Summary of Notifiable Diseases —

Total Page:16

File Type:pdf, Size:1020Kb

Summary of Notifiable Diseases — Morbidity and Mortality Weekly Report Weekly Published March 30, 2007, for 2005 / Vol. 54 / No. 53 Summary of Notifiable Diseases — United States, 2005 department of health and human services Centers for Disease Control and Prevention MMWR The MMWR series of publications is published by the Coordinating CONTENTS Center for Health Information and Service, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Preface .................................................................................2 Human Services, Atlanta, GA 30333. Background ..........................................................................2 Suggested Citation: Centers for Disease Control and Prevention. Infectious Diseases Designated as Notifiable at the National [Summary of notifiable diseases—United States, 2004]. Published Xxxxxx xx, 200x, for MMWR 2005;54(No. 53):[inclusive page Level During 2005 ............................................................4 numbers]. Data Sources ........................................................................5 Centers for Disease Control and Prevention Interpreting Data ..................................................................6 Julie L. Gerberding, MD, MPH Director Transition in NNDSS Data Collection and Reporting .............6 Tanja Popovic, MD, PhD Highlights .............................................................................7 (Acting) Chief Science Officer PART 1. Summaries of Notifiable Diseases in the United James W. Stephens, PhD (Acting) Associate Director for Science States, 2005 ................................................................... 17 Steven L. Solomon, MD TABLE 1. Reported cases of notifiable diseases, by Director, Coordinating Center for Health Information and Service month — United States, 2005 ......................................18 Jay M. Bernhardt, PhD, MPH Director, National Center for Health Marketing TABLE 2. Reported cases of notifiable diseases, by Judith R. Aguilar geographic division and area — United States, 2005 ... 20 (Acting) Director, Division of Health Information Dissemination (Proposed) TABLE 3. Reported cases and incidence of notifiable Editorial and Production Staff diseases, by age group — United States, 2005 ............31 Frederick E. Shaw, MD, JD TABLE 4. Reported cases and incidence of notifiable Editor, MMWR Series diseases, by sex — United States, 2005 ....................... 33 John S. Moran, MD, MPH Guest Editor, MMWR Series TABLE 5. Reported cases and incidence of notifiable Suzanne M. Hewitt, MPA diseases, by race — United States, 2005 ......................35 Managing Editor, MMWR Series TABLE 6. Reported cases and incidence of notifiable Teresa F. Rutledge Lead Technical Writer-Editor diseases, by ethnicity — United States, 2005 ............... 37 Jeffrey D. Sokolow, MA PART 2. Graphs and Maps for Selected Notifiable Diseases Project Editor in the United States, 2005 ..............................................39 Beverly J. Holland Lead Visual Information Specialist PART 3. Historical Summaries of Notifiable Diseases in the Lynda G. Cupell United States, 1974–2005............................................... 73 Visual Information Specialist TABLE 7. Reported incidence of notifiable diseases — Quang M. Doan, MBA Erica R. Shaver United States, 1995–2005 ............................................74 Information Technology Specialists TABLE 8. Reported cases of notifiable diseases — Editorial Board United States, 1998–2005 ............................................76 William L. Roper, MD, MPH, Chapel Hill, NC, Chairman Virginia A. Caine, MD, Indianapolis, IN TABLE 9. Reported cases of notifiable diseases — David W. Fleming, MD, Seattle, WA United States, 1990–1997 ............................................78 William E. Halperin, MD, DrPH, MPH, Newark, NJ Margaret A. Hamburg, MD, Washington, DC TABLE 10. Reported cases of notifiable diseases — King K. Holmes, MD, PhD, Seattle, WA United States, 1982–1989 ............................................80 Deborah Holtzman, PhD, Atlanta, GA John K. Iglehart, Bethesda, MD TABLE 11. Reported cases of notifiable diseases — Dennis G. Maki, MD, Madison, WI United States, 1974–1981 ............................................81 Sue Mallonee, MPH, Oklahoma City, OK Stanley A. Plotkin, MD, Doylestown, PA TABLE 12. Deaths from selected nationally notifiable Patricia Quinlisk, MD, MPH, Des Moines, IA diseases — United States, 2002–2003..........................82 Patrick L. Remington, MD, MPH, Madison, WI Barbara K. Rimer, DrPH, Chapel Hill, NC Selected Reading ............................................................... 