Alice Variables: Intro • a Variable Is a Name That Represents a Storage Location for a Value – Represented by an Identifier

Total Page:16

File Type:pdf, Size:1020Kb

Alice Variables: Intro • a Variable Is a Name That Represents a Storage Location for a Value – Represented by an Identifier Alice Variables: Intro • A variable is a name that represents a storage location for a value { Represented by an identifier (name) using the same naming conventions as for methods { Corresponds to a data type - the kind of value it can represent { Has a location in computer memory allocated to it { The data type and amount of memory limits the range of values a variable can store { Stores a value of the specified data type • Data types: { Double: Fractional values (include decimal point) { Integer: Whole numbers (no decimal point) { Boolean: True/false { String: Literal values indicated by double quotes { NOTE: If Java not selected as language, will see slightly different type window 1 Alice Variables: Intro (2) • A variable declaration specifies a variable's name and type { Alice expects an initial value in addition { Alice refers to the combination of declaration and initialization as variable definition • A variable's scope refers to where a variable's value can be accessed • There are three types of variables based on where they are declared: 1. Local variables { These are declared within a method { Their scope (where they can be used) is within the body (code) of that method; hence the name local 2. Parameters { These are declared in a method's header - in the parentheses that follow the name of the method when created { These are used to hold values that can be sent to the method when it is called { Their scope is the same as for local variables { The values that are sent to the method are called arguments { They allow the method to behave differently on each call, providing different arguments are passed to the method 3. Instance variables (properties) { These are declared within a class { They specify properties for objects of that class { Their scope is the whole class (i.e., they can be used by methods of the class) • Variables are used to store values that are used in a program { They make it easy to update values as a program executes { They make it easy to modify a program's code 2 Alice Variables: Local Variables • Steps in declaring a local variable: 1. Drag variable into a method from the list of control structures in edit mode A pop-up window appears 2. The radio button variable next to the label Is variable should be selected (see constants below) 3. Select a data type 4. Enter an initial value; Alice insists on this { You may want something entirely different for an initial value than the options provided { Simply select one - you will be able to change this once the variable has been declared 5. Name the variable { The name should be a meaningful noun or noun phrase 3 Alice Variables: Local Variables (2) • Expressions { An expression is a piece of code that produces a value { There are several forms this can take: 1. A literal (actual) value: 5, 17.2 2. A variable: x, length 3. A function call: this.alice.getWidth(), Math.sqrt(x) 4. A compound expression: expression1 operator expression2, where ex- pression1 and expression2 can be any of these types of expressions • Variables are initialized with an expression { Frequently want to initialize a variable with an expression other than a simple value { Consider x : 5 y : 10 z : 0:5 ∗ x + 1:5 ∗ y { When declaring z, Alice won't allow the above, but you can change it after you've created the variable z • To change the expressions for a variable: 1. Click the down arrow to the right of the expression - a set of choices appears 4 Alice Variables: Local Variables (3) These include { Default values { Compound expressions (Math) { Randomly generated values { User-specified values { Values of existing variables (listed at bottom) • Math allows the creation of complicated expressions involving operators { It also provides math functions like square root, trig functions, etc. • Function calls can be dragged into the value slots of expressions 5 Alice Variables: Local Variables (4) • Input can be interactively supplied by the user using the getTYPEFromUser() function (under Scene), where TYPE is replaced by one of Alice's data types { This function has a String parameter (message )that is printed before re- trieving a typed-in value from the user { This string is called a prompt and should tell the user exactly what is expected { The program will wait until the user enters a value and hits ENTER before continuing 6 Alice Variables: Local Variables (5) • Assignment statements { These are used to change the value of a variable as a program executes { Assignment statements are dragged from the control list at the bottom of the edit window { They require an expression in the same way as when a variable is initialed on declaration { The syntax is var name = expression { The semantics: