O O O N III: 1&1 II :Ii .1&1 U 1&1 A

Total Page:16

File Type:pdf, Size:1020Kb

O O O N III: 1&1 II :Ii .1&1 U 1&1 A at THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA .: 1&1 II :I ::::» z o N 1&1 :I .::::»... o > o o o N III: 1&1 II :Ii .1&1 U 1&1 a INSIDE: Art Inspired hy Mathcmatics in New York ................................................................................ .4 (;conlctry for a New (:entury ..................................................................................................... 1) Ah'lI1doning De.ld Ends: Emhmdng Lively Beginnings .......................................................... J() The Brain in the Box ................................................................................................................. 1J FOCUS DECEMBER 2000 FOCUS IS published by the Mathematical Association of America in January, February, March, April, Mayl)une, August/September, October, November. and a FOCUS December. Editor: Fernando Gouvea. Colby College; [email protected] December 2000 Managing Editor: Carol Baxter. MAA Volume 20, Number 9 [email protected] Senior Writer: Harry Waldman. MAA [email protected] Inside Please address advertising inquiries to: Kate 4 Art Inspired by Mathematics in New York Debelack. MAA; [email protected] By Ivars Peterson President: Thomas F. Banchoff. Brown University 6 Science and Technology Policy Site Now Part of MAA Online First Vice-President: Barbara L. Osofsky. By Al Buccino Second Vice-President: Frank Morgan. Secretary: Martha J. Siegel. Associate Secretary: James J. Tattersall. Treasurer: 8 MAA Issues Revised Guidelines for Undergraduate Gerald J. Porter Programs and Departments Executive Director: Tina H. Straley By John Fulton Associate Executive Director and Director of Publications and Electronic Services: 9 Geometry for a New Century Donald J. Albers By Joseph Malkevitch FOCUS Editorial Board: Gerald Alexanderson; Donna Beers; J. Kevin 10 Abandoning Dead Ends: Embracing Lively Beginnings Colligan; Ed Dubinsky; Bill Hawkins; Dan By Edward B. Burger and Michael Starbird Kalman; Maeve McCarthy; Peter Renz; Annie Selden; Jon Scott; Ravi Vakil. 12 Thinker Mills: Letters to the editor should be addressed to A Contradiction in Terms for Universities in an Age of Automation Fernando Gouvea. Colby College, Dept. of Mathematics, Waterville, ME 04901. By Brian A. Hagler Subscription and membership questions should be directed to the MAA Customer 13 A Different Pencil: The Brain in the Box Service Center, 800-331-1622; e-mail: By Frank C. Wilson [email protected]; (301) 617-7800 (outside U.S. and Canada); fax: (301) 206-9789. 14 Short Takes Copyright © 2000 by the Mathematical Association of America (Incorporated). 15 Dirk Jan Struik: Mathematician, Historian, and Marxist Educational institutions may reproduce By Arthur B. Powell and Marilyn Frankenstein articles for their own use. but not for sale. provided that the following citation is used: "Reprinted with permission of FOCUS. the 18 Employment Opportunities newsletter of the Mathematical Association of America (Incorporated)." On the cover: "Quartic" by Clifford Singer. Acrylic on Plexiglas, 30 by 30 inches. ( 1999.) Periodicals postage paid at Washington, DC and additional mailing offices. Postmaster: Send address changes to FOCUS, Mathematical Association of America, P.O. Box 90973. Washington, DC 20090-0973. FOCUS Deadlines ISSN: 0731-2040; Printed in the United States February March April of America. Editorial Copy December 15 January 19 Display Ads January 4 February 4 February 22 Employment Ads December 19 January 26 February 15 2 DECEMBER 2000 FOCUS AAAS Meeting to Offer Strong Mathematics Program T he 2001 Annual Meeting of the The Role of Mathematics in Pricing and tober 20th, 2000 issue of Science or visit American Association for the Advance­ Hedging Financial Assets (Philip Protter) the AAAS Annual Meeting web site at ment of Science will be held on February http://www.aaas.org/meetings. 