83 John V. Rullan, MD, MPH, San Juan, PR Anne Schuchat, MD, Atlanta, GA Dixie E. Snider, MD, MPH, Atlanta, GA John W. Ward, MD, Atlanta, GA Vol. 54 / No. 53 MMWR 1 Summary of Notifiable Diseases — United States, 2005 Prepared by Scott J.N. McNabb, PhD Ruth Ann Jajosky, DMD Patsy A. Hall-Baker, Annual Summary Coordinator Deborah A. Adams Pearl Sharp Willie J. Anderson J. Javier Aponte Gerald F. Jones David A. Nitschke Carol A. Worsham Roland A. Richard, Jr., MPH Division of Integrated Surveillance Systems and Services, National Center for Public Health Informatics, Coordinating Center for Health Information and Service, CDC 2 MMWR March 30, 2007 Preface Public Health Surveillance Team — NNDSS, Division of Integrated Surveillance Systems and Services, National The Summary of Notifiable Diseases — United States, 2005 Center for Public Health Informatics at [email protected]. contains the official statistics, in tabular and graphic form, for the reported occurrence of nationally notifiable infectious diseases in the United States for 2005. Unless otherwise noted, Background the data are final totals for 2005 reported as of June 30, 2006. These statistics are collected and compiled from reports sent The infectious diseases designated as notifiable at the by state health departments to the National Notifiable Dis- national level during 2005 are listed on page 3. A notifi- eases Surveillance System (NNDSS), which is operated by able disease is one for which regular, frequent, and timely CDC in collaboration with the Council of State and Territo- information regarding individual cases is considered neces- rial Epidemiologists (CSTE). The Summary is available at sary for the prevention and control of the disease. A brief http://www.cdc.gov/mmwr/summary.html. This site also history of the reporting of nationally notifiable infectious includes publications from previous years. diseases in the United States is available at http:// The Highlights section presents noteworthy epidemiologic www.cdc.gov/epo/dphsi/nndsshis.htm. In 1961, CDC and prevention information for 2005 for selected diseases assumed responsibility for the collection and publication and additional information to aid in the interpretation of of data on nationally notifiable diseases. NNDSS is neither surveillance and disease-trend data. Part 1 contains tables a single surveillance system nor a method of reporting. Cer- showing incidence data for the nationally notifiable infec- tain NNDSS data are reported to CDC through separate tious diseases during 2005.* The tables provide the number surveillance information systems and through different of cases reported to CDC for 2005 as well as the distribution reporting mechanisms; however, these data are aggregated of cases by month, geographic location, and the patient’s and compiled for publication purposes. demographic characteristics (age, sex, race, and ethnicity). Notifiable disease reporting at the local level protects the Part 2 contains graphs and maps that depict summary data public’s health by ensuring the proper identification and for certain notifiable infectious diseases described in tabular follow-up of cases. Public health workers ensure that per- form in Part 1. Part 3 contains tables that list the number of sons who are already ill receive appropriate treatment; trace cases of notifiable diseases reported to CDC since 1973. This contacts who need vaccines, treatment, quarantine, or edu- section also includes a table enumerating deaths associated cation; investigate and halt outbreaks; eliminate environ- with specified notifiable diseases reported to CDC’s National mental hazards; and close premises where spread has Center for Health Statistics (NCHS) during 2002–2003. occurred. Surveillance of notifiable conditions helps public The Selected Reading section presents general and disease- health authorities to monitor the impact of notifiable con- specific references for notifiable infectious diseases. These ref- ditions, measure disease trends, assess the effectiveness of erences provide additional information on surveillance and control and prevention measures, identify