The value of the expression is stored in the memory location associated with var name { Generally, only local variables appear on the left of assignment statements • Constants { When creating a variable, there radio buttons labeled variable and constant next to Is variable { A programming constant is a value that does not change throughout a program's execution { By declaring a variable constant, you will be prevented from changing it's value { Constant names use all caps, unlike variable names 7 Alice Variables: Parameters • A parameter is a "variable" that stores a value passed to a method { The value is sent when the method is called, and the value is called an argument • Creating a parameter for a method is similar to creating a local variable { Once a method has been named and created, an add parameter button appears in its header { Selecting this brings up a window just like for variables 8 Alice Variables: Parameters (2) { When selecting the data type, you'll see a new option: Gallery ∗ Under Gallery are listed all the classes available in your program ∗ You can pass actual objects as arguments into a method ∗ When selecting a type from the gallery, choose the most general type that you want your method to accept ∗ Classes that start with S (S-types, which stand for story types) are classes that cannot be modified by the programer ∗ Appendix C lists the complete Alice S-type hierarchy 9 Alice Variables: Instance Variables • Instance variables define the properties of a class • They are created the same as for methods except by choosing Add Property menu of the selected class • When an instance variable is created, Alice automatically creates two methods associated with it: 1. Procedure set var name for assigning a value to var name 2. Function get var name for retrieving the value of var name 10 Alice Variables: User-defined Functions • Just like with methods, you can create custom-designed functions to generate values • They are created in the same way a user-defined procedures are, with the following differences: { Since a function returns a value, a function has an associated data type, called its return type { When creating a new function, a pop-up window similar to that for new variables { In addition, the body of the function requires a return statement ∗ When executed, a return statement halts the execution of the function, and specifies the value to be returned ∗ Return statements are added by dragging from the control statement list at the bottom of the edit window ∗ The value to be returned can be any acceptable expression, and the expression is created in the same way as for variables • Remember: a function call can appear anywhere a value is expected in a pro- gram 11 Alice Variables: Vehicles (Note: This topic has nothing to do with variables) • Every class has a vehicle property • Its default value is Scene • When a vehicle moves, every object with that vehicle property will move with the vehicle by the same amount • To change an object's vehicle, use the setVehicle() method (a procedure) • The vehicle property makes it easy to have multiple objects move in tandem { The alternative would be to program each of the objects to move by the same amount, using a doTogether() control statement { This requires a lot more code and effort 12.
Recommended publications
  • Chapter 5 Names, Bindings, and Scopes
    Chapter 5 Names, Bindings, and Scopes 5.1 Introduction 198 5.2 Names 199 5.3 Variables 200 5.4 The Concept of Binding 203 5.5 Scope 211 5.6 Scope and Lifetime 222 5.7 Referencing Environments 223 5.8 Named Constants 224 Summary • Review Questions • Problem Set • Programming Exercises 227 CMPS401 Class Notes (Chap05) Page 1 / 20 Dr. Kuo-pao Yang Chapter 5 Names, Bindings, and Scopes 5.1 Introduction 198 Imperative languages are abstractions of von Neumann architecture – Memory: stores both instructions and data – Processor: provides operations for modifying the contents of memory Variables are characterized by a collection of properties or attributes – The most important of which is type, a fundamental concept in programming languages – To design a type, must consider scope, lifetime, type checking, initialization, and type compatibility 5.2 Names 199 5.2.1 Design issues The following are the primary design issues for names: – Maximum length? – Are names case sensitive? – Are special words reserved words or keywords? 5.2.2 Name Forms A name is a string of characters used to identify some entity in a program. Length – If too short, they cannot be connotative – Language examples: . FORTRAN I: maximum 6 . COBOL: maximum 30 . C99: no limit but only the first 63 are significant; also, external names are limited to a maximum of 31 . C# and Java: no limit, and all characters are significant . C++: no limit, but implementers often impose a length limitation because they do not want the symbol table in which identifiers are stored during compilation to be too large and also to simplify the maintenance of that table.
