functional connectivity suggests that a pairwise comparison of protein interaction partners of signaling hubs and network analysis of common partners and their expression analysis might lead to the identification of critical nodes in cellular signaling. -
Role of USF, SREBP-1C, and Baf60c by Roger Hoi Fu
Regulation of Lipogenic Gene Transcription during Fasting and Feeding/insulin: Role of USF, SREBP-1c, and BAF60c By Roger Hoi Fung Wong A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Comparative Biochemistry in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Hei Sook Sul Professor Mark S. Schlissel Professor Jen-Chywan (Wally) Wang Fall 2010 ABSTRACT Regulation of Lipogenic Gene Transcription during Fasting and Feeding/insulin: Role of USF, SREBP-1c and BAF60c by Roger H. F. Wong Doctor of Philosophy in Comparative Biochemistry University of California, Berkeley Professor Hei Sook Sul, Chair Transcription of genes encoding enzymes involved in fatty acid and triacylglycerol synthesis, including fatty acid synthase and mitochondrial glycerol-3- phosphate acyltransferase, is coordinately induced in lipogenic tissues by feeding and insulin treatment. Dysregulation of lipognesis often contributes to metabolic diseases such as obesity, diabetes, and cardiovascular diseases. Transcription factors and signaling molecules involved in transcriptional activation of lipogenesis represent attractive targets for the prevention and treatment of metabolic diseases. In transcriptional activation of fatty acid synthase by feeding/insulin, USF constitutively bound to the -65 E-box is required. In this study, USF was shown to function as a molecular switch by recruiting various interacting proteins during the fasting/feeding transition. First, USF was detected to directly interact with SREBP-1 that is induced by feeding and binds nearby -150 SRE. Cotransfection of USF and SREBP- 1c with an FAS promoter-luciferase reporter construct resulted in high synergistic activation of the FAS promoter. -
A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. -
Mutations in KARS, Encoding Lysyl-Trna Synthetase, Cause Autosomal-Recessive Nonsyndromic Hearing Impairment DFNB89
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REPORT Mutations in KARS, Encoding Lysyl-tRNA Synthetase, Cause Autosomal-Recessive Nonsyndromic Hearing Impairment DFNB89 Regie Lyn P. Santos-Cortez,1,8 Kwanghyuk Lee,1,8 Zahid Azeem,2,3 Patrick J. Antonellis,4,5 Lana M. Pollock,4,6 Saadullah Khan,2 Irfanullah,2 Paula B. Andrade-Elizondo,1 Ilene Chiu,1 Mark D. Adams,6 Sulman Basit,2 Joshua D. Smith,7 University of Washington Center for Mendelian Genomics, Deborah A. Nickerson,7 Brian M. McDermott, Jr.,4,5,6 Wasim Ahmad,2 and Suzanne M. Leal1,* Previously, DFNB89, a locus associated with autosomal-recessive nonsyndromic hearing impairment (ARNSHI), was mapped to chromo- somal region 16q21–q23.2 in three unrelated, consanguineous Pakistani families. Through whole-exome sequencing of a hearing- impaired individual from each family, missense mutations were identified at highly conserved residues of lysyl-tRNA synthetase (KARS): the c.1129G>A (p.Asp377Asn) variant was found in one family, and the c.517T>C (p.Tyr173His) variant was found in the other two families. Both variants were predicted to be damaging by multiple bioinformatics tools. The two variants both segregated with the nonsyndromic-hearing-impairment phenotype within the three families, and neither mutation was identified in ethnically matched controls or within variant databases. Individuals homozygous for KARS mutations had symmetric, severe hearing impairment across all frequencies but did not show evidence of auditory or limb neuropathy. It has been demonstrated that KARS is expressed in hair cells of zebrafish, chickens, and mice. -
Hypoxia Regulates Alternative Splicing of HIF and Non-HIF Target Genes
Published OnlineFirst May 21, 2014; DOI: 10.1158/1541-7786.MCR-14-0149 Molecular Cancer Chromatin, Gene, and RNA Regulation Research Hypoxia Regulates Alternative Splicing of HIF and non-HIF Target Genes Johnny A. Sena1, Liyi Wang2, Lynn E. Heasley2, and Cheng-Jun Hu1,2 Abstract Hypoxia is a common characteristic of many solid tumors. The hypoxic microenvironment stabilizes hypoxia- inducible transcription factor 1a (HIF1a) and 2a (HIF2a/EPAS1) to activate gene transcription, which promotes tumor cell survival. The majority of human genes are alternatively spliced, producing RNA isoforms that code for functionally distinct proteins. Thus, an effective hypoxia response requires increased HIF target gene expression as well as proper RNA splicing of these HIF-dependent transcripts. However, it is unclear if and how hypoxia regulates RNA splicing of HIF targets. This study determined the effects of hypoxia on alternative splicing (AS) of HIF and non-HIF target genes in hepatocellular carcinoma cells and characterized the role of HIF in regulating AS of HIF- induced genes. The results indicate that hypoxia generally promotes exon inclusion for hypoxia-induced, but reduces exon inclusion for hypoxia-reduced genes. Mechanistically, HIF activity, but not hypoxia per se is found to be necessary and sufficient to increase exon inclusion of several HIF targets, including pyruvate dehydrogenase kinase 1 (PDK1). PDK1 splicing reporters confirm that transcriptional activation by HIF is sufficient to increase exon inclusion of PDK1 splicing reporter. In contrast, transcriptional activation of a PDK1 minigene by other transcription factors in the absence of endogenous HIF target gene activation fails to alter PDK1 RNA splicing. -
