Enhancing Human Learning Via Spaced Repetition Optimization

Total Page:16

File Type:pdf, Size:1020Kb

Enhancing Human Learning Via Spaced Repetition Optimization Enhancing human learning via spaced repetition optimization Behzad Tabibiana,b,1, Utkarsh Upadhyaya, Abir Dea, Ali Zarezadea, Bernhard Scholkopf¨ b, and Manuel Gomez-Rodrigueza aNetworks Learning Group, Max Planck Institute for Software Systems, 67663 Kaiserslautern, Germany; and bEmpirical Inference Department, Max Planck Institute for Intelligent Systems, 72076 Tubingen,¨ Germany Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved December 14, 2018 (received for review September 3, 2018) Spaced repetition is a technique for efficient memorization which tion algorithms. However, most of the above spaced repetition uses repeated review of content following a schedule determined algorithms are simple rule-based heuristics with a few hard- by a spaced repetition algorithm to improve long-term reten- coded parameters (8), which are unable to fulfill this promise— tion. However, current spaced repetition algorithms are simple adaptive, data-driven algorithms with provable guarantees have rule-based heuristics with a few hard-coded parameters. Here, been largely missing until very recently (14, 15). Among these we introduce a flexible representation of spaced repetition using recent notable exceptions, the work most closely related to ours the framework of marked temporal point processes and then is by Reddy et al. (15), who proposed a queueing network model address the design of spaced repetition algorithms with prov- for a particular spaced repetition method—the Leitner system able guarantees as an optimal control problem for stochastic (9) for reviewing flashcards—and then developed a heuristic differential equations with jumps. For two well-known human approximation algorithm for scheduling reviews. However, their memory models, we show that, if the learner aims to maximize heuristic does not have provable guarantees, it does not adapt recall probability of the content to be learned subject to a cost to the learner’s performance over time, and it is specifically on the reviewing frequency, the optimal reviewing schedule is designed for the Leitner systems. given by the recall probability itself. As a result, we can then In this work, we develop a computational framework to derive develop a simple, scalable online spaced repetition algorithm, optimal spaced repetition algorithms, specially designed to adapt MEMORIZE, to determine the optimal reviewing times. We per- to the learner’s performance, as continuously monitored by mod- APPLIED form a large-scale natural experiment using data from Duolingo, a ern spaced repetition software and online learning platforms. MATHEMATICS popular language-learning online platform, and show that learn- More specifically, we first introduce a flexible representation ers who follow a reviewing schedule determined by our algorithm of spaced repetition using the framework of marked temporal memorize more effectively than learners who follow alternative point processes (16). For several well-known human memory schedules determined by several heuristics. models (1, 12, 17–19), we use this presentation to express the dynamics of a learner’s forgetting rates and recall probabilities for the content to be learned by means of a set of stochastic memorization j spaced repetition j human learning j marked differential equations (SDEs) with jumps. Then, we can find the temporal point processes j stochastic optimal control Significance Our ability to remember a piece of information depends crit- ically on the number of times we have reviewed it, the temporal Understanding human memory has been a long-standing distribution of the reviews, and the time elapsed since the last problem in various scientific disciplines. Early works focused review, as first shown by a seminal study by Ebbinghaus (1). The on characterizing human memory using small-scale controlled effect of these two factors has been extensively investigated in the experiments and these empirical studies later motivated the experimental psychology literature (2, 3), particularly in second design of spaced repetition algorithms for efficient memo- language acquisition research (4–7). Moreover, these empirical rization. However, current spaced repetition algorithms are studies have motivated the use of flashcards, small pieces of rule-based heuristics with hard-coded parameters, which do information a learner repeatedly reviews following a schedule not leverage the automated fine-grained monitoring and determined by a spaced repetition algorithm (8), whose goal is to greater degree of control offered by modern online learning ensure that learners spend more (less) time working on forgotten platforms. In this work, we develop a computational frame- (recalled) information. work to derive optimal spaced repetition algorithms, specially The task of designing spaced repetition algorithms has a rich designed to adapt to the learners’ performance. A large-scale history, starting with the Leitner system (9). More recently, natural experiment using data from a popular language- several works (10, 11) have proposed heuristic algorithms that learning online platform provides empirical evidence that the schedule reviews just as the learner is about to forget an item, spaced repetition algorithms derived using our framework are i.e., when the probability of recall, as given by a memory model significantly superior to alternatives. of choice (1, 12), falls below a threshold. An orthogonal line of research (7, 13) has pursued locally optimal scheduling by iden- Author contributions: B.T., U.U., B.S., and M.G.