15-20, in San Francisco, CA. As usual, the The Mathematics of Congressional and meeting will feature many outstanding Other Apportionments (Donald G. Saari) AAAS annual meetings are intended to expository talks by prominent mathema­ be showcases of American science, but ticians. These include the following three­ Other symposia that will be of interest to participation by mathematicians and hour symposia sponsored by Section A the mathematical community include: mathematics educators is often lower (Mathematics) of the AAAS: From Juggling and Magic to Combinato­ than might be expected. AAAS program rics, Understanding Music with Statistical committees are usually very interested in Beauty and the Beast: Realizations of the Methods, Designing, Implementing, and offering symposia on mathematical top­ Art in Mathematics (Michael Field) Assessing Active Learning College Science ics. Thus, Section lfs Committee is seek­ and Mathematics, Mathematical Statistics ing organizers and speakers who can Mathematics of the Visual Cortex (Jack in Natural Language Analysis, Mathemati­ present substantial new material in an Cowan) cal and Computational Properties of Uni­ accessible manner to a large scientific versal Grammar Under Optimality Theory, audience. The Section would also like to The Nature and Origins of Mathematical The Sea of Data and How to Manage It, invite mathematicians to attend the Sec­ Thinking (Keith Devlin) Science and Mathematics Education: Cali­ tion A Committee business meeting 7:30- fornia Since the End ofAffirmativeAction, 10:30 P.M. Friday, February 16th, 2001 in Mathematical Aspects ofIntellectual Prop­ and Journey Beyond TIMSS; Rethinking Mason room B of the San Francisco erty Management on the Internet (Mat­ Professional Development. These are, of Hilton. Warren Page, the Secretary of Sec­ thew Franklin) course, only a few of the 150 or so AAAS tion A, is looking for proposals for sym­ program offerings in the physical, life, posia for future AAAS annual meetings. Applications of Mathematics to Problems social, and biological sciences. For details He can be reached by email at in Medicine (Parros M. Pardalos) of the 2001 AAAS program, see the Oc- [email protected] .• 2001 Tensor Grants: Call For Proposals for Women and Mathematics Projects T he MAA plans to award grants for ematics faculty to develop projects to in­ Proposals should be submitted as soon projects designed to encourage college crease participation of women in math­ as possible but must arrive no later than and university women or high school and ematics, and provide support to project February 5, 2001. The MAA/Tensor middle school girls to study mathemat­ directors. Foundation intends to make ten grants. ics. The Tensor Foundation, working Please do not hesitate to contact the Pro­ through the MAA, is soliciting college, Grants of up to $5,000 will be made to gram Director, Dr. Florence Fasanelli, university and secondary mathematics the institution of the project director to (202-966-5591 or [email protected]) faculty (in conjunction with college or be spent within the year. An institution for assistance in preparing your proposal. university faculty) and their departments is expected to supply matching funds or and institutions to submit proposals. in-kind support as an indication of Complete guidelines are posted on MAA Projects may replicate existing successful commitment to the project. Grants will Online at http://www.maa.org/projects/ projects, adapt components of such be made to college and university math­ solic_99.html. Please review the guide­ projects, or be innovative. ematics faculty or secondary school or lines before submitting proposals. • middle school mathematics faculty work­ The objectives of the MAAlTensor Foun­ ing in conjunction with college or uni­ dation Program are to encourage math- versity faculty. 