Ejhg2009157.Pdf
European Journal of Human Genetics (2010) 18, 342–347 & 2010 Macmillan Publishers Limited All rights reserved 1018-4813/10 $32.00 www.nature.com/ejhg ARTICLE Fine mapping and association studies of a high-density lipoprotein cholesterol linkage region on chromosome 16 in French-Canadian subjects Zari Dastani1,2,Pa¨ivi Pajukanta3, Michel Marcil1, Nicholas Rudzicz4, Isabelle Ruel1, Swneke D Bailey2, Jenny C Lee3, Mathieu Lemire5,9, Janet Faith5, Jill Platko6,10, John Rioux6,11, Thomas J Hudson2,5,7,9, Daniel Gaudet8, James C Engert*,2,7, Jacques Genest1,2,7 Low levels of high-density lipoprotein cholesterol (HDL-C) are an independent risk factor for cardiovascular disease. To identify novel genetic variants that contribute to HDL-C, we performed genome-wide scans and quantitative association studies in two study samples: a Quebec-wide study consisting of 11 multigenerational families and a study of 61 families from the Saguenay– Lac St-Jean (SLSJ) region of Quebec. The heritability of HDL-C in these study samples was 0.73 and 0.49, respectively. Variance components linkage methods identified a LOD score of 2.61 at 98 cM near the marker D16S515 in Quebec-wide families and an LOD score of 2.96 at 86 cM near the marker D16S2624 in SLSJ families. In the Quebec-wide sample, four families showed segregation over a 25.5-cM (18 Mb) region, which was further reduced to 6.6 Mb with additional markers. The coding regions of all genes within this region were sequenced. A missense variant in CHST6 segregated in four families and, with additional families, we observed a P value of 0.015 for this variant. -
The Dual Role of Helix ± Loop ± Helix-Zipper Protein USF in Ribosomal RNA Gene Transcription in Vivo
Oncogene (1997) 14, 589 ± 594 1997 Stockton Press All rights reserved 0950 ± 9232/97 $12.00 The dual role of helix ± loop ± helix-zipper protein USF in ribosomal RNA gene transcription in vivo Asish K Ghosh, Prasun K Datta and Samson T Jacob* Department of Pharmacology and Molecular Biology, The Chicago Medical School, 3333 Green Bay Road, North Chicago, Illinois 60064, USA We have previously demonstrated that the core poliovirus infection, in response to dierentiation, heat promoter of rat ribosomal RNA gene (rDNA) contains shock or inhibition of protein synthesis, and by an E-box-like sequence to which the core promoter glucocorticoid treatment of lymphosarcoma cells binding factor CPBF binds and that the 44 kDa subunit (Jacob, 1995). of this protein is immunologically related to USF1, the In general, rDNA transcription is species-speci®c helix ± loop ± helix-zipper DNA binding protein. Further, (Mishima et al., 1982; Grummt et al., 1982; Ishikawa et we showed that RNA polymerase I (pol I) transcription al., 1991) although a strict species speci®city can be in vitro is competed by oligonucleotides containing altered under certain conditions (Pape et al., 1990; USF-binding site, which suggested a key role for USF Ghosh et al., 1996). Three key cis-acting elements in rDNA transcription. To prove the potential role of namely core promoter, enhancers and terminators are USF in pol I transcription in vivo, USF1 and USF2 involved in the initiation, stimulation and termination homodimers and USF1/USF2 heterodimer were over- of rDNA transcription. Similarly, trans-acting factors expressed in CHO cells by transfection of the respective that speci®cally interact with the cis-acting elements are cDNAs. -
Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase
BASIC RESEARCH www.jasn.org Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase † ‡ Yifei Zhong,* Edward Y. Chen, § Ruijie Liu,*¶ Peter Y. Chuang,* Sandeep K. Mallipattu,* ‡ ‡ † | ‡ Christopher M. Tan, § Neil R. Clark, § Yueyi Deng, Paul E. Klotman, Avi Ma’ayan, § and ‡ John Cijiang He* ¶ *Department of Medicine, Mount Sinai School of Medicine, New York, New York; †Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ‡Department of Pharmacology and Systems Therapeutics and §Systems Biology Center New York, Mount Sinai School of Medicine, New York, New York; |Baylor College of Medicine, Houston, Texas; and ¶Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York ABSTRACT The Connectivity Map database contains microarray signatures of gene expression derived from approximately 6000 experiments that examined the effects of approximately 1300 single drugs on several human cancer cell lines. We used these data to prioritize pairs of drugs expected to reverse the changes in gene expression observed in the kidneys of a mouse model of HIV-associated nephropathy (Tg26 mice). We predicted that the combination of an angiotensin-converting enzyme (ACE) inhibitor and a histone deacetylase inhibitor would maximally reverse the disease-associated expression of genes in the kidneys of these mice. Testing the combination of these inhibitors in Tg26 mice revealed an additive renoprotective effect, as suggested by reduction of proteinuria, improvement of renal function, and attenuation of kidney injury. Furthermore, we observed the predicted treatment-associated changes in the expression of selected genes and pathway components. In summary, these data suggest that the combination of an ACE inhibitor and a histone deacetylase inhibitor could have therapeutic potential for various kidney diseases.