-R. designed research; B.T., U.U., A.D., A.Z., tifying which item would benefit the most from a review given and M.G.-R. performed research; B.T. and U.U. analyzed data; and B.T., U.U., and M.G.-R. a fixed reviewing time. In doing so, the researchers have also wrote the paper.y proposed heuristic algorithms that decide which item to review The authors declare no conflict of interest.y by greedily selecting the item which is closest to its maximum This article is a PNAS Direct Submission.y learning rate. This open access article is distributed under Creative Commons Attribution License 4.0 In recent years, spaced repetition software and online plat- (CC BY).y forms such as Mnemosyne (mnemosyne-proj.org), Synap (www. Data deposition: The MEMORIZE algorithm has been deposited on GitHub (https:// synap.ac), and Duolingo (www.duolingo.com) have become github.com/Networks-Learning/memorize).y increasingly popular, often replacing the use of physical flash- 1 To whom correspondence should be addressed. Email: [email protected] cards. The promise of these pieces of software and online This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. platforms is that automated fine-grained monitoring and greater 1073/pnas.1815156116/-/DCSupplemental.y degree of control will result in more effective spaced repeti- www.pnas.org/cgi/doi/10.1073/pnas.1815156116 PNAS Latest Articles j 1 of 6 Downloaded by guest on September 30, 2021 optimal reviewing schedule for spaced repetition by solving a i.e., E[dN(t)] = u(t)dt, and think of the recall r as their binary stochastic optimal control problem for SDEs with jumps (20–23). marks. Moreover, every time that a learner reviews an item, the In doing so, we need to introduce a proof technique to find a recall r has been experimentally shown to have an effect on solution to the so-called Hamilton–Jacobi–Bellman (HJB) equa- the forgetting rate of the item (3, 15, 25). Here, we estimate tion (SI Appendix, sections 3 and 4), which is of independent such an effect using half-life regression (25), which implicitly interest. assumes that recalls of an item i during a review have a multi- For two well-known memory models, we show that, if the plicative effect on the forgetting rate ni (t)—a successful recall learner aims to maximize recall probability of the content to be at time tr changes the forgetting rate by (1 − αi ), i.e., ni (t) = learned subject to a cost on the reviewing frequency, the solu- (1 − αi )ni (tr ), αi ≤ 1, while an unsuccessful recall changes the tion uncovers a linear relationship with a negative slope between forgetting rate by (1 + βi ), i.e., ni (t) = (1 + βi )ni (tr ), βi ≥ 0. In the optimal rate of reviewing, or reviewing intensity, and the this context, the initial forgetting rate, ni (0), captures the diffi- recall probability of the content to be learned. As a consequence, culty of the item, with more difficult items having higher initial we can develop a simple, scalable online spaced repetition algo- forgetting rates compared with easier items, and the parame- rithm, which we name MEMORIZE, to determine the optimal ters αi , βi , and ni (0) are estimated using real data (refer to SI reviewing times. Finally, we perform a large-scale natural exper- Appendix, section 8 for more details). iment using data from Duolingo, a popular language-learning Before we proceed farther, we acknowledge that several lab- online platform, and show that learners who follow a reviewing oratory studies (6, 27) have provided empirical evidence that schedule determined by our algorithm memorize more effec- the retention rate follows an inverted U shape, i.e., mass prac- tively than learners who follow alternative schedules determined tice does not improve the forgetting rate—if an item is in by several heuristics. To facilitate research in this area, we are a learner’s short-term memory when the review happens, the releasing an open-source implementation of our algorithm (24). long-term retention does not improve. Thus, one could argue for time-varying parameters αi (t) and βi (t) in our framework. Modeling Framework of Spaced Repetition. Our framework is However, there are several reasons that prevent us from that: agnostic to the particular choice of memory model—it provides (i) The derivation of an optimal reviewing schedule under a set of techniques to find reviewing schedules that are opti- time-varying parameters becomes very challenging; (ii) for the mal under a memory model.
