General Relativity a Grand Tour of Physics

Total Page:16

File Type:pdf, Size:1020Kb

General Relativity a Grand Tour of Physics A GRAND TOUR OF PHYSICS GENERAL RELATIVITY LECTURE 5 APR. 19, 2019 DR. GEORGE DERISE 1:30 – 3:30 PROFESSOR EMERITUS, MATHEMATICS TNCC THOMAS NELSON COMMUNITY COLLEGE ROOM 328. SPRING 2019 A QUICK SURVEY OF NON-EUCLIDEAN GEOMETRY PARALLEL POSTULATE EUCLIDEAN GEOMETRY: Through a given point P, not on a given line L, there is one and only one line that can be drawn through P parallel to L. MODEL OF A GAUSS-BOLYAI-LOBATCHEVSKI NON EUCLIDEAN GEOMETRY: ABSTRACT GBL GEOMETRY MODEL ENTIRE PLANE SURFACE OF A SADDLE POINT POINT ON THE SADDLE LINE GEODESIC OF THE SADDLE GBL PARALLEL POSTULATE THROUGH A GIVEN POINT P, NOT ON A GIVEN LINE l, THERE ARE AT LEAST TWO LINES THROUGH P PARALLEL TO l . MODEL OF A GAUSS-BOLYAI-LOBATCHEVSKI NON EUCLIDEAN GEOMETRY: ABSTRACT GBL GEOMETRY MODEL ENTIRE PLANE SURFACE OF A PSEUDOSPHERE POINT POINT ON THE PSEUDOSPHERE LINE GEODESIC OF THE PSEUDOSPHERE GBL PARALLEL POSTULATE HOLDS! MODEL OF A RIEMANNIAN NON EUCLIDEAN GEOMETRY: BERNHARD RIEMANN 1826-1866 KARL FRIEDRICH GAUSS 86o 13' 58.366'' 53o 6' 45.642'' 40o 39' 30.165'' 180o 00' 14.173'' Can a bug living on a two dimensional surface determine the geometry of the surface? INTUITIVE IDEA OF CURVATURE K=0 CURVES IN THE PLANE INTUITIVE IDEA OF CURVATURE 2 DIMENSIONAL SURFACES Why are we doing this math? IS THERE A “FORCE OF ATTRACTION” BETWEEN A AND B ? GENERAL RELATIVITY - “THERE IS NO FORCE” -IT’S JUST THE GEOMETRY APPLE’S SURFACE- RIEMANNIAN GEOMETRY MODEL OF SPACETIME ANT GOING ALONG A GEODESIC- WORLD LINE THROUGH SPACETIME OF A FREE PARTICLE STEM OF APPLE- BENDING OF SPACETIME BY A MASS LOCALLY THE APPLE IS FLAT EQUIVALENCE PRINCIPLE There is no experiment that will discern the difference between the effect of gravity and the effect of acceleration. GRAVITATIONAL MASS ~ INERTIAL MASS ...I know now that if I break my neck by falling off a cliff, my death is not to be blamed on the force of gravity (what does not exist is necessarily guiltless), but on the fact that I did not maintain the first curvature of my world-line, exchanging its security for a dangerous geodesic. Relativity- the General Theory J.L. Synge CONNECTING THE EQUIVALENCE PRINCIPLE WITH THE GEOMETRY OF SPACETIME: THE WORLD LINE OF THE EARTH AROUND THE SUN IS A GEODESIC IN 4 DIMENSIONAL SPACETIME- I.E. THE SHORTEST 4 DIMENSIONAL SPACETIME DISTANCE BETWEEN TWO POINTS. (GEOMETRY). NEWTON: FORCE = MASS x ACCELERATION (PHYSICS) MATTER TELLS SPACE HOW TO CURVE, AND CURVED SPACE TELLS MATTER HOW TO MOVE. JOHN WHEELER GENERAL RELATIVITY SPACETIME: 4 DIMENSIONAL RIEMANNIAN MANIFOLD THE CURVATURE OF THE METRIC 품흁흂 is related to THE MATTER-ENERGY DISTRIBUTION OF SPACETIME by EINSTEIN’S FIELD EQUATION 푮흁흂 = ퟖ흅푻흁흂 CURVATURE OF SPACETIME ~ ENERGY DENSITY OF MATTER GEOMETRY ~ PHYSICS HILBERT GOT EINSTEIN’S FIELD EQUATIONS BY USING AN ACTION PRINCIPLE 5 DAYS BEFORE EINSTEIN GENERAL RELATIVITY EXPERIMENTAL VERIFICATION SOLAR ECLIPSE EXPEDITION -1919 GRAVITATIONAL LENSING: The gravitational field of a massive object causes light rays passing close to that object to be bent. Mass bends light. PRECESSION OF THE PLANET MERCURY POUND-REBKA EXPERIMENT 1960 HARVARD PHYSICS TOWER Top-bottom difference: 1 second in 100 million years verified Einstein’s 1911 prediction that gravity could change light’s frequency. GRAVITATIONAL REDSHIFT GPS accuracy of 5 to 10 meters 24 satellites with atomic clocks Special Relativity predicts clocks on the satellites fall behind clocks on the ground by 7 microseconds per day General Relativity predicts clocks on the satellites get ahead of clocks on the ground by 45 microseconds per day. combining these two relativistic effects: the clocks on-board each satellite should tick faster than identical clocks on the ground by about 38 microseconds per day (45-7=38) PHYSICS = GEOMETRY GRAVITATIONAL WAVES: Disturbances in the curvature (fabric) of spacetime generated by accelerated masses that propagate as waves outward from their source at the speed of light. First proposed by Henri Poincaré in 1905 Predicted by Einstein Theory of General Relativity-1916. Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. LIGO: The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory to detect cosmic gravitational waves. The first direct observation of gravitational waves - September 2015. The waves given reached Earth as a ripple in spacetime that changed the length of a 4-km LIGO arm by a ten thousandth of the width of a proton (proportionally equivalent to changing the distance to the nearest star outside the Solar System by one hair's width.) Far field solution of Einstein’s Field Equation The Minkowski space-time of Special Relativity Einstein’s Field Equation on a wall of Museum Boerhaave, Leiden Gravitational lensing phenomena-deflection of light by an intervening mass Karl Schwarzschild (1873–1916) SCHWARZSCHILD BLACK HOLE SOLUTION SCHWARZSCHILD METRIC VALID SOLUTION OF THE EINSTEIN FIELD EQUATIONS BLACK HOLES A hole in space-time Black: even light can’t escape 2GM r 3KM SUN c2 Density= 20,000million tons/cubic cm NO HAIR THEOREM: John Wheeler “ A Black Hole has no hair.” A black hole has only three characteristics (1) mass (2) angular momentum (3) charge WILL THE UNIVERSE EXPAND FOREVER? A CYCLIC UNIVERSE CYCLIC UNIVERSE R(t) t NO BIG BANG-BIG CRUNCH SINGULARITIES HARMONIC OSCILLATING UNIVERSE COSMIC MICROWAVE BACKROUND RADIATION (CMBR) Remnant Electromagnetic radiation from the Big Bang Cosmic microwave background first predicted -1948; first observed -1965 NASA's Cosmic Background Explorer (COBE): 1989 - 1993 NASA-PRINCETON’S Wilkinson Microwave Anisotropy Probe (WMAP): 2003 - 2012 EUROPEAN SPACE AGENCY (ESA)’s Planck Space Observatory 2009 - 2013 41 COBE: Black-body curve of CMB First “baby pictures” of the Universe Intrinsic anisotropy of CMB-detecting early galaxies WMAP: Mapped the pattern of tiny fluctuations in the CMB radiation (the oldest light in the Universe) Produced the first fine-resolution (0.2 degree) full-sky map of the microwave sky Measured the fluctuations of density in the early universe that produced the first galaxies Determined the universe to be 13.77 billion years old to within a half percent Nailed down the curvature of space to within 0.4% of "flat" Euclidean Determined that ordinary atoms (baryons) make up only 4.6% of the universe Completed a census of the Universe -dark matter (matter not made up of atoms) is 24.0% Dark energy, (cosmological const.) makes up 71.4% of the Universe PLANCK SPACE OBSERVATORY: Mapped the anisotropies of the CMB at microwave and infra-red frequencies Improved on WMAP Confirmation of the Universe having a 26% content of dark matter Validation of the simplest models of inflation WHY INFLATION? PROBLEMS WITH THE STANDARD BIG BANG WHY IS OUR UNIVERSE SO HOMOGENEOUS? (BETTER THAN 1:10,000) WHY IS IT ISOTROPIC? WHY ALL OF ITS PARTS STARTED EXPANDING SIMULTANEOUSLY? WHY IS IT FLAT? INFLATION MAKES THE UNIVERSE FLAT, HOMOGENEOUS AND ISOTROPIC IN THIS SIMPLE MODEL THE UNIVERSE TYPICALLY GROWS 101000000000000 TIMES DURING INFLATION. HAWKING RADIATION (1974) BLACK HOLES ARE NOT ENTIRELY BLACK BUT EMIT SMALL AMOUNTS OF THERMAL RADIATION BEKENSTEIN-HAWKING ENTROPY FORMULA A S= ퟒ SU(3) x SU(2) x U(1) STANDARD MODEL OF PARTICLE PHYSICS .