3 FOCUS DECEMBER 2000 Art Inspired by Mathematics in New York By Ivars Peterson Most people don't expect to encoun­ festations and many others testify to the vent of powered flight to the unveiling of ter mathematics on a visit to an art gal­ creativity inherent in both mathematics the atomic nucleus and Albert Einstein's lery. At first (or even second) glance, art and art. formulation of the special and general and mathematics appear to have very theories of relativity. At the same time, little in common, though both are prod­ More generally, conceived as explorations the development of non-Euclidean ge­ ucts of the human intellect. Looking at of form, space, light, and color, sculptures, ometries, which overturn Euclid's postu­ art with a mathematical eye or at math­ paintings, and other artworks can them­ late that parallel lines never meet, pro­ ematics with an artistic eye, however, can selves embody a variety of mathematical vided alternative but perfectly consistent be illuminating and immensely reward­ principles, expressed not only in such models of reality. Such concepts offered ing. And there is much more to see than obviously geometric objects as triangles, artists avenues of escape from conven­ one would expect. circles, spheres, and cones but also tional representation. Obsessively explor- ing new math­ The Art & Mathemat­ ematical ideas, ics 2000 exhibit at the from fractals to Cooper Union in New chaos, today's York City offers a rich creators continue sampling of artworks that tradition. inspired by math­ ematics, ranging from Examples of the gracefully curved mathematics as sculptures of Brent art and art as Collins and tensegrity mathematics structures of Kenneth abound in all Snelson to the playful sorts of settings­ polyhedra of George indeed, almost Hart and wavy anywhere one painted grids of Doug
Recommended publications
  • 226 NAW 5/2 Nr. 3 September 2001 Honderdjaarslezing Dirk Struik Dirk Struik Honderdjaarslezing NAW 5/2 Nr
    226 NAW 5/2 nr. 3 september 2001 Honderdjaarslezing Dirk Struik Dirk Struik Honderdjaarslezing NAW 5/2 nr. 3 september 2001 227 Afscheid van Dirk Struik Honderdjaarslezing Op 21 oktober 2000 overleed Dirk Struik in kringen. Zij ging een heel andere richting uit vriend Klaas Kooyman, de botanist die later zijn huis in Belmont (Massachusetts). Een In dan Anton en ik. Ik heb natuurlijk in die hon- bibliothecaris in Wageningen is geworden, La- Memoriam verscheen in het decembernum- derd jaar zoveel meegemaakt, dat ik in een tijn en Grieks geleerd bij meneer De Vries in mer van het Nieuw Archief. Ter afscheid van paar kwartier dat niet allemaal kan vertellen. Den Haag. We gingen daarvoor op en neer met deze beroemde wetenschapper van Neder- Ik zal een paar grepen doen uit mijn leven, het electrische spoortje van Rotterdam naar landse afkomst publiceren we in dit nummer mensen die me bijzonder hebben geboeid en Den Haag. We hebben er alleen maar het een- vijf artikelen over Dirk Struik. Het eerste ar- gebeurtenissen die me hebben be¨ınvloed. voudigste Latijn en Grieks geleerd, Herodo- tikel is van Struik zelf. In oktober 1994 orga- Mijn vroegste herinnering is aan de Boe- tus, Caesar — De Bello Gallico: “Gallia divisa niseerde het CWI een symposium ter ere van renoorlog, omstreeks 1900.2 Ik was een jaar est in partes tres ...” Dat heeft me heel wei- de honderdste verjaardag van Dirk Struik. Ter of vijf, zes en vroeg aan mijn vader: “Vader, nig geholpen bij de studie van de wiskunde. afsluiting heeft Struik toen zelf de volgen- wat betekent toch dat woord oorlog?” — dat Je kunt heel goed tensors doen zonder Latijn de redevoering gehouden, met als geheugen- hoef je tegenwoordig niet meer uit te leggen- te kennen, hoewel het wel goed is om te we- steun enkel wat aantekeningen op een velle- aan zesjarigen.