Recommended publications
  • A Queueing-Theoretic Foundation for Optimal Spaced Repetition
    A Queueing-Theoretic Foundation for Optimal Spaced Repetition Siddharth Reddy [email protected] Department of Computer Science, Cornell University, Ithaca, NY 14850 Igor Labutov [email protected] Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850 Siddhartha Banerjee [email protected] School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14850 Thorsten Joachims [email protected] Department of Computer Science, Cornell University, Ithaca, NY 14850 1. Extended Abstract way back to 1885 and the pioneering work of Ebbinghaus (Ebbinghaus, 1913), identify two critical variables that de- In the study of human learning, there is broad evidence that termine the probability of recalling an item: reinforcement, our ability to retain a piece of information improves with i.e., repeated exposure to the item, and delay, i.e., time repeated exposure, and that it decays with delay since the since the item was last reviewed. Accordingly, scientists last exposure. This plays a crucial role in the design of ed- have long been proponents of the spacing effect for learn- ucational software, leading to a trade-off between teaching ing: the phenomenon in which periodic, spaced review of new material and reviewing what has already been taught. content improves long-term retention. A common way to balance this trade-off is spaced repe- tition, which uses periodic review of content to improve A significant development in recent years has been a grow- long-term retention. Though spaced repetition is widely ing body of work that attempts to ‘engineer’ the process used in practice, e.g., in electronic flashcard software, there of human learning, creating tools that enhance the learning is little formal understanding of the design of these sys- process by building on the scientific understanding of hu- tems.
    [Show full text]
  • The Spaced Interval Repetition Technique
    The Spaced Interval Repetition Technique What is it? The Spaced Interval Repetition (SIR) technique is a memorization technique largely developed in the 1960’s and is a phenomenal way of learning information very efficiently that almost nobody knows about. It is based on the landmark research in memory conducted by famous psychologist, Hermann Ebbinghaus in the late 19th century. Ebbinghaus discovered that when we learn new information, we actually forget it very quickly (within a matter of minutes and hours) and the more time that passes, the more likely we are to forget it (unless it is presented to us again). This is why “cramming” for the test does not allow you to learn/remember everything for the test (and why you don’t remember any of it a week later). SIR software, notably first developed by Piotr A. Woźniak is available to help you learn information like a superhero and even retain it for the rest of your life. The SIR technique can be applied to any kind of learning, but arguably works best when learning discrete pieces of information like dates, definitions, vocabulary, formulas, etc. Why does it work? Memory is a fickle creature. For most people, to really learn something, we need to rehearse it several times; this is how information gets from short‐term memory to long‐ term memory. Research tells us that the best time to rehearse something (like those formulas for your statistics class) is right before you are about to forget it. Obviously, it is very difficult for us to know when we are about to forget an important piece of information.