populations or epidemiologic concerns, diagnostic concerns, and disease- geographic areas at high risk, allocate resources appropri- control activities. ately, formulate prevention strategies, and develop public Comments and suggestions from readers are welcome. To health policies. Monitoring surveillance data enables pub- increase the usefulness of future editions, comments about lic health authorities to detect sudden changes in disease the current report and descriptions of how information is occurrence and distribution, identify changes in agents and or could be used are invited. Comments should be sent to host factors, and detect changes in health-care practices. The list of nationally notifiable infectious diseases is revised periodically. A disease might
Recommended publications
  • Shigella Infection - Factsheet
    Shigella Infection - Factsheet What is Shigellosis? How common is it? Shigellosis is an infectious disease caused by a group of bacteria (germs) called Shigella. It’s also known as bacillary dysentery. There are four main types of Shigella germ but Shigella sonnei is by far the commonest cause of this illness in the UK. Most cases of the other types are usually brought in from abroad. How is Shigellosis caught? Shigella is not known to be found in animals so it always passes from one infected person to the next, though the route may be indirect. Here are some possible ways in which you can get infected: • Shigella germs are present in the stools of infected persons while they are ill and for a week or two afterwards. Most Shigella infections are the result of germs passing from stools or soiled fingers of one person to the mouth of another person. This happens when basic hygiene and hand washing habits are inadequate, such as in young toddlers who are not yet fully toilet trained. Family members and playmates of such children are at high risk of becoming infected. • Shigellosis can be acquired from someone who is infected but has no symptoms. • Shigellosis may be picked up from eating contaminated food, which may look and smell normal. Food may become contaminated by infected food handlers who do not wash their hands properly after using the toilet. They should report sick and avoid handling food if they are ill but they may not always have symptoms. • Vegetables can become contaminated if they are harvested from a field with sewage in it.
    [Show full text]
  • Succession and Persistence of Microbial Communities and Antimicrobial Resistance Genes Associated with International Space Stati
    Singh et al. Microbiome (2018) 6:204 https://doi.org/10.1186/s40168-018-0585-2 RESEARCH Open Access Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces Nitin Kumar Singh1, Jason M. Wood1, Fathi Karouia2,3 and Kasthuri Venkateswaran1* Abstract Background: The International Space Station (ISS) is an ideal test bed for studying the effects of microbial persistence and succession on a closed system during long space flight. Culture-based analyses, targeted gene-based amplicon sequencing (bacteriome, mycobiome, and resistome), and shotgun metagenomics approaches have previously been performed on ISS environmental sample sets using whole genome amplification (WGA). However, this is the first study reporting on the metagenomes sampled from ISS environmental surfaces without the use of WGA. Metagenome sequences generated from eight defined ISS environmental locations in three consecutive flights were analyzed to assess the succession and persistence of microbial communities, their antimicrobial resistance (AMR) profiles, and virulence properties. Metagenomic sequences were produced from the samples treated with propidium monoazide (PMA) to measure intact microorganisms. Results: The intact microbial communities detected in Flight 1 and Flight 2 samples were significantly more similar to each other than to Flight 3 samples. Among 318 microbial species detected, 46 species constituting 18 genera were common in all flight samples. Risk group or biosafety level 2 microorganisms that persisted among all three flights were Acinetobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Yersinia frederiksenii,andAspergillus lentulus.EventhoughRhodotorula and Pantoea dominated the ISS microbiome, Pantoea exhibited succession and persistence. K. pneumoniae persisted in one location (US Node 1) of all three flights and might have spread to six out of the eight locations sampled on Flight 3.