    [Show full text]
  • 7. Functions in PHP – II
    7. Functions in PHP – II Scope of variables in Function Scope of variable is the part of PHP script where the variable can be accessed or used. PHP supports three different scopes for a variable. These scopes are 1. Local 2. Global 3. Static A variable declared within the function has local scope. That means this variable is only used within the function body. This variable is not used outside the function. To demonstrate the concept, let us take an example. // local variable scope function localscope() { $var = 5; //local scope echo '<br> The value of $var inside the function is: '. $var; } localscope(); // call the function // using $var outside the function will generate an error echo '<br> The value of $var inside the function is: '. $var; The output will be: The value of $var inside the function is: 5 ( ! ) Notice: Undefined variable: var in H:\wamp\www\PathshalaWAD\function\function localscope demo.php on line 12 Call Stack # Time Memory Function Location 1 0.0003 240416 {main}( ) ..\function localscope demo.php:0 The value of $var inside the function is: Page 1 of 7 If a variable is defined outside of the function, then the variable scope is global. By default, a global scope variable is only available to code that runs at global level. That means, it is not available inside a function. Following example demonstrate it. <?php //variable scope is global $globalscope = 20; // local variable scope function localscope() { echo '<br> The value of global scope variable is :'.$globalscope; } localscope(); // call the function // using $var outside the function will generate an error echo '<br> The value of $globalscope outside the function is: '.
    [Show full text]
  • Object Lifetimes In
    Object Lifetimes in Tcl - Uses, Misuses, Limitations By Phil Brooks - Mentor – A Siemens Corporation Presented at the 25 nd annual Tcl/Tk conference, Houston Texas, November 2018 Mentor – A Siemens Corporation 8005 Boeckman Road Wilsonville, Oregon 97070 [email protected] Abstract: The management of the lifetime of an object in Tcl presents a number of unique challenges. In the C++ world, the technique of Resource Allocation is Initialization (RAII) is commonly used to control the lifetime of certain objects. With this technique, an object on the call stack is used to insure proper cleanup of a resource. When the object goes out of scope, the resource is released. It presents a low overhead mechanism for a garbage collection like facility without the complication of more complete garbage collection systems. Tcl doesn't have a similar direct capability, and the need for it has resulted in two techniques that are commonly used to substitute for the capability. The techniques are: 1) Use of the trace command to catch unset of a variable. 2) Mis-use of the lifetime of a Tcl_Obj created with Tcl_NewObj. Each of these techniques has drawbacks. The primary issue with the trace technique is that it requires the user of an object to arrange for explicit destruction of the object. This makes the interface more error prone. The mis-use of lifetime of a Tcl_Obj is subject to premature cleanup of the resource if the object is shimmered to a string for any reason. This paper surveys these lifetime management patterns and demonstrates the use of a new user level technique for lifetime management.
    [Show full text]
  • Declare Function Inside a Function Python
    Declare Function Inside A Function Python Transisthmian and praetorian Wye never ensphere helter-skelter when Shawn lord his nightshade. Larboard Hal rumors her dizziesacapnia very so encouragingly actinally. that Colbert aurifies very inferentially. Kenyan Tad reframes her botts so irefully that Etienne Closures prove to it efficient way something we took few functions in our code. Hope you have any mutable object. Calling Functions from Other Files Problem Solving with Python. What embassy your website look like? Then you can declare any result of a million developers have been loaded? The coach who asked this gas has marked it as solved. We focus group functions together can a Python module see modules and it this way lead our. What are Lambda Functions and How to Use Them? It working so art the result variable is only accessible inside the function in. Variables inside python node, learn more detail, regardless of instances of a program demonstrates it. The python function inside another, which start here, and beginners start out. Get code examples like python define a function within a function instantly right anytime your google search results with the Grepper Chrome. The function by replacing it contains one function start here are discussed: how do not provide extremely cost efficient as their name? How to the page helpful for case it requires you can declare python data science. Each item from the python function has arbitrary length arguments must first, but are only the output is simply the function to. We declare their perfomance varies with the gathered arguments using a wrapped the arguments does the computed fahrenheit to declare function inside a function python? List of python can declare a function inside a million other functions we declare function inside a function python.
