The Role of Vortex Structure in Tropical Cyclone Motion

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Vortex Structure in Tropical Cyclone Motion Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1987 The role of vortex structure in tropical cyclone motion. Fiorino, Michael. http://hdl.handle.net/10945/22465 :A 9o943-R00fe NAVAL POSTIiRADUATE SCHOOL Monterey, California DISSERTATION THE ROLE OF VORTEX STRUCTURE IN TROPICAL CYCLONE MOTION by Michael Fiorino December 1987 Dissertation Supervisor: R.L. Elsberry Approved for public release; distribution is unlimited T238908 IJJRITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE 8REP0RT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS JNCLASSIFIED aSECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT Approved for public release; / : DECLASSIFICATION DOWNGRADING SCHEDULE distribution is unlimited. ERFORMING ORGANIZATION REPORT NUM8ER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) INAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (If applicable) uval Postgraduate School 63 Naval Postgraduate School l^DORESS {City, State, and ZIP Code) 7b. ADDRESS {City, State, and ZIP Code) /.mterey, California 93943-5000 Monterey, California 93943-5000 iNAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) :.\DORESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO ACCESSION NO. TITLE (Include Security Classification) e Role of Vortex Structure in Tropical Cyclone Motion »ERSONAL AUTHOR(S) Fiorino, Michael TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT .D. Dissertation FROM TO 1987 December 371 UPPLEMENTARY NOTATION COSATl CODES 18. SUBJECT TERMS {Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Tropical cyclone motion, Barotropic model. Tropical cyclones. Circulation analysis, Beta drift ABSTRACT {Continue on reverse if necessary and Identify by block number) The role of vortex structure in tropical cyclone motion is studied using .moving-grid, nondivergent barotropic model on a beta plane in a no-flow vironment. Initial condition sensitivity tests reveal that the northwest- rd "beta" drift of the vortex is controlled by the symmetric circulation the r = 300 - 800 km "critical" annulus. Enhanced cyclonic or anticyclon- flow in this critical annulus leads to long-term cyclonic or anticyclonic rning motions. The dynamics of the motion process is examined in terms of e symmetric and asymmetric circulations. When the vortex is moving in a asi-steady manner, the asymmetric flow appears as a pair of large-scale, unter-rotating gyres with a broad "ventilation" flow through the vortex nter. A second much smaller pair of gyres is also found near the center. is the interaction between these two sets of gyres and the symmetric flow at governs the motion process as revealed by a streamfunction tendency lOlSTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION )(UNCLASSIFIED/UNLIMITED D SAME AS RPT. Q DTIC USERS UNCLASSIFIED NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) -:2c. OFFICE SYMBOL R.L. Elsberry (408)-646-2373 63 Es 83 APR edition may be used until exhausted. :F0RM 1473, 84 MAR SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete ft U.S. Governmtnt Printlns Office: 1986—«06-24. 1 SECURITY CLASSIFICATION OF TmIS PAGC rVian Dmtm Bntt94) 19. cont. analysis and dynamical sensitivity tests in which the model equation is modified during the integration. Beta drift can be described as a balancing process between linear Rossby disper- sion which generates the asymmetric gyres and nonlinear advec- tion that moves the vortex to limit gyre development. Vortex structure is the key to this balance as it determines both the linear generation of the asymmetric forcing and the nonlinear interaction between the symmetric and asymmetric circulations. S N 0102- LP- 014- 6601 ^ SeCURITY CLASSIFICATION OF THIS P kGt.