    [Show full text]
  • Health Advisory: Typhoid Fever in Ramsey County
    Health Advisory: Typhoid Fever in Ramsey County Minnesota Department of Health Tue Jun 18 13:00 CDT 2019 Action Steps Local and tribal health departments: Please forward to hospitals, clinics, emergency departments, urgent care centers, and convenience clinics in St. Paul-Ramsey county only. Hospitals and clinics: Please distribute to urgent care and primary care providers, pediatricians, infectious disease specialists, gastroenterologists, emergency medicine providers. Health care providers: • Consider enteric fever (e.g., typhoid fever) among patients presenting with unexplained fevers, especially persistent fevers lasting >3 days or fevers in combination with gastrointestinal symptoms (abdominal pain, constipation, or diarrhea) even in the absence of recent travel to an endemic area of the world. • Obtain blood cultures if enteric fever is suspected and consider cultures of other specimens. • Report cases of probable or confirmed enteric fever within 24 hours to MDH at 651-201-5414 or 1-877-676-5414 and call MDH for questions about testing for enteric fever. You can contact Dave Boxrud (651-201-5257, [email protected]) or [email protected] for testing questions Background On June 17, the Minnesota Department of Health (MDH) identified an outbreak of enteric fever caused by Salmonella enterica serotype Typhi in Ramsey County. Two patients have culture-confirmed infections and a third patient had symptoms compatible with enteric fever. Consumption of foods served at a local event is a suspected source of this outbreak. The patients’ ages range from 14 to 18 years and illness onset dates range from May 30 to June 1. Enteric fever is a bacteremic illness caused by ingestion of Salmonella Typhi (typhoid fever) or Salmonella serotype Paratyphi (paratyphoid fever) and is transmitted through a fecal-oral route.
    [Show full text]
  • Annual Summary of Communicable Disease Reported to MDH, 2003
    MINNESOTA DEPARTMENT OF HEALTH DISEASE CONTROL N EWSLETTER Volume 32, Number 4 (pages 33-52) July/August 2004 Annual Summary of Communicable Diseases Reported to the Minnesota Department of Health, 2003 Introduction Minnesota Government Data Practices do not appear in Table 2 because the Assessment is a core public health Act (Section 13.38). Provisions of the influenza surveillance system is based function. Surveillance for communi- Health Insurance Portability and on reported outbreaks rather than on cable diseases is one type of ongoing Accountability Act (HIPAA) allow for individual cases. assessment activity. Epidemiologic routine communicable disease report- surveillance is the systematic collec- ing without patient authorization. Incidence rates in this report were tion, analysis, and dissemination of calculated using disease-specific health data for the planning, implemen- Since April 1995, MDH has participated numerator data collected by MDH and a tation, and evaluation of public health as one of the Emerging Infections standardized set of denominator data programs. The Minnesota Department Program (EIP) sites funded by the derived from U.S. Census data. of Health (MDH) collects disease Centers for Disease Control and Disease incidence may be categorized surveillance information on certain Prevention (CDC) and, through this as occurring within the seven-county communicable diseases for the program, has implemented active Twin Cities metropolitan area (Twin purposes of determining disease hospital- and laboratory-based surveil- Cities metropolitan area) or outside of it impact, assessing trends in disease lance for several conditions, including (Greater Minnesota). occurrence, characterizing affected selected invasive bacterial diseases populations, prioritizing disease control and food-borne diseases. Anaplasmosis efforts, and evaluating disease preven- Human anaplasmosis (HA) is the new tion strategies.