    [Show full text]
  • Chapter 5. Using Tcl/Tk
    The Almagest 5-1 Chapter 5. Using Tcl/Tk Authors: Edward A. Lee Other Contributors: Brian L. Evans Wei-Jen Huang Alan Kamas Kennard White 5.1 Introduction Tcl is an interpreted “tool command language” designed by John Ousterhout while at UC Berkeley. Tk is an associated X window toolkit. Both have been integrated into Ptolemy. Parts of the graphical user interface and all of the textual interpreter ptcl are designed using them. Several of the stars in the standard star library also use Tcl/Tk. This chapter explains how to use the most basic of these stars, TclScript, as well how to design such stars from scratch. It is possible to define very sophisticated, totally customized user interfaces using this mechanism. In this chapter, we assume the reader is familiar with the Tcl language. Documentation is provided along with the Ptolemy distribution in the $PTOLEMY/tcltk/itcl/man direc- tory in Unix man page format. HTML format documentation is available from the other.src tar file in $PTOLEMY/src/tcltk. Up-to-date documentation and software releases are available by on the SunScript web page at http://www.sunscript.com. There is also a newsgroup called comp.lang.tcl. This news group accumulates a list of frequently asked questions about Tcl which is available http://www.teraform.com/%7Elvirden/tcl-faq/. The principal use of Tcl/Tk in Ptolemy is to customize the user interface. Stars can be created that interact with the user in specialized ways, by creating customized displays or by soliciting graphical inputs. 5.2 Writing Tcl/Tk scripts for the TclScript star Several of the domains in Ptolemy have a star called TclScript.
    [Show full text]
  • Coding 101: Learn Ruby in 15 Minutes Visit
    Coding 101: Learn Ruby in 15 minutes Visit www.makers.tech 1 Contents 2 Contents 10 Challenge 3 3 About us 11 Defining Methods 4 Installing Ruby 12 Challenge 4 4 Checking you’ve got Ruby 12 Challenge 5 5 Method calls 12 Challenge 6 5 Variables 13 Arrays 6 Truth and Falsehood 14 Hashes 7 Strings, objects and Methods 14 Challenge 7 8 Challenge 1 15 Iterations 8 Challenge 2 16 Challenge 8 9 Method Chaining 16 Challenge 9 10 Conditionals 18 Extra Challenges 2 About Us At Makers, we are creating a new generation of tech talent who are skilled and ready for the changing world of work. We are inspired by the idea of discovering and unlocking potential in people for the benefit of 21st century business and society. We believe in alternative ways to learn how to code, how to be ready for work and how to be of value to an organisation. At our core, Makers combines tech education with employment possibilities that transform lives. Our intensive four-month program (which includes a month-long PreCourse) sets you up to become a high quality professional software engineer. Makers is the only coding bootcamp with 5 years experience training software developers remotely. Your virtual experience will be exactly the same as Makers on-site, just delivered differently. If you’d like to learn more, check out www.makers.tech. 3 Installing Checking Ruby you’ve got Ruby You’ll be happy to know that Ruby comes preinstalled on all Apple computers. However we can’t simply use the system defaults - just in case we mess something up! Open the terminal on your computer and then type in If you’ve got your laptop set up already you can skip this section.