    [Show full text]
  • Dirk Jan Struik (1894–2000)
    mem-struik.qxp 5/30/01 10:32 AM Page 584 Dirk Jan Struik (1894–2000) Chandler Davis, Jim Tattersall, Joan Richards, and Tom Banchoff Dirk Struik giving a talk at his own 100th birthday celebration, September 1994, Brown University. (Photographs by John Forasté.) Dirk Jan Struik was born in Rotterdam on Kenneth O. May Prize for the History of Mathematics September 30, 1894. He attended the Hogere Burger from the International Commission on the History School from 1906 to 1911 and the University of of Mathematics. He died October 21, 2000, at his Leiden from 1912 to 1917. He spent the next seven home in Belmont, Massachusetts. years at the Technische Hogeschool in Delft as an —Jim Tattersall assistant mathematician to J. A. Schouten. In 1922, under the supervision of the geometer Willem van Chandler Davis der Woude, Struik received his Ph.D. in mathe- Dirk Jan Struik and his wife, Ruth Ramler Struik, matics from the University of Leiden. As the were the first research mathematicians I knew. In recipient of a Rockefeller Fellowship from 1924 to the 1930s, when I was in school, I knew them as 1926, he studied at the University of Rome and at friends of my parents. They encouraged me in the University of Göttingen. He began his career in mathematics and in social criticism. They remained the United States as a lecturer in mathematics at my friends up till Ruth’s death in 1993 and Dirk’s the Massachusetts Institute of Technology (MIT) in in 2000. Their eldest daughter, Rebekka Struik, the autumn of 1926.
    [Show full text]
  • 22. Alberts.Indd 271 10/29/2013 7:04:43 PM Gerard Alberts & Danny Beckers
    UvA-DARE (Digital Academic Repository) Dirk Jan Struik (1894-2000) Alberts, G.; Beckers, D. DOI 10.18352/studium.9290 Publication date 2013 Document Version Final published version Published in Studium License CC BY Link to publication Citation for published version (APA): Alberts, G., & Beckers, D. (2013). Dirk Jan Struik (1894-2000). Studium, 6(3/4), 271-275. https://doi.org/10.18352/studium.9290 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:28 Sep 2021 Vol. 6, no. 3/4 (2013) 271–275 | ISSN: 1876-9055 | e-ISSN: 2212-7283 Dirk Jan Struik (1894–2000) GERARD ALBERTS* & DANNY BECKERS** Dirk Struik houdt in 1994 zijn honderdjaarslezing in het CWI in Amsterdam Foto’s: Peter van Emde Boas.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • THIAGO JOSÉ CÓSER Possibilidades Da Produção Artística Via
    THIAGO JOSÉ CÓSER Possibilidades da produção artística via prototipagem rápida: processos CAD/CAM na elaboração e confecção de obras de arte e o vislumbre de um percurso poético individualizado neste ensaio. Dissertação apresentada ao Instituto de Artes da Universidade Estadual de Campinas, para a obtenção do título de mestre em Artes. Área de concentração: Artes Visuais Orientador: Prof. Dr. Marco Antonio Alves do Valle Campinas 2010 3 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO INSTITUTO DE ARTES DA UNICAMP Cóser, Thiago José. C89p Possibilidades da produção artística via Prototipagem Rápida: Processos CAD/CAM na elaboração e confecção de obras de arte e o vislumbre de um percurso poético individualizado neste ensaio. : Thiago José Cóser. – Campinas, SP: [s.n.], 2010. Orientador: Prof. Dr. Marco Antonio Alves do Valle. Dissertação(mestrado) - Universidade Estadual de Campinas, Instituto de Artes. 1. Prototipagem rápida. 2. Arte. 3. Sistema CAD/CAM. 4. Modelagem 3D. 5. escultura. I. Valle, Marco Antonio Alves do. II. Universidade Estadual de Campinas. Instituto de Artes. III. Título. (em/ia) Título em inglês: “Possibilities of Art via Rapid Prototyping: using CAD / CAM systems to create art works and a glimpse of a poetic route individualized essay.” Palavras-chave em inglês (Keywords): Rapid prototyping ; Art ; CAD/CAM systems. ; 3D modelling ; Sculpture. Titulação: Mestre em Artes. Banca examinadora: Prof. Dr. Marco Antonio Alves do Valle. Profª. Drª. Sylvia Helena Furegatti. Prof. Dr. Francisco Borges Filho. Prof. Dr. Carlos Roberto Fernandes. (suplente) Prof. Dr. José Mario De Martino. (suplente) Data da Defesa: 26-02-2010 Programa de Pós-Graduação: Artes. 4 5 Agradecimentos Ao meu orientador, profº Dr.