    [Show full text]
  • Identification of Bordetella Spp. in Respiratory Specimens From
    504 Clinical Microbiology and Infection, Volume 14 Number 5, May 2008 isolates of extended-spectrum-beta-lactamase-producing Original Submission: 27 October 2007; Revised Sub- Shigella sonnei. Ann Trop Med Parasitol 2007; 101: 511–517. mission: 5 December 2007; Accepted: 19 December 21. Rice LB. Controlling antibiotic resistance in the ICU: 2007 different bacteria, different strategies. Cleve Clin J Med 2003; 70: 793–800. Clin Microbiol Infect 2008; 14: 504–506 22. Boyd DA, Tyler S, Christianson S et al. Complete nucleo- 10.1111/j.1469-0691.2008.01968.x tide sequence of a 92-kilobase plasmid harbouring the CTX-M-15 extended spectrum b-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Cystic fibrosis (CF) is an autosomal recessive Antimicrob Agents Chemother 2004; 48: 3758–3764. disease, characterised by defective chloride ion channels that result in multi-organ dysfunction, most notably affecting the respiratory tract. The RESEARCH NOTE alteration in the pulmonary environment is asso- ciated with increased susceptibility to bacterial infection. Recent advances in bacterial taxonomy and improved microbial identification systems Identification of Bordetella spp. in have led to an increasing recognition of the respiratory specimens from individuals diversity of bacterial species involved in CF lung with cystic fibrosis infection. Many such species are opportunistic T. Spilker, A. A. Liwienski and J. J. LiPuma human pathogens, some of which are rarely found in other human infections [1]. Processing Department of Pediatrics and Communicable of CF respiratory cultures therefore employs Diseases, University of Michigan Medical selective media and focuses on detection of School, Ann Arbor, MI, USA uncommon human pathogens.
    [Show full text]
  • Paratyphoid Fever
    Alberta Health Public Health Disease Management Guidelines Paratyphoid Fever Revision Dates Case Definition June 2013 Reporting Requirements April 2018 Remainder of the Guideline (i.e., Etiology to References sections inclusive) April 2014 Case Definition Confirmed Case Laboratory confirmation of infection with or without clinical illness(A): Isolation of Salmonella paratyphi A, B, or C from an appropriate clinical specimen (e.g., sterile site, deep tissue wounds, stool, vomit or urine)(B). Probable Case Clinical illness(A) in a person who is epidemiologically linked to a confirmed case. Carrier Individuals who continue to shed Salmonella paratyphi for one year or greater are considered to be carriers(C). NOTE: Salmonella paratyphi B var java is considered a case of Salmonella (i.e., non-typhoidal) and should not be reported as Paratyphoid Fever. (A) Clinical illness is characterized by headache, diarrhea, abdominal pain, nausea, fever and sometimes vomiting. Asymptomatic infections may occur, and the organism may cause extra-intestinal infections. (B) Refer to the current Provincial Laboratory for Public Health (ProvLab) Guide to Services for specimen collection and submission information. (C) Alberta Health maintains a Typhoid/Paratyphoid Registry for purposes of monitoring carriers as they potentially pose a long term health risk for transmission of disease. 1 of 11 Alberta Health Public Health Disease Management Guidelines Paratyphoid Fever Reporting Requirements 1. Physicians, Health Practitioners and others Physicians, health practitioners and others shall notify the Medical Officer of Health (MOH) (or designate) of the zone, of all confirmed and probable cases in the prescribed form by the Fastest Means Possible (FMP). 2. Laboratories All laboratories shall report all positive laboratory results: by FMP to the MOH (or designate) of the zone, and by mail, fax or electronic transfer within 48 hours (two business days) to the Chief Medical Officer of Health (CMOH) (or designate).
    [Show full text]
  • Contamination of Currency Notes with Kanamycin Resistant Shigella Flexneri
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.07.982017; this version posted March 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Contamination of Currency Notes with Kanamycin Resistant Shigella flexneri Ebrahim Mohammed Al-Hajj1*, Malik Suliman Mohamed2,3, Noha A. Abd Alfadil4, Hisham N. Altayb5, Abeer Babiker Idris6, Salah-Eldin El-Zaki7 and Mohamed A. Hassan8,9 1 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan 2 Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia 3Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan. 4 Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Alneelain, Khartoum, Sudan. 5 Biochemistry department, College of sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. 6 Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan 7 Department of Epidemiology, Molecular Epidemiology Laboratory, Tropical Medicine Research Institute, Khartoum, Sudan. 8 Applied Bioinformatics Center, Africa City of Technology, Khartoum, Sudan. 9 Department of Bioinformatics, DETAGEN Genetic Diagnostics Center, Kayseri, Turkey *To whom correspondence should be addressed Ebrahim Mohammed Al-Hajj Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan.Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.07.982017; this version posted March 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • 1 Is Helicobacter Pylori Good for You?