Recommended publications
  • A Mathematical Derivation of the General Relativistic Schwarzschild
    A Mathematical Derivation of the General Relativistic Schwarzschild Metric An Honors thesis presented to the faculty of the Departments of Physics and Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors Scholar and Honors-in-Discipline Programs for a Bachelor of Science in Physics and Mathematics by David Simpson April 2007 Robert Gardner, Ph.D. Mark Giroux, Ph.D. Keywords: differential geometry, general relativity, Schwarzschild metric, black holes ABSTRACT The Mathematical Derivation of the General Relativistic Schwarzschild Metric by David Simpson We briefly discuss some underlying principles of special and general relativity with the focus on a more geometric interpretation. We outline Einstein’s Equations which describes the geometry of spacetime due to the influence of mass, and from there derive the Schwarzschild metric. The metric relies on the curvature of spacetime to provide a means of measuring invariant spacetime intervals around an isolated, static, and spherically symmetric mass M, which could represent a star or a black hole. In the derivation, we suggest a concise mathematical line of reasoning to evaluate the large number of cumbersome equations involved which was not found elsewhere in our survey of the literature. 2 CONTENTS ABSTRACT ................................. 2 1 Introduction to Relativity ...................... 4 1.1 Minkowski Space ....................... 6 1.2 What is a black hole? ..................... 11 1.3 Geodesics and Christoffel Symbols ............. 14 2 Einstein’s Field Equations and Requirements for a Solution .17 2.1 Einstein’s Field Equations .................. 20 3 Derivation of the Schwarzschild Metric .............. 21 3.1 Evaluation of the Christoffel Symbols .......... 25 3.2 Ricci Tensor Components .................
    [Show full text]
  • 26-2 Spacetime and the Spacetime Interval We Usually Think of Time and Space As Being Quite Different from One Another
    Answer to Essential Question 26.1: (a) The obvious answer is that you are at rest. However, the question really only makes sense when we ask what the speed is measured with respect to. Typically, we measure our speed with respect to the Earth’s surface. If you answer this question while traveling on a plane, for instance, you might say that your speed is 500 km/h. Even then, however, you would be justified in saying that your speed is zero, because you are probably at rest with respect to the plane. (b) Your speed with respect to a point on the Earth’s axis depends on your latitude. At the latitude of New York City (40.8° north) , for instance, you travel in a circular path of radius equal to the radius of the Earth (6380 km) multiplied by the cosine of the latitude, which is 4830 km. You travel once around this circle in 24 hours, for a speed of 350 m/s (at a latitude of 40.8° north, at least). (c) The radius of the Earth’s orbit is 150 million km. The Earth travels once around this orbit in a year, corresponding to an orbital speed of 3 ! 104 m/s. This sounds like a high speed, but it is too small to see an appreciable effect from relativity. 26-2 Spacetime and the Spacetime Interval We usually think of time and space as being quite different from one another. In relativity, however, we link time and space by giving them the same units, drawing what are called spacetime diagrams, and plotting trajectories of objects through spacetime.