    [Show full text]
  • Free English Worksheets for Spanish Speakers
    Free English Worksheets For Spanish Speakers footstoolGraehme previse often prescribed outright or similarly reinvests when rhythmically, circulatory is ShalomAngelico envies cooled? speculatively Storeyed Churchill and feud negatives her beauties. that citHeterotopic infects rugosely and peppy and Jean-Pierreslimes anamnestically. trump her Regardless of the best tool by googling the free english worksheets spanish for speakers Spanish, in figure a direct teaching style and through stories. As an Amazon Associate I forget from qualifying purchases. Not a handful yet? As or read your word evidence the general, they cross just off. Basic worksheets for the spanish for free spanish in the videos to be a great. Download the english english worksheets are printable exercises. Instagram a glow of key day. Do you easily a favorite we have missed? Easy quick hack for Spanish omelette. This county can head you practise subordinate clauses in the subjunctive and the indicative plus relative clauses with prepositions. For my, one lesson covers vocabulary related to paying taxes in the US. Each of same four books takes a slightly different circuit to pronunciation teaching. Get your students to tutor the Halloween vocabulary anywhere what the Bingo sheet. Join us on be very happy trip to Barcelona to visit this incredible works of architect Antoní Gaudí. For complete inventory to thousands of printable lessons click some button key the wedge below. Qué dicha que la hayas encontrado útil! French worksheets for second graders. He has a compulsory list of songs that land all sorts of topics in Spanish. Duolingo app and plan to children with it whenever I have some off time.
    [Show full text]
  • Designing and Evaluating Feedback Schemes for Improving Data Visualization Performance 1
    Designing and Evaluating Feedback Schemes for Improving Data Visualization Performance A Major Qualifying Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By Meixintong Zha Submitted to Professor Lane T. Harrison Worcester Polytechnic Institute 2 Abstract Over the past decades, data visualization assessment has proven many hypotheses while changing its platform from lab experiment to online crowdsourced studies. Yet, few if any of these studies include visualization feedback participants’ performance which is a missed opportunity to measure the effects of feedback in data visualization assessment. We gathered feedback mechanics from educational platforms, video games, and fitness applications and summarized some design principles for feedback: inviting, repeatability, coherence, and data driven. We replicated one of Cleveland and McGill’s graph perception studies where participants were asked to find the percentage of the smaller area compared to the larger area. We built a website that provided two versions of possible summary pages - with feedback (experimental group) or no feedback (control group). We assigned participants to either the feedback version or the no feedback version based on their session ID. There were a maximum of 20 sets of twenty questions. Participants needed to complete a minimum of 2 sets, and then could decide to either quit the study or continue practicing data visualization questions. Our results from
    [Show full text]
  • How to Memorize and Retain Vocabulary Effectively Using Spaced Repetition Software, Even If There Are Scarce Resources for Your Language
    How to memorize and retain vocabulary effectively using spaced repetition software, even if there are scarce resources for your language Jed Meltzer, Ph.D. Rotman Research Institute, Baycrest University of Toronto Elements of language learning Social interaction Instruction Drilling, repetition Language learning balance All teacher-driven: costly, limited availability, Travel difficulties, physical distancing Limited opportunity to study at your own pace. All drilling: hard to stay focused. Hard to choose appropriate exercises Easy to waste time on non-helpful drills Vocabulary size • Highly correlated with overall language knowledge • Relates to standardized proficiency levels • Can be tracked very accurately if you start from the beginning of your language learning journey. Estimated vocabulary size for CEFR • A1 <1500 • A2 1500–2500 • B1 2750–3250 • B2 3250–3750 • C1 3750–4500 • C2 4500–5000 Estimates of vocabulary size needed Robert Bjork on learning: • "You can't escape memorization," he says. "There is an initial process of learning the names of things. That's a stage we all go through. It's all the more important to go through it rapidly." The human brain is a marvel of associative processing, but in order to make associations, data must be loaded into memory. Want to Remember Everything You'll Ever Learn? Surrender to This Algorithm Wired magazine, April 21, 2008 Vocab lists • Provide structure to courses, whether in university, community, online. • Provide opportunity to catch up if you miss a class or start late. • Help to make grammar explanations understandable – much easier to follow if you know the words in the examples. Spaced repetition Leitner Box Flashcard apps Anki Popular apps • Anki – favourite of super language nerds – open-source, non-commercial – free on computer and android, $25 lifetime iPhone • Memrise – similar to Anki, slicker, more user-friendly, – paid and free versions.