(WhM% Dmtm Snffd) Approved for public release; distribution is unlimited The Role of Vortex Structure in Tropical Cyclone Motion by Michael Fiorino B.S., Pennsylvania State University, 1975 M.S., Pennsylvania State University, 1978 Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN METEOROLOGY from the NAVAL POSTGRADUATE SCHOOL December 1987 -Xt ,- r ABSTRACT The role of vortex structure in tropical cyclone motion is studied using a moving-grid, nondivergent barotropic model on a ^ plane in a no-flow environment. Initial condition sensitivity tests reveal that the northwestward "beta" drift of the vortex is controlled by the symmetric circulation in the r = 300 - 800 km "critical" annulus. Enhanced cyclonic or anticyclonic flow in this critical annulus leads to long-term cyclonic or anticyclonic turning motions. The dynamics of the motion process is examined in terms of the symmetric and asymmetric circulations. When the vortex is moving in a quasi-steady manner, the asymmetric flow appears as a pair of large-scale, counter- rotating gyres with a broad "ventilation" flow through the vortex center. A second much smaller pair of gyres is also found near the center. It is the interaction between these two sets of gyres and the symmetric flow that governs the motion process as revealed by a streamfunction tendency analysis and dynamical sensitivity tests in which the model equation is modified during the integration. Beta drift can be described as a balancing process between linear Rossby dispersion which generates the asymmetric gyres and nonlinear advection that moves the vortex to limit gyre development. Vortex structure is the key to this balance as it determines both the linear generation of the asymmetric forcing and the nonlinear interaction between the symmetric and asymmetric circulations. TABLE OF CONTENTS I. INTRODUCTION 19 A. CURRENT UNDERSTANDING 20 B. RESEARCH GOALS 25 II. THE MODEL AND NUMERICAL PROCEDURES 28 A. ANALYTICAL FORMULATION 28 B. NUMERICAL FORMULATION 30 1. Boundary Conditions 31 2. Moving Grid 31 3. Vortex Center Definition 3 2 4. Summary 33 C. NUMERICAL PRECISION 33 1. Radius of Maximum Wind Test 34 2. Horizontal Resolution Effects 36 3. Domain Size Effects 44 D. SUMMARY 46 III. DEPENDENCE OF VORTEX MOTION ON THE INITIAL SYMMETRIC FLOW 48 A. VORTEX STRUCTURE 48 B. VORTEX SPECIFICATION 51 1. Combining Two Profiles 52 2. Forcing a Zero in a Profile 54 C. EXPERIMENT DESIGN 56 D. TRACK RESULTS WITH THE BASIC PROFILES 57 E. THE INNER-OUTER STRENGTH CHANGE PROFILES 61 F. SYMMETRIC PERTURBATIONS 66 G. FAR OUTER FLOW 69 H. SPEED OF MOTION AS A FUNCTION OF STRENGTH 72 I. SUMMARY AND DISCUSSION 72 IV. EVOLUTION OF THE SYMMETRIC AND ASYMMETRIC CIRCULATIONS -77 A. SYMMETRIC/ASYMMETRIC SEPARATION PROCEDURE -78 B. SYMMETRIC WIND PROFILE — 82 C. THE ASYMMETRIC CIRCULATION —— -86 1. Growth of the Asymmetric Gyres 94 2. The Asymmetric Flow — 100 D. DESCRIPTION OF THE DYNAMICS OF BETA DRIFT 106 1. Overview 107 2. Discussion 111 E. STREAMFUNCTION TENDENCY ANALYSIS 116 1. Total Tendency Analysis 124 2. Symmetric and Asymmetric Tendencies 146 a. Weakening of the Maximum Wind 146 b^ Formation of the Asymmetric Gyres 152 c. Nonlinear Effects 156 d. Rotation of the Large-scale Asymmetric Gyres 172 e. Westward Component of Beta Drift 17 3 F. VENTILATION FLOW VECTOR 17*3 G. SUMMARY OF THE DYNAMICS OF BETA DRIFT 177 V. DYNAMICAL SENSITIVITY 181 A. VENTILATION FLOW DYNAMICS 182 1. The Hypothesized Ventilation Speed Function — • — 183 2. Experiment Design 184 3. Linear Solutions -•— 185 4. Results with Varying a/b Ratios 189 5. The Calculated Ventilation Speed Function 197 6. Summary 203 B. NONLINEAR-ONLY INTEGRATIONS AFTER LINEAR FORCING 204 1. Experiment Design 204 2. Track Results -205 3. The Asymmetric Streamfunction • 211 4. Very Long Integrations 226 5. Tangential Wind Profiles 231 6. Smnmary 231 C. MODIFYING THE SYMMETRIC/ASYMMETRIC NONLINEAR INTERACTIONS 236 1. Symmetric/Asymmetric Form of the Model Equation 237 2. Experiment Design 238 3. Setting ASVA to Zero 239 4. Setting AAVS to Zero 240 5. Modifying AAVS 253 6. Modifying ASVA 261 7. Summary 261 D. SUMMARY AND CONCLUSIONS 268 VI. ULTRA-LONG INTEGRATIONS 271 A. TRACK RESULTS 271 B. TANGENTIAL WIND PROFILES 274 C. DISCUSSION AND SUMMARY 274 VII. CONTRIBUTION TO THE MOTION BY DIFFERENT SCALES IN THE INITIAL VORTEX 280 A. THE FOURIER TRANSFORM PROCEDURE 280 B. EXPERIMENT DESIGN 283 C. PERFORMANCE CHARACTERISTICS OF THE FOURIER FILTER 285 D. TRACK RESULTS 306 E. IMPLICATIONS FOR VORTEX SPECIFICATION IN