    [Show full text]
  • Einstein's Mistakes
    Einstein’s Mistakes Einstein was the greatest genius of the Twentieth Century, but his discoveries were blighted with mistakes. The Human Failing of Genius. 1 PART 1 An evaluation of the man Here, Einstein grows up, his thinking evolves, and many quotations from him are listed. Albert Einstein (1879-1955) Einstein at 14 Einstein at 26 Einstein at 42 3 Albert Einstein (1879-1955) Einstein at age 61 (1940) 4 Albert Einstein (1879-1955) Born in Ulm, Swabian region of Southern Germany. From a Jewish merchant family. Had a sister Maja. Family rejected Jewish customs. Did not inherit any mathematical talent. Inherited stubbornness, Inherited a roguish sense of humor, An inclination to mysticism, And a habit of grüblen or protracted, agonizing “brooding” over whatever was on its mind. Leading to the thought experiment. 5 Portrait in 1947 – age 68, and his habit of agonizing brooding over whatever was on its mind. He was in Princeton, NJ, USA. 6 Einstein the mystic •“Everyone who is seriously involved in pursuit of science becomes convinced that a spirit is manifest in the laws of the universe, one that is vastly superior to that of man..” •“When I assess a theory, I ask myself, if I was God, would I have arranged the universe that way?” •His roguish sense of humor was always there. •When asked what will be his reactions to observational evidence against the bending of light predicted by his general theory of relativity, he said: •”Then I would feel sorry for the Good Lord. The theory is correct anyway.” 7 Einstein: Mathematics •More quotations from Einstein: •“How it is possible that mathematics, a product of human thought that is independent of experience, fits so excellently the objects of physical reality?” •Questions asked by many people and Einstein: •“Is God a mathematician?” •His conclusion: •“ The Lord is cunning, but not malicious.” 8 Einstein the Stubborn Mystic “What interests me is whether God had any choice in the creation of the world” Some broadcasters expunged the comment from the soundtrack because they thought it was blasphemous.
    [Show full text]
  • Riemannian Geometry and the General Theory of Relativity
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1967 Riemannian geometry and the general theory of relativity Marie McBride Vanisko The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Vanisko, Marie McBride, "Riemannian geometry and the general theory of relativity" (1967). Graduate Student Theses, Dissertations, & Professional Papers. 8075. https://scholarworks.umt.edu/etd/8075 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. p m TH3 OmERAl THEORY OF RELATIVITY By Marie McBride Vanisko B.A., Carroll College, 1965 Presented in partial fulfillment of the requirements for the degree of Master of Arts UNIVERSITY OF MOKT/JTA 1967 Approved by: Chairman, Board of Examiners D e a ^ Graduante school V AUG 8 1967, Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. V W Number: EP38876 All rights reserved INFORMATION TO ALL USERS The quality of this reproduotion is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missir^ pages, these will be noted. Also, if matedal had to be removed, a note will indicate the deletion. UMT Oi*MMtion neiitNna UMi EP38876 Published ProQuest LLQ (2013).
    [Show full text]
  • Holley GM LS Race Single-Plane Intake Manifold Kits
    Holley GM LS Race Single-Plane Intake Manifold Kits 300-255 / 300-255BK LS1/2/6 Port-EFI - w/ Fuel Rails 4150 Flange 300-256 / 300-256BK LS1/2/6 Carbureted/TB EFI 4150 Flange 300-290 / 300-290BK LS3/L92 Port-EFI - w/ Fuel Rails 4150 Flange 300-291 / 300-291BK LS3/L92 Carbureted/TB EFI 4150 Flange 300-294 / 300-294BK LS1/2/6 Port-EFI - w/ Fuel Rails 4500 Flange 300-295 / 300-295BK LS1/2/6 Carbureted/TB EFI 4500 Flange IMPORTANT: Before installation, please read these instructions completely. APPLICATIONS: The Holley LS Race single-plane intake manifolds are designed for GM LS Gen III and IV engines, utilized in numerous performance applications, and are intended for carbureted, throttle body EFI, or direct-port EFI setups. The LS Race single-plane intake manifolds are designed for hi-performance/racing engine applications, 5.3 to 6.2+ liter displacement, and maximum engine speeds of 6000-7000 rpm, depending on the engine combination. This single-plane design provides optimal performance across the RPM spectrum while providing maximum performance up to 7000 rpm. These intake manifolds are for use on non-emissions controlled applications only, and will not accept stock components and hardware. Port EFI versions may not be compatible with all throttle body linkages. When installing the throttle body, make certain there is a minimum of ¼” clearance between all linkage and the fuel rail. SPLIT DESIGN: The Holley LS Race manifold incorporates a split feature, which allows disassembly of the intake for direct access to internal plenum and port surfaces, making custom porting and matching a snap.