    [Show full text]
  • Mathematicians and Scientists As Public Figures: Living in Ivory Towers?
    Dept. of Mathematics, Faculty of Education, Masaryk University in Brno, Dept. of Mathematics and Descriptive Geometry, VSB-Technical Univ. of Ostrava, in co-operation with the Union of Czech Mathematicians and Physicists and the Czech Society for History of Science and Technology (Brno branches) cordially invite you to an interdisciplinary workshop in the series Mathematics and Society Mathematicians and scientists as public figures: Living in Ivory Towers? 4 – 7 January 2018, Telč, Czechia In the aftermath of the global financial crisis of 2008, The Financial Times demanded that “mathematicians must get out of their ivory towers”.1 However, have they ever really been there? Is the profession of a mathematician incompatible with that of a politician, as Timothy Gowers suggests?2 Does interest in mathematics or science need to exclude involvement in the public sphere, including politics? In the history of science, there are several prominent examples of scientists who got heavily involved in politics. This was the case of Anton Pannekoek, a prominent astronomer and a socialist theorist. Albert Einstein’s involvement in the Frauenglass affair in the McCarthy era is also quite well known. An example par excellence is Dirk Jan Struik (1894–2000), who was not only involved in politics, but also sought to challenge the view of mathematics as something that gets created in an ivory tower.3 The meeting traditionally strives to support interdisciplinary debate and explore various approaches to history of mathematics. We would like to offer a view of mathematics as an indispensable part of our culture. We welcome contributed talks related to this year’s topic.
    [Show full text]
  • Momath's Intersection of Math And
    Bridges 2020 Conference Proceedings Composite: MoMath’s Intersection of Math and Art Cindy Lawrence1 and Tim Nissen2 1Cindy Lawrence, National Museum of Mathematics, NYC; [email protected] 2Tim Nissen, National Museum of Mathematics, NYC; [email protected] Abstract That there are meaningful connections between art and mathematics is intuitively clear to mathematicians and mathematically-inspired visual artists, but the connection is often less clear to others, especially to those whose negative associations with mathematics during school-age years trigger emotions counter to feelings inspired by beautiful artworks. At the National Museum of Mathematics, the Composite gallery has been a laboratory of temporary art exhibitions. The introduction of tactile interactivity as a bridge between art and geometric forms in Solid Math, and the presentation of origami art through its often-overlooked mathematical makeup in Math Unfolded, highlighted these interconnections for visitors of all ages. New in Composite Since 2014, Composite, the gallery at the National Museum of Mathematics (MoMath) [2], has housed a series of temporary exhibitions of the work of mathematically-inclined artists including Antal Kelle ArtFormer, Miguel Berrocal, Matthew Brand, and Trevor and Ryan Oakes. In 2019, two exhibitions explored the connections between mathematics and art through multi-artist curated shows and physical interactives. Characteristic of the Museum proper, the collection of works and interactives encourages visitors to engage deeply with the content, integrating an array of models and artworks.. Solid Math, which ran from April through July of 2019, explored the geometry of regular polyhedra and showcased art based on these forms. Platonic, Archimedean, and Catalan polyhedra provided the formal constraints as well as the rhythmic underpinnings for the artists’ pieces presented in the show.
