Advanced Placement Calculus Infinite Series Chapter 10 Section 5 Testing Convergence at Endpoints

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Placement Calculus Infinite Series Chapter 10 Section 5 Testing Convergence at Endpoints Advanced Placement Calculus Infinite Series Chapter 10 Section 5 Testing Convergence at Endpoints Essential Question: How can the convergence or divergence of a series be determined on an interval including the endpoints? Student Objectives: The student will be able to use the nth-Term Test and the Alternating Series Test to determine convergence or divergence of a series of numbers. The student will be able to determine convergence or divergence of p- series, including the harmonic series. The student will be able to determine the convergence, conditional convergence, or divergence of a power series at the endpoints of the interval of convergence. Terms: Absolute Convergence Alternating series Comparison Test Conditional Convergence Harmonic Series Integral Test Intervals of Convergence p-series Key Concepts: A word of Caution Absolute and Conditional Convergence Alternating Series Comparison Test Harmonic Series and p-Series Integral Test Intervals of Convergence Theorems: Theorem 10: The Interval Test Let an be a sequence of positive terms. Suppose an = f (n), where f is a continuous, { } positive, decreasing function of x for all x ! N !(N is a positive integer). Then the " " series an and the integral f (x)dx!either both converge or both diverge.! # $N n= N Theorem 11:!!The Limit Comparison Test (LCT) Suppose that an > 0!and bn > 0!for all n"N (N is a positive integer). a n 1. If! lim = c,!0 < c < ",!then! an !and! bn !both converge or diverge. x!" # # bn an 2. If! lim = 0!and! bn converges,!then an !converges. !! x!" b # # n a n 3. If! lim = "!and! bn diverges,!then an !diverges.!!!!!!!!!!!!!!!!!!!!!!!!!!! x!" # # bn Theorem 12:!!The Alternating Series!Test!(Leibnitz's Theorem) The series " n+1 #(!1) un = u1 ! u2 + u3 ! u4 + u5 ! u6 +… n=1 converges if all three of the following conditions are satisfied: 1. each un !is positive;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 2. un $ un+1 !for all n $ N,!for some integer N; 3. lim un % 0!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! n%" Theorem 13:!!The Alternating Series Estimation Theorem ! n+1 If the alternating series "(-1) un , satisfies the conditions of Theorem 12, then the n=1 truncation error for the nth partial sum is less than un and has the same sign as the unused term. Definitions: Rearrangements of Absolutely Convergent Series If !!an !converges absolutely, and if b1,!b2 ,!b3,!b4 ,!…!bn ,!…! is an rearrangement " " of the series {an }, then !bn converges absolutely and !bn = !an . n=1 n=1 Rearrangements of Conditionally Convergent Series If !!an !converges conditionally, then the terms can be rearranged to form a divergent series. The terms can also be rearranged to form a series that converges to any preassigned sum. Procedures " n How to Test a Power Series #cn (x ! a) for Convergence n=0 1.!!Use the Ratio Test to find the values of x for which the series converges !!!!!absolutely. Ordinarily, this is an open interval:!!a ! R < x < a + R,!In some !!!!!instantances, the series converges for all values of x. In rare cases, the series !!!!!converges only at x = a. 2. If the interval for absolute convergence is finite, test for convergence or !!!!!divergence at each endpoint. The Ratio Test fails at these points. Use a !!!!!Comparison Test, the Integral Test, or the Alternating Series Test. 3. If the interval of absolute convergence is a ! R < x < a + R, conclude that the !!!!!series diverges (it does not even converge consitionally) for x ! a > R, because for !!!!!those values fo x the nth term does not apporach zero. Procedures for Determining Convergence Geometric Series Test nth Term Test Is! a = 1 YES ! n YES Converges!to! !if ! r 1 < Is!lim an = 0? 2 3 1! r n!" a + ar + ar + ar Diverges!if ! r " 1 +…? NO NO Series!diverges Does the series YES Series!converges!if ! p > 1 have the form Series!diverges!if ! p ! 1 ! 1 p-Series Test ? " n p n=1 NO Apply one of the comparison tests, Integral Test, Ratio Test, Does an ! YES ! O riginal!Series!converges nth Root Test. Test converge? nonnegative terms and/or absolute convergence. NO Is!N !!! Alternating Is! a YES ! n such!that YES Series Test alternating? uN " uN =1 " ...? NO NO See what you can do with the partial sums, consult more advanced books, or explore with a CAS. Graphing Calculator Skills: Series!converges!if !un ! 