TRACK FORECAST MODELS AND TROPICAL CYCLONE ANALYSIS 328 F. SUMMARY 335 VIII. SUMMARY AND CONCLUSIONS 3 37 A. RESEARCH APPROACH 337 B. NUMERICAL EFFECTS 338 C. DEPENDENCE ON THE INITIAL SYMMETRIC VORTEX — 338 1. Radius of Maximum Wind 339 2. Inner/Outer Changes 339 3. Symmetric Perturbations 339 4. Far Outer Flow 340 D. EVOLUTION OF THE SYMMETRIC AND ASYMMETRIC FLOW 340 1. The Asymmetric Flow —= 340 2. Circulation Tendency Analysis • 341 E. DYNAMICAL SENSITIVITY —^— 342 1. Balance between Motion and Ventilation Flow Generation —— —-= 342 2. Nonlinear-only Integrations after Initialization with a Linear Solution 343 3. Modification of the Symmetric/Asymmetric Tendencies 344 F. ULTRA-LONG INTEGRATIONS 345 G. CONTRIBUTION TO THE MOTION BY DIFFERENT SCALES IN THE INITIAL VORTEX 346 H. SUMMARY OF STRUCTURE DEPENDENCE 347 I. SUMMARY OF NEW FINDING REGARDING THE DYNAMICS OF BETA DRIFT 347 J. APPLICATIONS TO FUTURE THEORETICAL STUDIES AND FORECAST MODELS 348 APPENDIX A: DERIVING THE TANGENTIAL WIND PROFILE AND VORTEX
Recommended publications
  • Kármán Vortex Street Energy Harvester for Picoscale Applications
    Kármán Vortex Street Energy Harvester for Picoscale Applications 22 March 2018 Team Members: James Doty Christopher Mayforth Nicholas Pratt Advisor: Professor Brian Savilonis A Major Qualifying Project submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfilment of the requirements for the degree of Bachelor of Science This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. Cover Picture Credit: [1] Abstract The Kármán Vortex Street, a phenomenon produced by fluid flow over a bluff body, has the potential to serve as a low-impact, economically viable alternative power source for remote water-based electrical applications. This project focused on creating a self-contained device utilizing thin-film piezoelectric transducers to generate hydropower on a pico-scale level. A system capable of generating specific-frequency vortex streets at certain water velocities was developed with SOLIDWORKS modelling and Flow Simulation software. The final prototype nozzle’s velocity profile was verified through testing to produce a velocity increase from the free stream velocity. Piezoelectric testing resulted in a wide range of measured dominant frequencies, with corresponding average power outputs of up to 100 nanowatts. The output frequencies were inconsistent with predicted values, likely due to an unreliable testing environment and the complexity of the underlying theory. A more stable testing environment, better verification of the nozzle velocity profile, and fine-tuning the piezoelectric circuit would allow for a higher, more consistent power output.
    [Show full text]
  • A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading-Edge-Suction Analogy Tech Library Kafb, Nm
    I A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY TECH LIBRARY KAFB, NM OL3042b NASA TN D-3767 A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY By Edward C. Polhamus Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $1.00 A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY By Edward C. Polhamus Langley Research Center SUMMARY A concept for the calculation of the vortex lift of sharp-edge delta wings is pre­ sented and compared with experimental data. The concept is based on an analogy between the vortex lift and the leading-edge suction associated with the potential flow about the leading edge. This concept, when combined with potential-flow theory modified to include the nonlinearities associated with the exact boundary condition and the loss of the lift component of the leading-edge suction, provides excellent prediction of the total lift for a wide range of delta wings up to angles of attack of 20° or greater. INTRODUCTION The aerodynamic characteristics of thin sharp-edge delta wings are of interest for supersonic aircraft and have been the subject of theoretical and experimental studies for many years in both the subsonic and supersonic speed ranges. Of particular interest at subsonic speeds has been the formation and influence of the leading-edge separation vor­ tex that occurs on wings having sharp, highly swept leading edges.