    [Show full text]
  • On Connecting Socialism and Mathematics: Dirk Struik, Jan Burgers, and Jan Tinbergen
    HISTORIA MATHEMATICA 21 (1994), 280-305 On Connecting Socialism and Mathematics: Dirk Struik, Jan Burgers, and Jan Tinbergen GERARD ALBERTS University of Nijmegen, Science & Society, P.O. Box 9108, NL-6500 HK Nijmegen, The Netherlands The Dutch mathematicians, Dirk Struik, Jan Burgers, and Jan Tinbergen, each struggled to find ways to combine their political and scientific aspirations. Although they came from similar social backgrounds and shared much the same scientific training--all were pupils of Paul Ehrenfest--their later approaches to this dilemma varied markedly. Struik's views on mathematics were the most radical, asserting that mathematical conceptions can better be understood in conjunction with larger social and intellectual processes. By contrast, of the three his mathematics changed the least under the influence of external factors. The ap- proaches taken by Burgers and Tinbergen illustrate ways in which the social context can affect a mathematician's work. Their novel ideas helped launch a new paradigm for using mathematics to address social problems, viz., the notion of mathematical modeling, which superseded the conventional approach to applied mathematics. © 1994 AcademicPress, Inc. Die holl~indischen Mathematiker Dirk Struik, Jan Burgers, und Jan Tinbergen bemi~hten sich alle drei darum, einen Weg zu finden ihre politischen und wissenschaftlichenAmbitionen miteinander zu verbinden. Obwohl sowohl ihr sozialer Hintergrund, als auch ihre wis- senschaftliche Ausbildung vergleichbar waren--alle drei waren Schiiler von Paul Ehren- fest--unterschied sich ihr sp~iteres Herangehen an diese Fragestellung. Struiks Ansichten fiber die Mathematik waren die radikalsten: Er bestand darauf, dab mathematische Ideen am besten im Zusammenhang mit dem sozialen und intellektuellen Kontext verstanden werden kfnnten.
    [Show full text]
  • Bathsheba Grossman
    gallery: bathsheba grossman “The universe is orderly and friendly and beautiful. Structure is this lovely, versatile thing.” “It’s either right or it’s wrong. It’s either elegant or not elegant. In math, those are actual properties. Everyone agrees.” 24 Based on mathematical structures, Bathsheba Grossman’s metal artworks are an example of digital sculpture given form. by Raven Hanna Bathsheba Grossman carries around her art wher- grasp. As you attempt to trace the labyrinthine for- ever she goes. She shows strangers her two- mations, you are drawn in, mesmerized. inch metal sculptures, the babies of her collection. Although her sculptures look mathematical, the People hold them, stare at them, love them, and quantitatively-challenged are not put off. “A lot buy them. In this way, she has sold on the spot to of people who don’t know anything about math or barmaids, secretaries, bus drivers, and mail deliverers. science buy these things,” she says. “There’s a The sculptures themselves are their own best lot of raw appeal. People approach them in different marketing. After selling a sculpture to Microsoft’s ways, but almost everybody sees that they are Mark Zbikowski, famous to computer geeks and of interest.” business buffs for developing MS-DOS software, Grossman grew up in a middle-class neighbor- she watched requests from other Microsoft employ- hood in Massachusetts with English professor ees roll in. Grossman makes art people want. parents. At Yale University, she shirked the family “I think they say something important about the tradition by pursuing a degree in mathematics.
    [Show full text]
  • Galileo, Ignoramus: Mathematics Versus Philosophy in the Scientific Revolution
    Galileo, Ignoramus: Mathematics versus Philosophy in the Scientific Revolution Viktor Blåsjö Abstract I offer a revisionist interpretation of Galileo’s role in the history of science. My overarching thesis is that Galileo lacked technical ability in mathematics, and that this can be seen as directly explaining numerous aspects of his life’s work. I suggest that it is precisely because he was bad at mathematics that Galileo was keen on experiment and empiricism, and eagerly adopted the telescope. His reliance on these hands-on modes of research was not a pioneering contribution to scientific method, but a last resort of a mind ill equipped to make a contribution on mathematical grounds. Likewise, it is precisely because he was bad at mathematics that Galileo expounded at length about basic principles of scientific method. “Those who can’t do, teach.” The vision of science articulated by Galileo was less original than is commonly assumed. It had long been taken for granted by mathematicians, who, however, did not stop to pontificate about such things in philosophical prose because they were too busy doing advanced scientific work. Contents 4 Astronomy 38 4.1 Adoption of Copernicanism . 38 1 Introduction 2 4.2 Pre-telescopic heliocentrism . 40 4.3 Tycho Brahe’s system . 42 2 Mathematics 2 4.4 Against Tycho . 45 2.1 Cycloid . .2 4.5 The telescope . 46 2.2 Mathematicians versus philosophers . .4 4.6 Optics . 48 2.3 Professor . .7 4.7 Mountains on the moon . 49 2.4 Sector . .8 4.8 Double-star parallax . 50 2.5 Book of nature .