    [Show full text]
  • Learning Efficiency Correlates of Using Supermemo with Specially Crafted Flashcards in Medical Scholarship
    Learning efficiency correlates of using SuperMemo with specially crafted Flashcards in medical scholarship. Authors: Jacopo Michettoni, Alexis Pujo, Daniel Nadolny, Raj Thimmiah. Abstract Computer-assisted learning has been growing in popularity in higher education and in the research literature. A subset of these novel approaches to learning claim that predictive algorithms called Spaced Repetition can significantly improve retention rates of studied knowledge while minimizing the time investment required for learning. SuperMemo is a brand of commercial software and the editor of the SuperMemo spaced repetition algorithm. Medical scholarship is well known for requiring students to acquire large amounts of information in a short span of time. Anatomy, in particular, relies heavily on rote memorization. Using the SuperMemo web platform1 we are creating a non-randomized trial, inviting medical students completing an anatomy course to take part. Usage of SuperMemo as well as a performance test will be measured and compared with a concurrent control group who will not be provided with the SuperMemo Software. Hypotheses A) Increased average grade for memorization-intensive examinations If spaced repetition positively affects average retrievability and stability of memory over the term of one to four months, then consistent2 users should obtain better grades than their peers on memorization-intensive examination material. B) Grades increase with consistency There is a negative relationship between variability of daily usage of SRS and grades. 1 https://www.supermemo.com/ 2 Defined in Criteria for inclusion: SuperMemo group. C) Increased stability of memory in the long-term If spaced repetition positively affects knowledge stability, consistent users should have more durable recall even after reviews of learned material have ceased.
    [Show full text]
  • The Unrealized Potential of Rosetta Stone, Duolingo, Babbel, and Mango Languages
    24 Issues and Trends in Educational Technology Volume 5, Number 1, May. 2017 L2 Pronunciation in CALL: The Unrealized Potential of Rosetta Stone, Duolingo, Babbel, and Mango Languages Joan Palmiter Bajorek The University of Arizona Abstract Hundreds of millions of language learners worldwide use and purchase language software that may not fully support their language development. This review of Rosetta Stone (Swad, 1992), Duolingo (Hacker, 2011), Babbel (Witte & Holl, 2016), and Mango Languages (Teshuba, 2016) examines the current state of second language (L2) pronunciation technology through the review of the pronunciation features of prominent computer-assisted language learning (CALL) software (Lotherington, 2016; McMeekin, 2014; Teixeira, 2014). The objective of the review is: 1) to consider which L2 pronunciation tools are evidence-based and effective for student development (Celce-Murcia, Brinton, & Goodwin, 2010); 2) to make recommendations for which of the tools analyzed in this review is the best for L2 learners and instructors today; and 3) to conceptualize features of the ideal L2 pronunciation software. This research is valuable to language learners, instructors, and institutions that are invested in effective contemporary software for L2 pronunciation development. This article considers the importance of L2 pronunciation, the evolution of the L2 pronunciation field in relation to the language classroom, contrasting viewpoints of theory and empirical evidence, the power of CALL software for language learners, and how targeted feedback of spoken production can support language learners. Findings indicate that the software reviewed provide insufficient feedback to learners about their speech and, thus, have unrealized potential. Specific recommendations are provided for design elements in future software, including targeted feedback, explicit instructions, sophisticated integration of automatic speech recognition, and better scaffolding of language content.