    [Show full text]
  • Three Types of Horizontal Vortices Observed in Wildland Mass And
    1624 JOURNAL OF CLIMATE AND APPLIED METEOROLOGY VOLUME26 Three Types of Horizontal Vortices Observed in Wildland Mas~ and Crown Fires DoNALD A. HAINES U.S. Department ofAgriculture, Forest Service, North Central Forest Experiment Station, East Lansing, Ml 48823 MAHLON C. SMITH Department ofMechanical Engineering, Michigan State University, East Lansing, Ml 48824 (Manuscript received 25 October 1986, in final form 4 May 1987) ABSTRACT Observation shows that three types of horizontal vortices may form during intense wildland fires. Two of these vortices are longitudinal relative to the ambient wind and the third is transverse. One of the longitudinal types, a vortex pair, occurs with extreme heat and low to moderate wind speeds. It may be a somewhat common structure on the flanks of intense crown fires when burning is concentrated along the fire's perimeter. The second longitudinal type, a single vortex, occurs with high winds and can dominate the entire fire. The third type, the transverse vortex, occurs on the upstream side of the convection column during intense burning and relatively low winds. These vortices are important because they contribute to fire spread and are a threat to fire fighter safety. This paper documents field observations of the vortices and supplies supportive meteorological and fuel data. The discussion includes applicable laboratory and conceptual studies in fluid flow and heat transfer that may apply to vortex formation. 1. Introduction experiments showed that when air flowed parallel to a heated metal ribbon that simulated the flank of a crown The occurrence of vertical vortices in wildland fires fire, a thin, buoyant plume capped with a vortex pair has been well documented as well as mathematically developed above the ribbon along its length.
    [Show full text]
  • The Role of Vortex Structure in Tropical Cyclone Motion
    :A 9o943-R00fe NAVAL POSTIiRADUATE SCHOOL Monterey, California DISSERTATION THE ROLE OF VORTEX STRUCTURE IN TROPICAL CYCLONE MOTION by Michael Fiorino December 1987 Dissertation Supervisor: R.L. Elsberry Approved for public release; distribution is unlimited T238908 IJJRITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE 8REP0RT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS JNCLASSIFIED aSECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT Approved for public release; / : DECLASSIFICATION DOWNGRADING SCHEDULE distribution is unlimited. ERFORMING ORGANIZATION REPORT NUM8ER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) INAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (If applicable) uval Postgraduate School 63 Naval Postgraduate School l^DORESS {City, State, and ZIP Code) 7b. ADDRESS {City, State, and ZIP Code) /.mterey, California 93943-5000 Monterey, California 93943-5000 iNAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) :.\DORESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO ACCESSION NO. TITLE (Include Security Classification) e Role of Vortex Structure in Tropical Cyclone Motion »ERSONAL AUTHOR(S) Fiorino, Michael TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT .D. Dissertation FROM TO 1987 December 371 UPPLEMENTARY NOTATION COSATl CODES 18. SUBJECT TERMS {Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Tropical cyclone motion, Barotropic model. Tropical cyclones. Circulation analysis, Beta drift ABSTRACT {Continue on reverse if necessary and Identify by block number) The role of vortex structure in tropical cyclone motion is studied using .moving-grid, nondivergent barotropic model on a beta plane in a no-flow vironment.