    [Show full text]
  • THE MATHEMATICAL INTELLIGENCER Vol
    THE MATHEMATICAL INTELLIGENCER Vol. 33 - 2011 SPIS TREŚCI nr 1 ARTICLES 46 Interview with Professor Ngo Bao Chau / Neal Koblitz 61 Cooking the Classics / Ian Stewart 72 The Problem of Malfatti: Two Centuries of Debate / Marco Andreatta, Andras Bezdek, Jan P. Boronski 85 Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem / Arno Berger, Theodore P. Hill 92 Associative Binary Operations and the Pythagorean Theorem / Denis Bell DEPARTMENTS 1 LETTER / Jean-Michel Kantor NOTE 2 Young Gauss meets dynamical systems / Constantin P. Niculescu 77 Spinoza and the icosahedron / Eugene A. Katz VIEWPOINT 5 One, two, many: individuality and collectivity in mathematics / Melvyn B. Nathanson 9 Analyzing massively collaborative mathematics projects / Dinesh Sarvate, Susanne Wetzel, Wayne Patterson 19 Numbers as moments of multisets: a new-old formulation of arithmetic / Ivor Grattan-Guinness 30 Mathematically Bent. Hardy and Ramanujan / Colin Adams 33 Mathematical Entertainments. Mathematical vanity plates / Donald E. Knuth 51 Mathematical Communities. Martin Gardner (1914-2010) / Marjorie Senechal 55 Years Ago. Puzzles and paradoxes and their (sometimes) profounder implications / David E. Rowe 78 Mathematical Tourist. The geometry of Christopher Wren and Robert Hooke: a walking tour in London / Maria Zack REVIEWS 96 A disappearing number by Complicite / Reviewed Mary W. Gray 99 The world of Maria Gaetana Agnesi, mathematician of god by Massimo Mazzotti / Reviewed J. B. Shank 105 Deciphering the cosmic number: The strange friendship of Wolfgang Pauli and Carl Jung by Arthur I. Miller / Reviewed Gunther Neumann 108 Introduction to grid computing (numerical analysis and scientific computing series) by Frederic Magoules, Jie Pan, Kiat-An Tan, and Abhinit Kumar / Reviewed Juha Haataja 109 Mathletics - how gamblers, managers, and sports enthusiasts use mathematics in baseball, basketball, and football by Wayne L.
    [Show full text]
  • Survey of Mathematical Problems Student Guide
    Survey of Mathematical Problems Student Guide Harold P. Boas and Susan C. Geller Texas A&M University August 2006 Copyright c 1995–2006 by Harold P. Boas and Susan C. Geller. All rights reserved. Preface Everybody talks about the weather, but nobody does anything about it. Mark Twain College mathematics instructors commonly complain that their students are poorly prepared. It is often suggested that this is a corollary of the stu- dents’ high school teachers being poorly prepared. International studies lend credence to the notion that our hard-working American school teachers would be more effective if their mathematical understanding and appreciation were enhanced and if they were empowered with creative teaching tools. At Texas A&M University, we decided to stop talking about the problem and to start doing something about it. We have been developing a Master’s program targeted at current and prospective teachers of mathematics at the secondary school level or higher. This course is a core part of the program. Our aim in the course is not to impart any specific body of knowledge, but rather to foster the students’ understanding of what mathematics is all about. The goals are: to increase students’ mathematical knowledge and skills; • to expose students to the breadth of mathematics and to many of its • interesting problems and applications; to encourage students to have fun with mathematics; • to exhibit the unity of diverse mathematical fields; • to promote students’ creativity; • to increase students’ competence with open-ended questions, with ques- • tions whose answers are not known, and with ill-posed questions; iii iv PREFACE to teach students how to read and understand mathematics; and • to give students confidence that, when their own students ask them ques- • tions, they will either know an answer or know where to look for an answer.
    [Show full text]