0 Series!diverges!if !un ! 0 None Sample Questions: ! 1 " p 1. Use the Integral Test to prove that n=1 n converges for p > 1. ! 1 " p 2. Use the Integral Test to prove that n=1 n converges for p < 1. ! 1 " p 3. Use the Integral Test to prove that n=1 n converges for p = 1. # 0 x = 0 % 1 Let f (x) = $ ! x2 &%e x " 0 f It can be shown (although not easily) that has derivatives of all orders at (n) x = 0 and that f (0) = 0 for all n. Use this fact as you proceed with the next three questions. 4. Construct the Maclaurin series for the f . 5. For what values of x does the series converge? 6. Find all the values of x for which the series actually converges to f (x). 7. Determine whether the improper integral converges or diverges. Give reasons for your answer. DO NOT evaluate the integral. ! 1 dx " 4 1 x 3 8. Determine whether the improper integral converges or diverges. Give reasons for your answer. DO NOT evaluate the integral. ! x2 dx " x3 + 1 1 9. Determine whether the improper integral converges or diverges. Give reasons for your answer. DO NOT evaluate the integral. ! ln x dx " x 1 10. Determine whether the improper integral converges or diverges. Give reasons for your answer. DO NOT evaluate the integral. ! 1+ cos x dx " x2 1 11. Determine whether the improper integral converges or diverges. Give reasons for your answer. DO NOT evaluate the integral. ! x dx " 1+ x 1 12. Determine whether the function is positive, decreasing on some interval (N,!!). You do not need to identify the value of N. 3 f (x) = x 13. Determine whether the function is positive, decreasing on some interval (N,!!). You do not need to identify the value of N. 7x f (x) = 2 x ! 8 14. Determine whether the function is positive, decreasing on some interval (N,!!). You do not need to identify the value of N. 3 + x2 f (x) = 2 3 ! x 15. Determine whether the function is positive, decreasing on some interval (N,!!). You do not need to identify the value of N. sin x f (x) = 5 x 16. Determine whether the function is positive, decreasing on some interval (N,!!). You do not need to identify the value of N. ! 1$ f (x) = ln# & " x% Homework: Pages 528 - 530 Exercises: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, and 69 Exercises: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, and 70 Exercises: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, and 71 Exercises: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, and 68 Sample Questions: ! 1 " p 1. Use the Integral Test to prove that n=1 n converges for p > 1. 1 Note that the Integral Test applies to any series of the form p where p is positive. ! n - p This is because the function f (x) = x , is continuous and positive for x > 0, and f '(x) = " px" p"1 is negative for all x > 0. # 1 If ! p > 1: dx $ p 1 x b 1 lim dx b%# $ x p 1 b , & 1 ) / lim . ( p"1 + 1 b%# . " p + 1 x 1 - '( ) * 1 0 , & ) & )/ 1 1 lim . ( p"1 + " ( p"1 +1 b%# - '((" p + 1)(b) *+ '((" p + 1)(1) *+0 , / & 1 ) & 1 ) lim . ( p"1 + " ( +1 b%# - '((" p + 1)(b) *+ '(" p + 1)(1)*0 , & 1 ) & 1 )/ lim ( p 1 + " b . " ( +1 %# - ((" p + 1)(b) + '(" p + 1)*0 ' * , 1 1 / lim . p"1 " 1 b%# - (" p + 1)(b) (" p + 1)0 1 1 b 1 " (" p + 1)(#) " (" p + 1) 1 1 " (" p + 1)(#) (" p + 1) 1 1 " # (" p + 1) 1 0 " (" p + 1) "1 " p + 1 1 1 !Since! < #,!the!series! p " 1 p " 1 converges by the Integral Test. ! 1 " p 2. Use the Integral Test to prove that n=1 n converges for p < 1. ! 1 If !0 < p < 1: dx " p 1 x 1 p 1 # 1 $Since! % !,!The series p # 1 diverges by the Integral Test. If p & 0, the series diverges by the nth Term Test. This now completes the proof for p < 1. ! 1 " p 3. Use the Integral Test to prove that n=1 n converges for p = 1. ! 1 If ! p = 1: " dx 1 x b 1 lim dx b#! " 1 x b lim [ln x] b#! ( 1 ) lim lnb $ ln x b#! ([ ] [ ]) lim lnb $ 0 b#! ([ ] [ ]) lim(lnb) b#! ln(!) ! ! 1 %Since!" dx # !,!The series 1 x diverges by the Integral Test. # 0 x = 0 % 1 Let f (x) = $ ! x2 &%e x " 0 f It can be shown (although not easily) that has derivatives of all orders at (n) x = 0 and that f (0) = 0 for all n. Use this fact as you proceed with the next three questions. 4. Construct the Maclaurin series for the f . Since f (n) (0) = 0 for all n, the Maclaurin series for f has all zero coefficients! ! The series is simply "(0 ! xn ) = 0. n=0 5. For what values of x does the series converge? The series coverges for all values of x.