    [Show full text]
  • Deliverable D-4.01
    WakeNet3-Europe Grant Agreement No.: ACS7-GA-2008-213462 Deliverable D-4.01 Report 1 from Link activities and Trips Prepared by: Elsa FREVILLE (EUROCONTROL) Work Package: .............. 4 Dissemination level: ..... PU Version: ......................... Final Report Issued by: ...................... EUROCONTROL Reference: ..................... v1 Date: .............................. 12th March 2010 Number of pages: ......... 41 Project acronym: .............. WakeNet3-Europe Project full title: ................ European Coordination Action for Aircraft Wake Turbulence Project coordinator: ......... Airbus Operations S.A.S (*) Beneficiaries: A-F Airbus Operations S.A.S (*) TR6 Thales Air Systems THAv Thales Aerospace DLR Deutsches Zentrum für Luft- und Raumfahrt NLR Nationaal Lucht- en Ruimtevaartlaboratorium DFS DFS Deutsche Flugsicherung GmbH ONERA Office National d’Etudes et Recherches Aérospatiale NERL NATS En-Route Plc. UCL Université catholique de Louvain TUB Technische Universität Berlin ECA European Cockpit Association TU-BS Technische Universität Braunschweig A-D Airbus Operations GmbH (*) pending formal change of contract. This document has been produced under EC FP7 project 213462 (WakeNet3-Europe) 12 March 2010 Page 1 of 41 Document Revisions Version Date Modified Modified Comments page(s) section(s) 0.1 5th Feb 2010 Initial draft for review 0.2 22nd Feb 2010 7, 9, 33, 37- 2.1, 3, and Updates from A-D: 44 10 - Minor corrections for sections 2.1 and 3 - Section 10 is replaced by an inserted “pdf” file at the end of section 5.3.
    [Show full text]
  • Hurricane Vortex Dynamics During Atlantic Extratropical Transition
    714 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 65 Hurricane Vortex Dynamics during Atlantic Extratropical Transition CHRISTOPHER A. DAVIS National Center for Atmospheric Research,* Boulder, Colorado ϩ SARAH C. JONES AND MICHAEL RIEMER Universität Karlsruhe, Forschungszentrum Karlsruhe, Karlsruhe, Germany (Manuscript received 2 April 2007, in final form 6 July 2007) ABSTRACT Simulations of six Atlantic hurricanes are diagnosed to understand the behavior of realistic vortices in varying environments during the process of extratropical transition (ET). The simulations were performed in real time using the Advanced Research Weather Research and Forecasting (WRF) model (ARW), using a moving, storm-centered nest of either 4- or 1.33-km grid spacing. The six simulations, ranging from 45 to 96 h in length, provide realistic evolution of asymmetric precipitation structures, implying control by the synoptic scale, primarily through the vertical wind shear. The authors find that, as expected, the magnitude of the vortex tilt increases with increasing shear, but it is not until the shear approaches 20 m sϪ1 that the total vortex circulation decreases. Furthermore, the total vertical mass flux is proportional to the shear for shears less than about 20–25 m sϪ1, and therefore maximizes, not in the tropical phase, but rather during ET. This has important implications for predicting hurricane-induced perturbations of the midlatitude jet and its consequences on downstream predictability. Hurricane vortices in the sample resist shear by either adjusting their vertical structure through preces- sion (Helene 2006), forming an entirely new center (Irene 2005), or rapidly developing into a baroclinic cyclone in the presence of a favorable upper-tropospheric disturbance (Maria 2005).
    [Show full text]
  • 04 Delta Wings
    ExperimentalExperimental AerodynamicsAerodynamics Lecture 4: Delta wing experiments G. Dimitriadis Experimental Aerodynamics Introduction •! In this course we will demonstrate the use of several different experimental aerodynamic methodologies •! The particular application will be the aerodynamics of Delta wings at low airspeeds. •! Delta wings are of particular interest because of their lift generation mechanism. Experimental Aerodynamics Delta wing history •! Until the 1930s the vast majority of aircraft featured rectangular, trapezoidal or elliptical wings. •! Delta wings started being studied in the 1930s by Alexander Lippisch in Germany. •! Lippisch wanted to create tail-less aircraft, and Delta wings were one of the solutions he proposed. Experimental Aerodynamics Delta Lippisch DM-1 Designed as an interceptor jet but never produced. The photos show a glider prototype version. Experimental Aerodynamics High speed flight •! After the war, the potential of Delta wings for supersonic flight was recognized both in the US and the USSR. MiG-21 Convair XF-92 Experimental Aerodynamics Low speed performance •! Although Delta wings are designed for high speeds, they still have to take off and land at small airspeeds. •! It is important to determine the aerodynamic forces acting on Delta wings at low speed. •! The lift generated by such wings are low speeds can be split into two contributions: –! Potential flow lift –! Vortex lift Experimental Aerodynamics Delta wing geometry cb Wing surface: S = 2 2b Aspect ratio: AR = "! c c! b AR Sweep angle: tan ! = = 2c 4 b/2! Experimental Aerodynamics Potential flow lift •! Slender wing theory •! The wind is discretized into transverse segments. •! The flow around each segment is modeled as a 2D flow past a flat plate perpendicular to the free stream Experimental Aerodynamics Slender wing theory •! The problem of calculating the flow around the wing becomes equivalent to calculating the flow around each 2D segment.