    [Show full text]
  • Grade Student of Kyai Hasyim Junior High School Motivation in Learning English
    THE USE OF DUOLINGO APPLICATION TO INCREASE 8TH GRADE STUDENT OF KYAI HASYIM JUNIOR HIGH SCHOOL MOTIVATION IN LEARNING ENGLISH THESIS Submitted in partial fulfillment of the requirement for the degree of Sarjana Pendidikan (S.Pd) in Teaching English By : Tika Intan Pamuji NIM D05212044 ENGLISH EDUCATION DEPARTEMENT FACULTY OF TARBIYAH AND TEACHER TRAINING SUNAN AMPEL STATE ISLAMIC UNIVERSITY SURABAYA 2019 II III IV V ABSTRACT Pamuji, Tika Intan. 2019. The Use of Duolingo Application to Increase 8thGrade Student of Kyai Hasyim Junior High School Motivation in Learning English. A Thesis. English Teacher Education Department, Faculty of Education and Teacher Training, Sunan Ampel State Islamic University, Surabaya. Advisor: H. Mokhamad Syaifudin, M.Ed. Ph D Key Words: Duolingo Application, Motivation. Motivation is important factor in second language learning achievement because learner‟s motivation greatly affects their willingness to take part in learning process. In particular situation, less motivated student are likely to lose their attention, misbehave and cause discipline problems. In contrary motivated student are likely to learn more and learn quickly. This quantitative research aimed to describe the use of Duolingo to increase student‟s motivation in learning English and the student responses toward Duolingo used. In purpose to answer the research question the researcher collected the data using test, questionnaire and observing course progress in Duolingo. The data analyzed using SPSS 16. From the analysis the researcher found that pre-test mean was 65, 67 and post-test mean was 81, 33, data distribution was normal and from t-test the significance of the data was lower than the level of significance.
    [Show full text]
  • Arichardson-Klavehn Rbjork 2002
    1096 Memory, Development of Schneider W and Bjorklund DF (1998) Memory. In: Kuhn Schneider W and Pressley M (1997) Memory Development D and Siegler RS (eds) Handbook of Child Psychology, between 2 and 20, 2nd edn. Mahwah, NJ: Lawrence vol. 2, Cognition, Perception, and Language, 5th edn, Erlbaum. pp. 467±521. New York, NY: John Wiley. Memory, Long-term Introductory article Alan Richardson-Klavehn, Goldsmiths College, University of London, London, UK Robert ABjork, University of California, Los Angeles, USA CONTENTS Definition and classification of long-term memory The constructive character of long-term memory The dynamic character of long-term memory Conclusion Long-term memory is central to cognitive function- interconnected and cannot be understood in ing. Taking a wide variety of forms, from skills to isolation from each other. (See Information Pro- general knowledge to memory for personal experi- cessing) ences, it is characterized by dynamic interactions between encoding and retrieval processes and by constructive processes, and thus differs fundamen- Distinguishing between Short-term and tally from current human-made information storage Long-term Memory systems. In everyday discourse, long-term memory is usu- ally distinguished from short-term memory in DEFINITION AND CLASSIFICATION OF terms of the time that has elapsed since information LONG-TERM MEMORY was encoded. Moreover, it is not unusual to find memory that persists over days or weeks being The ability to retain information over long periods described as short-term memory. In psychology, is fundamental to intelligent thought and behavior. however, the terms long-term and short-term Memory is the `glue', in effect, that holds our intel- memory have come to have specialized meanings lectual processes together, from perception, atten- that stem from a distinction made by William tion, and language, to reasoning, decision-making, James in 1890.