Recommended publications
  • Calculus and Differential Equations II
    Calculus and Differential Equations II MATH 250 B Sequences and series Sequences and series Calculus and Differential Equations II Sequences A sequence is an infinite list of numbers, s1; s2;:::; sn;::: , indexed by integers. 1n Example 1: Find the first five terms of s = (−1)n , n 3 n ≥ 1. Example 2: Find a formula for sn, n ≥ 1, given that its first five terms are 0; 2; 6; 14; 30. Some sequences are defined recursively. For instance, sn = 2 sn−1 + 3, n > 1, with s1 = 1. If lim sn = L, where L is a number, we say that the sequence n!1 (sn) converges to L. If such a limit does not exist or if L = ±∞, one says that the sequence diverges. Sequences and series Calculus and Differential Equations II Sequences (continued) 2n Example 3: Does the sequence converge? 5n 1 Yes 2 No n 5 Example 4: Does the sequence + converge? 2 n 1 Yes 2 No sin(2n) Example 5: Does the sequence converge? n Remarks: 1 A convergent sequence is bounded, i.e. one can find two numbers M and N such that M < sn < N, for all n's. 2 If a sequence is bounded and monotone, then it converges. Sequences and series Calculus and Differential Equations II Series A series is a pair of sequences, (Sn) and (un) such that n X Sn = uk : k=1 A geometric series is of the form 2 3 n−1 k−1 Sn = a + ax + ax + ax + ··· + ax ; uk = ax 1 − xn One can show that if x 6= 1, S = a .
    [Show full text]
  • 3.3 Convergence Tests for Infinite Series
    3.3 Convergence Tests for Infinite Series 3.3.1 The integral test We may plot the sequence an in the Cartesian plane, with independent variable n and dependent variable a: n X The sum an can then be represented geometrically as the area of a collection of rectangles with n=1 height an and width 1. This geometric viewpoint suggests that we compare this sum to an integral. If an can be represented as a continuous function of n, for real numbers n, not just integers, and if the m X sequence an is decreasing, then an looks a bit like area under the curve a = a(n). n=1 In particular, m m+2 X Z m+1 X an > an dn > an n=1 n=1 n=2 For example, let us examine the first 10 terms of the harmonic series 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + : n 2 3 4 5 6 7 8 9 10 1 1 1 If we draw the curve y = x (or a = n ) we see that 10 11 10 X 1 Z 11 dx X 1 X 1 1 > > = − 1 + : n x n n 11 1 1 2 1 (See Figure 1, copied from Wikipedia) Z 11 dx Now = ln(11) − ln(1) = ln(11) so 1 x 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + > ln(11) n 2 3 4 5 6 7 8 9 10 1 and 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + < ln(11) + (1 − ): 2 3 4 5 6 7 8 9 10 11 Z dx So we may bound our series, above and below, with some version of the integral : x If we allow the sum to turn into an infinite series, we turn the integral into an improper integral.