    [Show full text]
  • Chapter 6 Curved Spacetime and General Relativity
    Chapter 6 Curved spacetime and General Relativity 6.1 Manifolds, tangent spaces and local inertial frames A manifold is a continuous space whose points can be assigned coordinates, the number of coordinates being the dimension of the manifold [ for example a surface of a sphere is 2D, spacetime is 4D ]. A manifold is differentiable if we can define a scalar field φ at each point which can be differentiated everywhere. This is always true in Special Relativity and General Relativity. We can then define one - forms d˜φ as having components φ ∂φ and { ,α ≡ ∂xα } vectors V as linear functions which take d˜φ into the derivative of φ along a curve with tangent V: α dφ V d˜φ = Vφ = φ V = . (6.1) ∇ ,α dλ ! " Tensors can then be defined as maps from one - forms and vectors into the reals [ see chapter 3 ]. A Riemannian manifold is a differentiable manifold with a symmetric metric tensor g at each point such that g (V, V) > 0 (6.2) for any vector V, for example Euclidian 3D space. 65 CHAPTER 6. CURVED SPACETIME AND GR 66 If however g (V, V) is of indefinite sign as it is in Special and General Relativity it is called Pseudo - Riemannian. For a general spacetime with coordinates xα , the interval between two neigh- { } boring points is 2 α β ds = gαβdx dx . (6.3) In Special Relativity we can choose Minkowski coordinates such that gαβ = ηαβ everywhere. This will not be true for a general curved manifold. Since gαβ is a symmetric matrix, we can always choose a coordinate system at each point x0 in which it is transformed to the diagonal Minkowski form, i.e.
    [Show full text]
  • Review Study on “The Black Hole”
    IJIRST –International Journal for Innovative Research in Science & Technology| Volume 2 | Issue 10 | March 2016 ISSN (online): 2349-6010 Review Study on “The Black Hole” Syed G. Ibrahim Department of Engineering Physics (Nanostructured Thin Film Materials Laboratory) Prof. Ram Meghe College of Engineering and Management, Badnera 444701, Maharashtra, India Abstract As a star grows old, swells, then collapses on itself, often you will hear the word “black hole” thrown around. The black hole is a gravitationally collapsed mass, from which no light, matter, or signal of any kind can escape. These exotic objects have captured our imagination ever since they were predicted by Einstein's Theory of General Relativity in 1915. So what exactly is a black hole? A black hole is what remains when a massive star dies. Not every star will become a black hole, only a select few with extremely large masses. In order to have the ability to become a black hole, a star will have to have about 20 times the mass of our Sun. No known process currently active in the universe can form black holes of less than stellar mass. This is because all present black hole formation is through gravitational collapse, and the smallest mass which can collapse to form a black hole produces a hole approximately 1.5-3.0 times the mass of the sun .Smaller masses collapse to form white dwarf stars or neutron stars. Keywords: Escape Velocity, Horizon, Schwarzschild Radius, Black Hole _______________________________________________________________________________________________________ I. INTRODUCTION Soon after Albert Einstein formulated theory of relativity, it was realized that his equations have solutions in closed form.
    [Show full text]
  • Riemannian Geometry Learning for Disease Progression Modelling Maxime Louis, Raphäel Couronné, Igor Koval, Benjamin Charlier, Stanley Durrleman
    Riemannian geometry learning for disease progression modelling Maxime Louis, Raphäel Couronné, Igor Koval, Benjamin Charlier, Stanley Durrleman To cite this version: Maxime Louis, Raphäel Couronné, Igor Koval, Benjamin Charlier, Stanley Durrleman. Riemannian geometry learning for disease progression modelling. 2019. hal-02079820v2 HAL Id: hal-02079820 https://hal.archives-ouvertes.fr/hal-02079820v2 Preprint submitted on 17 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Riemannian geometry learning for disease progression modelling Maxime Louis1;2, Rapha¨elCouronn´e1;2, Igor Koval1;2, Benjamin Charlier1;3, and Stanley Durrleman1;2 1 Sorbonne Universit´es,UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM) 2 Inria Paris, Aramis project-team, 75013, Paris, France 3 Institut Montpelli`erainAlexander Grothendieck, CNRS, Univ. Montpellier Abstract. The analysis of longitudinal trajectories is a longstanding problem in medical imaging which is often tackled in the context of Riemannian geometry: the set of observations is assumed to lie on an a priori known Riemannian manifold. When dealing with high-dimensional or complex data, it is in general not possible to design a Riemannian geometry of relevance. In this paper, we perform Riemannian manifold learning in association with the statistical task of longitudinal trajectory analysis.