    [Show full text]
  • Function Components and Arguments Passing in Cpp
    FUNCTION COMPONENTS AND ARGUMENTS PASSING IN CPP The General Form of a Function The general form of a function is ret-type function-name(parameter list) { body of the function } The ret-type specifies the type of data that the function returns.Afunction may return any type of data except an array. The parameter list is a comma-separated list of variable names and their associated types that receive the values of the arguments when the function is called.Afunction may be without parameters, in which case the parameter list is empty. However, even if there are no parameters, the parentheses are still required. In variable declarations, you can declare many variables to be of a common type by using a comma- separated list of variable names. In contrast, all function parameters must be declared individually, each including both the type and name. That is, the parameter declaration list for a function takes this general form: f(type varname1, type varname2, . , type varnameN) For example, here are correct and incorrect function parameter declarations: f(int i, int k, int j) /* correct */ f(int i, k, float j) /* incorrect */ Scope Rules of Functions The scope rules of a language are the rules that govern whether a piece of code knows about or has access to another piece of code or data. Each function is a discrete block of code. Afunction's code is private to that function and cannot be accessed by any statement in any other function except through a call to that function. (For instance, you cannot use goto to jump into the middle of another function.) The code that constitutes the body of a function is hidden from the rest of the program and, unless it uses global variables or data, it can neither affect nor be affected by other parts of the program.
    [Show full text]
  • Subprograms: Local Variables
    Subprograms: Local Variables ICS312 Machine-Level and Systems Programming Henri Casanova ([email protected]) Local Variables in Subprograms In all the examples we have seen so far, the subprograms were able to do their work using only registers But sometimes, a subprogram’s needs are beyond the set of available registers and some data must be kept in memory Just think of all subprograms you wrote that used more than 6 local variables (EAX, EBX, ECX, EDX, ESI, EDI) One possibility could be to declare a small .bss segment for each subprogram, to reserve memory space for all local variables Drawback #1: memory waste This reserved memory consumes memory space for the entire duration of the execution even if the subprogram is only active for a tiny fraction of the execution time (or never!) Drawback #2: subprograms are not reentrant Re-entrant subprogram A subprogram is active if it has been called but the RET instruction hasn’t been executed yet A subprogram is reentrant if it can be called from anywhere in the program This implies that the program can call itself, directly or indirectly, which enables recursion e.g., f calls g, which calls h, which calls f At a given time, two or more instances of a subprogram can be active Two or more activation records for this subprogram on the stack If we store the local variables of a subprogram in the .bss segment, then there can only be one activation! Otherwise activation #2 could corrupt the local variables of the activation #1 Therefore, with our current scheme for storing local
    [Show full text]
  • Declare a Global Variable Js
    Declare A Global Variable Js Vocable Cy fizzled numbly, he counterplot his Hudibrastics very tragically. Rectified Plato always raffled his towelings if Deane is federal or botanizes thence. Is Morgan epidemiological or stringed when blames some fashioner plunder stodgily? The optimization of undefined at the global variables from a global variable Why Global Variables Should Be Avoided When Unnecessary. Global Variables Confluence Mobile Jitterbit Success Central. Expose Global Variables Methods and Modules in JavaScript. Var foo 'A' Global variable declaration function bar1 documentwritefoo. One and their declaration is a js mixin we are available. Print and current global object whose reading and function is a variable on one variable global. This js that declares a js files loaded into the web things that uses the project, and if we need before they provide an. Why are global variables bad? Why are global variables bad in CC Tutorialspoint. JavaScript global variables vs singletons by Shruti Kapoor. You actually define a variable in a function that embassy the same name are a global or lexical variable without modifying that variable var sandwich. Because military people setup jQuery in no conflict mode where fraud does not strip a variable. Declaring variables with var applies it convenient only 2 traditional scope Global and function scope Accessing a global variable is required a retention of times. Hcl will be accessible inside a subscription, for your files in one part at a js? Why are global and static objects evil? JavaScript global variables and the global object Dustin John. JavaScript has two scopes global and her Any variable declared outside running a function belongs to the global scope and community therefore.