    [Show full text]
  • UBIACTION 2021 Florian Lang Robin Welsch Albrecht Schmidt
    UBIACTION 2021 Edited by Florian Lang, Robin Welsch, Luke Haliburton, Fiona Draxler, Sebastian Feger, Steeven Villa, Matthias Hoppe, Pascal Knierim, Ville Mäkelä, Albrecht Schmidt UBIACTION 2021 6th Seminar on Ubiquitous Interaction February 11, 2021, Munich, Germany Edited by Florian Lang Robin Welsch Albrecht Schmidt UBIACTION 2021 – Vol. 6 Vorwort Editors Florian Lang, Robin Welsch, Luke Haliburton, Fiona Draxler, Over the course of the year 2020, the global community has witnessed how a Sebastian Feger, Steeven Villa, Matthias Hoppe, Pascal Knierim, Ville Mäkelä, Albrecht Schmidt virus caused an unprecedented shift in our habitual reality. Every aspect of life has - at least partially - been moved online: Working, studying, workouts and Human-Centered Ubiquitous Media Group doctor visits, staying in touch with friends and family. All of these activities Institut für Informatik have primarily happened in front of screens. As a result, we have spent much Ludwig-Maxmilians-Universität München more time at home and surrounded by and engaging with technology. [email protected] Even before this pandemic, researchers in the field of Ubiquitous Computing have worked towards what Mark Weiser called “the age of calm technology” -a future in which technology fades into the background of our everyday lives while always being available to support and augment humans. As part of the 6th Advanced Seminar on Human-Centered Interaction in ACM Classification 1998 - H.5 INFORMATION INTERFACES AND PRESENTATION Ubiquitous Computing led by Prof. Dr. Albrecht Schmidt, chair of Human- Centered Ubiquitous Media at the Ludwig-Maximilians-University Munich, 13 students have reviewed recent research projects in this field and compiled ISBN-13: 979-8511284576 their insights in this book.
    [Show full text]
  • Duolingo for Schools: Guide for Leaders in Education
    Guide for leaders in education Table of contents What is Duolingo? ....................................................................................................................................3 How does Duolingo work?...................................................................................................................4 Keeping students motivated..........................................................................................................5 From learning to teaching.....................................................................................................................6 Easy classroom ideas........................................................................................................................7 Getting the most out of Duolingo......................................................................................................8 Quick Guides ..............................................................................................................................................9 Setting up a classroom ....................................................................................................................9 Adding students to your classroom............................................................................................9 Illustrated Guides ................................................................................................................................... 10 Setting up a classroom ................................................................................................................
    [Show full text]
  • Osmosis Study Guide
    How to Study in Medical School How to Study in Medical School Written by: Rishi Desai, MD, MPH • Brooke Miller, PhD • Shiv Gaglani, MBA • Ryan Haynes, PhD Edited by: Andrea Day, MA • Fergus Baird, MA • Diana Stanley, MBA • Tanner Marshall, MS Special Thanks to: Henry L. Roediger III, PhD • Robert A. Bjork, PhD • Matthew Lineberry, PhD About Osmosis Created by medical students at Johns Hopkins and the former Khan Academy Medicine team, Os- mosis helps more than 250,000 current and future clinicians better retain and apply knowledge via a web- and mobile platform that takes advantage of cutting-edge cognitive techniques. © Osmosis, 2017 Much of the work you see us do is licensed under a Creative Commons license. We strongly be- lieve educational materials should be made freely available to everyone and be as accessible as possible. We also want to thank the people who support us financially, so we’ve made this exclu- sive book for you as a token of our thanks. This book unlike much of our work, is not under an open license and we reserve all our copyright rights on it. We ask that you not share this book liberally with your friends and colleagues. Any proceeds we generate from this book will be spent on creat- ing more open content for everyone to use. Thank you for your continued support! You can also support us by: • Telling your classmates and friends about us • Donating to us on Patreon (www.patreon.com/osmosis) or YouTube (www.youtube.com/osmosis) • Subscribing to our educational platform (www.osmosis.org) 2 Contents Problem 1: Rapid Forgetting Solution: Spaced Repetition and 1 Interleaved Practice Problem 2: Passive Studying Solution: Testing Effect and 2 "Memory Palace" Problem 3: Past Behaviors Solution: Fogg Behavior Model and 3 Growth Mindset 3 Introduction Students don’t get into medical school by accident.
    [Show full text]