    University of Maryland School of Medicine A Third Century Is Helicobacter pylori Good for You? To Treat or Not to Treat, That is the Question Steven J. Czinn, M.D. Professor and Chair University of Maryland School of Medicine Department of Pediatrics Baltimore, Maryland America’s Oldest Public Medical School - USA Where Discovery Transforms Medicine Learning Objectives Disclosure • To demonstrate that H. pylori is responsible In the past 12 months, I have had no relevant for a significant portion of gastroduodenal financial relationships with the disease. manufacturer(s) of any commercial product(s) • To understand how the host immune response and/or provider(s) of commercial services contributes to Helicobacter associated discussed in this CME activity. disease. • To understand how the host immune response to Helicobacter infection might prevent asthma. • To understand which patient populations should be treated. H. pylori is an Important Human Pathogen World-Wide Prevalence of H. pylori • H. pylori is a gram negative microaerophilic bacterium that selectively colonizes the stomach. 70% 80% • It infects about 50% of the world’s population. 30% 70% 30% 50% • It is classically considered a non-invasive organism, 40% 50% 70% 70% • There is a vigorous innate and adaptive immune 70% 90% response and inflammation that is Th1 predominant 70% and includes (chronic) lymphocyte and (active) 90% 80% 80% 70% neutrophil components. 20% • Despite this response the bacterium generally persists for the life of the host. Marshall, 1995 JAMA 274:1064 1 Natural History of H. pylori infection Eradicating H. pylori Treats or Prevents: Colon Gastric cancer??? Initial infection (in childhood) Adenocarcinoma Nonulcer Chronic gastritis (universal) Dyspepsia H.
    [Show full text]
  • Typhoid and Paratyphoid Fever – Prevention in Travellers
    CLINICAL Typhoid and Cora A Mayer Amy A Neilson paratyphoid fever Prevention in travellers S. paratyphi B (and C) infections occur This article forms part of our travel medicine series for 2010, providing a summary of less frequently.5 Typhoid fever is one of prevention strategies and vaccinations for infections that may be acquired by travellers. the leading causes of infectious disease in The series aims to provide practical strategies to assist general practitioners in giving travel developing countries.4 advice, as a synthesis of multiple information sources which must otherwise be consulted. Background Owing to the historical significance of typhoid Typhoid and paratyphoid (enteric) fever, a potentially severe systemic febrile illness fever, excellent literary and cinematic descriptions endemic in developing countries, is associated with poor sanitation, reduced access of this disease exist.7 The usual incubation period to treated drinking water and poor food hygiene. It is one of the leading causes of is 7–14 days with a range of 3–60 days. Typical infectious disease in the developing world. symptoms include: Objective • fever, which increases with disease This article discusses the clinical features and prevention opportunities for typhoid and progression paratyphoid fever. • dull frontal headache Discussion • malaise Travellers to developing countries are at risk of infection. This risk varies from 1:30 000 • myalgia for prolonged stays in endemic regions to 1:3000 in high endemicity areas such as the • anorexia, and Indian subcontinent, where risk is highest. The mainstay of prevention is hygiene and • dry cough. food and water precautions. Vaccines against typhoid fever are discussed.