    [Show full text]
  • What Is on Today 1 Alternating Series
    MA 124 (Calculus II) Lecture 17: March 28, 2019 Section A3 Professor Jennifer Balakrishnan, [email protected] What is on today 1 Alternating series1 1 Alternating series Briggs-Cochran-Gillett x8:6 pp. 649 - 656 We begin by reviewing the Alternating Series Test: P k+1 Theorem 1 (Alternating Series Test). The alternating series (−1) ak converges if 1. the terms of the series are nonincreasing in magnitude (0 < ak+1 ≤ ak, for k greater than some index N) and 2. limk!1 ak = 0. For series of positive terms, limk!1 ak = 0 does NOT imply convergence. For alter- nating series with nonincreasing terms, limk!1 ak = 0 DOES imply convergence. Example 2 (x8.6 Ex 16, 20, 24). Determine whether the following series converge. P1 (−1)k 1. k=0 k2+10 P1 1 k 2. k=0 − 5 P1 (−1)k 3. k=2 k ln2 k 1 MA 124 (Calculus II) Lecture 17: March 28, 2019 Section A3 Recall that if a series converges to a value S, then the remainder is Rn = S − Sn, where Sn is the sum of the first n terms of the series. An upper bound on the magnitude of the remainder (the absolute error) in an alternating series arises form the following observation: when the terms are nonincreasing in magnitude, the value of the series is always trapped between successive terms of the sequence of partial sums. Thus we have jRnj = jS − Snj ≤ jSn+1 − Snj = an+1: This justifies the following theorem: P1 k+1 Theorem 3 (Remainder in Alternating Series).
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Calculus Online Textbook Chapter 10
    Contents CHAPTER 9 Polar Coordinates and Complex Numbers 9.1 Polar Coordinates 348 9.2 Polar Equations and Graphs 351 9.3 Slope, Length, and Area for Polar Curves 356 9.4 Complex Numbers 360 CHAPTER 10 Infinite Series 10.1 The Geometric Series 10.2 Convergence Tests: Positive Series 10.3 Convergence Tests: All Series 10.4 The Taylor Series for ex, sin x, and cos x 10.5 Power Series CHAPTER 11 Vectors and Matrices 11.1 Vectors and Dot Products 11.2 Planes and Projections 11.3 Cross Products and Determinants 11.4 Matrices and Linear Equations 11.5 Linear Algebra in Three Dimensions CHAPTER 12 Motion along a Curve 12.1 The Position Vector 446 12.2 Plane Motion: Projectiles and Cycloids 453 12.3 Tangent Vector and Normal Vector 459 12.4 Polar Coordinates and Planetary Motion 464 CHAPTER 13 Partial Derivatives 13.1 Surfaces and Level Curves 472 13.2 Partial Derivatives 475 13.3 Tangent Planes and Linear Approximations 480 13.4 Directional Derivatives and Gradients 490 13.5 The Chain Rule 497 13.6 Maxima, Minima, and Saddle Points 504 13.7 Constraints and Lagrange Multipliers 514 CHAPTER Infinite Series Infinite series can be a pleasure (sometimes). They throw a beautiful light on sin x and cos x. They give famous numbers like n and e. Usually they produce totally unknown functions-which might be good. But on the painful side is the fact that an infinite series has infinitely many terms. It is not easy to know the sum of those terms.
    [Show full text]
  • MATH 409 Advanced Calculus I Lecture 16: Tests for Convergence (Continued)
    MATH 409 Advanced Calculus I Lecture 16: Tests for convergence (continued). Alternating series. Tests for convergence [Condensation Test] Suppose an is a nonincreasing { } ∞ sequence of positive numbers. Then the series n=1 an ∞ k converges if and only if the “condensed” series Pk=1 2 a2k converges. P [Ratio Test] Let an be a sequence of positive numbers. { } Suppose that the limit r = lim an+1/an exists (finite or n→∞ ∞ infinite). (i) If r < 1, then the series n=1 an converges. ∞ (ii) If r > 1, then the series n=1 an Pdiverges. P [Root Test] Let an be a sequence of positive numbers and { } n r = lim sup √an. n→∞ ∞ (i) If r < 1, then the series n=1 an converges. ∞ (ii) If r > 1, then the series P n=1 an diverges. P Refined ratio tests [Raabe’s Test] Let an be a sequence of positive numbers. { } a Suppose that the limit L = lim n n 1 exists (finite →∞ n an+1 − ∞ or infinite). Then the series n=1 an converges if L > 1, and diverges if L < 1. P Remark. If < L < then an+1/an 1 as n . −∞ ∞ → →∞ [Gauss’s Test] Let an be a sequence of positive numbers. { } an L γn Suppose that =1+ + 1+ε , where L is a constant, an+1 n n ε> 0, and γn is a bounded sequence. Then the series ∞ { } an converges if L > 1, and diverges if L 1. n=1 ≤ P Remark. Under the assumptions of the Gauss Test, n(an/an+1 1) L as n .