    [Show full text]
  • Introduction to Computer Science and Programming in C
    Introduction to Computer Science and Programming in C Session 7: September 23, 2008 Columbia University Announcements Homework 1 due. Homework 2 out this afternoon. Due 10/7 2 Review Conditionals: if (<condition>) switch (variable) Loops: while (<condition>) for (<init>; <condition>; <count>) 3 Today Functions Variable Scope Recursion 4 Functions We’ve seen functions already int main() printf() But we can write our own functions too! 5 Function Syntax <return type> myFunction(<arguments>) { /* instructions to execute function */ } int multiply(int x, int,y) { return x*y; } Note: functions can return type void, which essentially means they return nothing, like printf() 6 Abstraction Revisited Functions allow us to abstract away algorithms Once a function is written and tested, you can forget about how it works. We can describe the logic at a higher level. 7 Example /* if we have three arrays A[10], B[10], C[10] */ /* Check if they are equal */ int check = 1; for (i=0; i<10; i++) { check = check && (A[i]==B[i]); } for (i=0; i<10; i++) { check = check && (B[i]==C[i]); } 8 Example int arrayEqual(int X[], int Y[], int N) { int i, check=1; for (i=0; i<N; i++) { check = check && (X[i]==Y[i]); } } /* main code */ int check; check = arrayEqual(A,B,10) && arrayEqual(B,C,10); 9 Scope float half(float x) scope - area of program where { variable is valid. return x/2; } global variable - variable is valid everywhere int main() { float x=10.0, y; local variable - only valid within block y = half(x); block – area of code enclosed /*what is x? ...*/ by {} x is 10 We have only been using local variables so far in class Global Variables Declared outside of any functions #include <stdio.h> int count; /* a global variable */ int someFunction() { ..
    [Show full text]
  • C Programming Tutorial
    C Programming Tutorial C PROGRAMMING TUTORIAL Simply Easy Learning by tutorialspoint.com tutorialspoint.com i COPYRIGHT & DISCLAIMER NOTICE All the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, or form without the written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws. This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the accuracy of the site or its contents including this tutorial. If you discover that the tutorialspoint.com site or this tutorial content contains some errors, please contact us at [email protected] ii Table of Contents C Language Overview .............................................................. 1 Facts about C ............................................................................................... 1 Why to use C ? ............................................................................................. 2 C Programs .................................................................................................. 2 C Environment Setup ............................................................... 3 Text Editor ................................................................................................... 3 The C Compiler ............................................................................................ 3 Installation on Unix/Linux ............................................................................
    [Show full text]
  • Specialising Dynamic Techniques for Implementing the Ruby Programming Language
    SPECIALISING DYNAMIC TECHNIQUES FOR IMPLEMENTING THE RUBY PROGRAMMING LANGUAGE A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2015 By Chris Seaton School of Computer Science This published copy of the thesis contains a couple of minor typographical corrections from the version deposited in the University of Manchester Library. [email protected] chrisseaton.com/phd 2 Contents List of Listings7 List of Tables9 List of Figures 11 Abstract 15 Declaration 17 Copyright 19 Acknowledgements 21 1 Introduction 23 1.1 Dynamic Programming Languages.................. 23 1.2 Idiomatic Ruby............................ 25 1.3 Research Questions.......................... 27 1.4 Implementation Work......................... 27 1.5 Contributions............................. 28 1.6 Publications.............................. 29 1.7 Thesis Structure............................ 31 2 Characteristics of Dynamic Languages 35 2.1 Ruby.................................. 35 2.2 Ruby on Rails............................. 36 2.3 Case Study: Idiomatic Ruby..................... 37 2.4 Summary............................... 49 3 3 Implementation of Dynamic Languages 51 3.1 Foundational Techniques....................... 51 3.2 Applied Techniques.......................... 59 3.3 Implementations of Ruby....................... 65 3.4 Parallelism and Concurrency..................... 72 3.5 Summary............................... 73 4 Evaluation Methodology 75 4.1 Evaluation Philosophy
    [Show full text]