    [Show full text]
  • Fluids – Lecture 16 Notes 1
    Fluids – Lecture 16 Notes 1. Vortex 2. Lifting flow about circular cylinder Reading: Anderson 3.14 – 3.16 Vortex Flowfield Definition A vortex flow has the following radial and tangential velocity components C V = 0 , V = r θ r where C is a scaling constant. The circulation around any closed circuit is computed as θ2 C Γ ≡ − V~ · d~s = − Vθ r dθ = − r dθ = −C (θ2 − θ1) I I Zθ1 r y y V r dθ ds dθ x x The integration range θ2−θ1 =2π if the circuit encircles the origin, but is zero otherwise. −2πC , (circuit encircles origin) Γ = ( 0 , (circuit doesn’t encircle origin) y y θ1 θ2 θ1 θ2 x x In lieu of C, it is convenient to redefine the vortex velocity field directly in terms of the circulation of any circuit which encloses the vortex origin. Γ V = − θ 2πr 1 A positive Γ corresponds to clockwise flow, while a negative Γ corresponds to counterclock- wise flow. Cartesian representation The cartesian velocity components of the vortex are Γ y u(x, y) = 2π x2 + y2 Γ x v(x, y) = − 2π x2 + y2 and the corresponding potential and stream functions are as follows. Γ Γ φ(x, y) = − arctan(y/x) = − θ 2π 2π Γ Γ ψ(x, y) = ln x2 + y2 = ln r 2π 2π q Singularity As with the source and doublet, the origin location (0, 0) is called a singular point of the vortex flow. The magnitude of the tangential velocity tends to infinity as 1 V ∼ θ r Hence, the singular point must be located outside the flow region of interest.
    [Show full text]
  • The Multiple Vortex Structure of a Tornado
    THE MULTIPLE VORTEX STRUCTURE OF A TORNADO Joshua Wurman University of Oklahoma 1. Introduction Conceptual models (Davies-Jones 1976), and 1 km computer (Rotunno 1984, Lewellen 1993, Lewellen et al 1997, Fiedler 1998) and laboratory simulations (Ward 1972, Church and Snow 1993, Church et al. 1979) of tornado structure predict that, under certain conditions, a primary tornado vortex will break down into several sub-tornadic scale multiple vortices (hereinafter “multiple-vortices”). Multiple vortices have been observed visually and in patterns of damage for decades (Fujita 1970, Pauley and Snow 1988). Direct radar evidence of sub-tornado- scale wind maxima probably associated with multiple-vortices was first obtained in a large tornado Figure 1.Doppler Velocity and Power in Spencer SD that destroyed much of the small town of Spencer, SD in tornado illustrating multiple vortices (black ovals). 1998 (Wurman 1999, Fig. 1). The tornado was observed W W ’ ’ at ranges of 1.7-5 km (to center). The vortices were Fig 2. Path of torn near Mulhall4 3 2 2 ° ° Tornado Core Region OK. Core flow diameter shown.7 7 weaker than the tornadic flow, with perturbations of ~ 9 9 20-30 ms-1 on a parent flow of ~ 85-95 ms-1. The 25m and vortices caused a degradation of the typical clear eye 37.5m non- 03:17:38 structure observed frequently in received power data oversampled 03:16:38 obtained in tornadoes not exhibiting strong multiple range vortices (Wurman and Gill 2000, Burgess et al 2001. resolution. 03:15:27 3x° xx’ N Sometimes, several “eyes” were evident.