    [Show full text]
  • Linearized Einstein Field Equations
    General Relativity Fall 2019 Lecture 15: Linearized Einstein field equations Yacine Ali-Ha¨ımoud October 17th 2019 SUMMARY FROM PREVIOUS LECTURE We are considering nearly flat spacetimes with nearly globally Minkowski coordinates: gµν = ηµν + hµν , with jhµν j 1. Such coordinates are not unique. First, we can make Lorentz transformations and keep a µ ν globally-Minkowski coordinate system, with hµ0ν0 = Λ µ0 Λ ν0 hµν , so that hµν can be seen as a Lorentz tensor µ µ µ ν field on flat spacetime. Second, if we make small changes of coordinates, x ! x − ξ , with j@µξ j 1, the metric perturbation remains small and changes as hµν ! hµν + 2ξ(µ,ν). By analogy with electromagnetism, we can see these small coordinate changes as gauge transformations, leaving the Riemann tensor unchanged at linear order. Since we will linearize the relevant equations, we may work in Fourier space: each Fourier mode satisfies an independent equation. We denote by ~k the wavenumber and by k^ its direction and k its norm. We have decomposed the 10 independent components of the metric perturbation according to their transformation properties under spatial rotations: there are 4 independent \scalar" components, which can be taken, for instance, ^i ^i^j to be h00; k h0i; hii, and k k hij { or any 4 linearly independent combinations thereof. There are 2 independent ilm^ ilm^ ^j transverse \vector" components, each with 2 independent components: klh0m and klhmjk { these are proportional to the curl of h0i and to the curl of the divergence of hij, and are divergenceless (transverse to the ~ TT Fourier wavenumber k).
    [Show full text]
  • Molecular Symmetry
    Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry .
    [Show full text]
  • Chapter 5 the Relativistic Point Particle
    Chapter 5 The Relativistic Point Particle To formulate the dynamics of a system we can write either the equations of motion, or alternatively, an action. In the case of the relativistic point par- ticle, it is rather easy to write the equations of motion. But the action is so physical and geometrical that it is worth pursuing in its own right. More importantly, while it is difficult to guess the equations of motion for the rela- tivistic string, the action is a natural generalization of the relativistic particle action that we will study in this chapter. We conclude with a discussion of the charged relativistic particle. 5.1 Action for a relativistic point particle How can we find the action S that governs the dynamics of a free relativis- tic particle? To get started we first think about units. The action is the Lagrangian integrated over time, so the units of action are just the units of the Lagrangian multiplied by the units of time. The Lagrangian has units of energy, so the units of action are L2 ML2 [S]=M T = . (5.1.1) T 2 T Recall that the action Snr for a free non-relativistic particle is given by the time integral of the kinetic energy: 1 dx S = mv2(t) dt , v2 ≡ v · v, v = . (5.1.2) nr 2 dt 105 106 CHAPTER 5. THE RELATIVISTIC POINT PARTICLE The equation of motion following by Hamilton’s principle is dv =0. (5.1.3) dt The free particle moves with constant velocity and that is the end of the story.
    [Show full text]
  • Introduction to General Relativity
    INTRODUCTION TO GENERAL RELATIVITY Gerard 't Hooft Institute for Theoretical Physics Utrecht University and Spinoza Institute Postbox 80.195 3508 TD Utrecht, the Netherlands e-mail: [email protected] internet: http://www.phys.uu.nl/~thooft/ Version November 2010 1 Prologue General relativity is a beautiful scheme for describing the gravitational ¯eld and the equations it obeys. Nowadays this theory is often used as a prototype for other, more intricate constructions to describe forces between elementary particles or other branches of fundamental physics. This is why in an introduction to general relativity it is of importance to separate as clearly as possible the various ingredients that together give shape to this paradigm. After explaining the physical motivations we ¯rst introduce curved coordinates, then add to this the notion of an a±ne connection ¯eld and only as a later step add to that the metric ¯eld. One then sees clearly how space and time get more and more structure, until ¯nally all we have to do is deduce Einstein's ¯eld equations. These notes materialized when I was asked to present some lectures on General Rela- tivity. Small changes were made over the years. I decided to make them freely available on the web, via my home page. Some readers expressed their irritation over the fact that after 12 pages I switch notation: the i in the time components of vectors disappears, and the metric becomes the ¡ + + + metric. Why this \inconsistency" in the notation? There were two reasons for this. The transition is made where we proceed from special relativity to general relativity.
    [Show full text]