    [Show full text]
  • Case Definitions for Select Reportable Diseases in Florida Florida Department of Health Bureau of Epidemiology
    2018 version 1.0 Surveillance Case Definitions for Select Reportable Diseases in Florida Florida Department of Health Bureau of Epidemiology Department of Health Bureau of Epidemiology 4052 Bald Cypress Way, Bin A-12 Tallahassee, FL 32399-1720 Fax 850-922-9299 Confidential Fax 850-414-6894 850-245-4401 (24 hours/7 days) 2018 2018 Table of Contents Introduction .......................................................................................................................... 6 List of Sterile and Non-Sterile Sites ................................................................................... 7 Notations .............................................................................................................................. 7 Suspect Immediately: Report immediately, 24 hours a day, 7 days a week (24/7), by phone upon initial clinical suspicion or laboratory test order Immediately: Report immediately 24 hours a day, 7 days a week (24/7), by phone upon diagnosis Isolates or specimens are required to be submitted to the Bureau of Public Health Laboratories as required by Chapter 64D-3, Florida Administrative Code Merlin Extended Data Required .......................................................................................... 7 Paper Case Report Form (CRF) Required ......................................................................... 7 How To Use Information In This Document ...................................................................... 8 Diseases and Conditions ...................................................................................................
    [Show full text]
  • The Global View of Campylobacteriosis
    FOOD SAFETY THE GLOBAL VIEW OF CAMPYLOBACTERIOSIS REPORT OF AN EXPERT CONSULTATION UTRECHT, NETHERLANDS, 9-11 JULY 2012 THE GLOBAL VIEW OF CAMPYLOBACTERIOSIS IN COLLABORATION WITH Food and Agriculture of the United Nations THE GLOBAL VIEW OF CAMPYLOBACTERIOSIS REPORT OF EXPERT CONSULTATION UTRECHT, NETHERLANDS, 9-11 JULY 2012 IN COLLABORATION WITH Food and Agriculture of the United Nations The global view of campylobacteriosis: report of an expert consultation, Utrecht, Netherlands, 9-11 July 2012. 1. Campylobacter. 2. Campylobacter infections – epidemiology. 3. Campylobacter infections – prevention and control. 4. Cost of illness I.World Health Organization. II.Food and Agriculture Organization of the United Nations. III.World Organisation for Animal Health. ISBN 978 92 4 156460 1 _____________________________________________________ (NLM classification: WF 220) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO web site (www.who.int/about/licensing/copyright_form/en/index. html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Typhoid Fever, Below the Belt Section Internal Medicine
    Case Report DOI: 10.7860/JCDR/2016/17498.7128 Typhoid Fever, Below the Belt Section Internal Medicine KAMAKSHI MAHADEVAN RAVEENDRAN1, STALIN VISWANATHAN2 ABSTRACT Genital ulcers occur due to infective, inflammatory, malignant and drug-related causes. In tropical countries such as India, such ulcers are due to parasitic, tubercular, rickettsial and bacterial (sexually transmitted infections) aetiologies. Typhoid fever is endemic in the tropics. Except “rose spots”, skin manifestations in typhoid fever are unusual, and they are missed due to pigmented skin. Patients do not often complain of genital ulcers due to shame or fear. Genital examination is not routinely performed in typhoid fever. We describe scrotal ulcers as the presenting symptom of typhoid fever, which subsided with appropriate therapy. Keywords: Enteric fever, Genital ulcers, Scrotal ulcers CASE REPORT tests were normal. Widal, HIV, HBsAg and VDRL were negative. A 23-year-old unmarried male presented to the General Medicine Ophthalmology and Dermatology consultations were obtained OPD of Indira Gandhi Medical College and Research Institute, for Behçet’s disease. Uvea and retina were normal; Dermatology Puducherry with complaints of continuous high grade fever, opinion suggested a Lipschütz ulcer. He refused consent for biopsy headache and vomiting of two weeks’ duration. He had noticed from the ulcer. A provisional diagnosis of rickettsioses was made three painless scrotal ulcers with serosanguinous discharge, at the considering its high prevalence in our locality and pending blood start of the febrile episode. There were no ocular symptoms. There and urine cultures, he was initiated on doxycyline. He improved was history of recent pilgrimage a week prior to onset of symptoms symptomatically and was discharged on the third day of admission.
    [Show full text]