    [Show full text]
  • Von Kármán Vortex Streets
    Von Karm´ an´ Vortex Streets: Simulating Natural Phenomena at Scale By: Sean Wang April 25th, 2019 1 Introduction The turn of the 19th century ushered in a golden era of fluid and aerodynamics research, with many scientists attacking the great questions that not only arose from advent of the powered airplane, but also those posed by the founders of fluid dynamics decades or centuries before. Possibly the greatest fluid dynamicist of all time, Ludwig Prandtl sought to answer of these questions, particularly as they related to flight forces. In his exploration of bluff body drag in near potential flows, Prandtl observed a natural phenomenon, an oscillatory sheet of shed vortices. This paper will explore this phenomenon as well as its outreaching applications in modelling at scale. 2 The Karm´ an´ Vortex Street The original understanding behind vortex shedding comes from a combination of Prandtl’s boundary layer theory (1904) and the existing potential flow theory. In potential flow theory, for an inviscid, incompressible (∇·U~ ), and irrotational (∇×U~ ) fluid, d’Alembert’s paradox states that there is zero drag. Experimentally, this is never true, with the closest examples being flows of ex- tremely low Reynolds numbers paired with a relatively slow free stream velocity (gen- erally M < :3). In the case of bluff bodies I.E. a cylinder in a flow, there is a strong adverse pressure gradient past the half chord, which causes almost immediate flow separation and a subsequent low pressure wake, integrating across the imbalance of pressures gives the resulting the drag. An additional consequence of separation is the phenomenon discussed earlier, alternating vortices caused by imbalances in the rotat- ing, separating wake; this is what is known as a Karm´ an´ street, after Theodore Van Karm´ an.´ Figure 1: A low pressure wake is visible on a simulated vortex street, a result of separation past the half chord.
    [Show full text]
  • A Vortex Model for Forces and Moments on Low-Aspect-Ratio Wings in Side-Slip with Experimental Validation Adam Devoria, Kamran Mohseni
    A vortex model for forces and moments on low-aspect-ratio wings in side-slip with experimental validation Adam Devoria, Kamran Mohseni To cite this version: Adam Devoria, Kamran Mohseni. A vortex model for forces and moments on low-aspect-ratio wings in side-slip with experimental validation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Royal Society, The, 2017, 473 (2198), 10.1098/rspa.2016.0760. hal-01918593 HAL Id: hal-01918593 https://hal.archives-ouvertes.fr/hal-01918593 Submitted on 11 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A vortex model for forces and rspa.royalsocietypublishing.org moments on low-aspect-ratio wings in side-slip with experimental validation Research Adam C. DeVoria1 and Kamran Mohseni1,2 Cite this article: DeVoria AC, Mohseni K. 2017 A vortex model for forces and moments on 1Department of Mechanical and Aerospace Engineering, and low-aspect-ratio wings in side-slip with 2Department of Electrical and Computer Engineering, experimental validation. Proc.R.Soc.A473: University of Florida, Gainesville, FL 32611, USA 20160760. http://dx.doi.org/10.1098/rspa.2016.0760 KM, 0000-0002-1382-221X This paper studies low-aspect-ratio (A) rectangular Received: 7 October 2016 wings at high incidence and in side-slip.
    [Show full text]
  • A Revised Tornado Definition and Changes in Tornado Taxonomy
    1256 WEATHER AND FORECASTING VOLUME 29 A Revised Tornado Definition and Changes in Tornado Taxonomy ERNEST M. AGEE Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana (Manuscript received 4 June 2014, in final form 30 July 2014) ABSTRACT The tornado taxonomy presented by Agee and Jones is revised to account for the new definition of a tor- nado provided by the American Meteorological Society (AMS) in October 2013, resulting in the elimination of shear-driven vortices from the taxonomy, such as gustnadoes and vortices in the eyewall of hurricanes. Other relevant research findings since the initial issuance of the taxonomy are also considered and in- corporated, where appropriate, to help improve the classification system. Multiple misoscale shear-driven vortices in a single tornado event, when resulting from an inertial instability, are also viewed to not meet the definition of a tornado. 1. Introduction and considerations from a cumuliform cloud, and often visible as a funnel cloud and/or circulating debris/dust at the ground.’’ In The first proposed tornado taxonomy was presented view of the latest definition, a few changes are warranted by Agee and Jones (2009, hereafter AJ) consisting of in the AJ taxonomy. Considering the roles played by three types and 15 species, ranging from the type I buoyancy and shear on a variety of spatial and temporal (potentially strong and violent) tornadoes produced by scales (from miso to meso to synoptic), coupled with the the classic supercell, to the more benign type III con- requirement in the latest definition that a tornado must vective and shear-driven vortices such as landspouts and be pendant from a cumuliform cloud, it is necessary to gustnadoes.
    [Show full text]