    [Show full text]
  • ∑ (E)-N N=1 This Is a Geometric Series with First Term 1/E and Constant Ratio 1/E (Whose Magnitude Is Less Than 1), So the Series 1 1 Converges to E =
    Lab 2 Convergence/Divergence Testing - Some Guidelines Sample Solutions 1. If a series is expressed using sigma notation, write out the first few terms to get a feel for what the series looks like. Try: ∞ ∑ (-1)n (n/[n+1]) = -1/2 + 2/3 – 3/4 + 4/5 – 5/6 + … n=1 2. Is the series a geometric series? If so, it’s easy to see whether it converges or diverges just by determining the magnitude of the constant ratio. If it converges, you can calculate the sum by a formula, page 408. Try: ∞ a. ∑ (e)-n n=1 This is a geometric series with first term 1/e and constant ratio 1/e (whose magnitude is less than 1), so the series 1 1 converges to e = . 1 e 1 1− − e ∞ b. ∑ (1/2)-n n=1 This is a geometric series with first term 2 and constant ratio 2 (whose magnitude is greater than 1), so the series diverges. 3. Is the limit of the nth term of the series equal to zero? If not, the series diverges (page 413, Thm 9.2 #3). Try: ∞ ∑ [n+2]/ [5n+17] n=1 2 1 n + 2 + 1 The limit of the nth term, [n+2]/ [5n+17], is lim = lim n = . n→∞ 5n 17 n→∞ 17 5 + 5 + n Since 1/5 is not equal to 0, the series diverges. 4. Is each term of the series positive? If so, a comparison test (page 417) may be used. Try: ∞ a. ∑ 1 / [2n + 1] n=1 The nth term, 1 / [2n + 1], is less than 1/2n , the nth term of a ∞ convergent geometric series, so the series ∑ 1/[2n+1] n=1 converges.
    [Show full text]
  • Theorem the Geometric Series ∑ N=0 Arn = ∑ Ar + Ar 2 + ··· Is Convergent
    P∞ n Pn n−1 P Theorem The geometric series n=0 ar = i=1 ar = a + Definition A series an is called absolutely convergent if the 2 P∞ n P ar + ar + ··· is convergent if |r| < 1 and its sum is n=0 ar = series of absolute values |an| is convergent. a P 1−r |r| < 1. If |r| ≥ 1, the geometric series is divergent. Definition A series an is called conditionally convergent if Example Find the exact value of the repeating decimal 0.156 = it is convergent but not absolutely convergent. 0.156156156 ... as a rational number. Theorem If a series converges absolutely, then is also converges. Solution Note that The Ratio Test. 156 156 1 156 1 2 an+1 P∞ 0.156 = 1000 + 1000 · 1000 + 1000 · 1000 + ··· (i) If limn→∞ = L < 1, then the series an is abso- an n=1 P∞ 156 1 n 156 = n=0 1000 1000 . This is a geometric series with a = 1000 lutely convergent (and therefore convergent). and r = 1 and has the value: 1000 an+1 an+1 156 156 (ii) If limn→∞ = L > 1 or limn→∞ = ∞, then the 1000 1000 156 an an 1 = 999 = 999 . ∞ (1− ) 1000 P 1000 series n=1 an is divergent. The Test For Divergence. If limn→∞ an does not exist or if P∞ an+1 limn→∞ an 6= 0, then the series an is divergent. (iii) If limn→∞ = 1, the Ratio Test is inconclusive. n=1 an The Integral Test. Suppose f is a continuous, positive, de- The Root Test. creasing function on [1, ∞) and let an = f(n).
    [Show full text]
  • 10.6 Alternating Series Contemporary Calculus 1
    10.6 Alternating Series Contemporary Calculus 1 10.6 ALTERNATING SERIES In the last two sections we considered tests for the convergence of series whose terms were all positive. In this section we examine series whose terms change signs in a special way: they alternate between positive and negative. And we present a very easy–to–use test to determine if these alternating series converge. An alternating series is a series whose terms alternate between positive and negative. For example, the following are alternating series: ∞ 1 1 1 1 k+1 1 k+1 1 (1) 1 – 2 + 3 – 4 + 5 – . + (–1) k + . = ∑ (–1) k (alternating harmonic series) k=1 ∞ 1 2 3 4 5 k k k k (2) – 3 + 4 – 5 + 6 – 7 + . + (–1) k+2 + . = ∑ (–1) k+2 k=1 1 1 1 1 1 1 ∞ 1 (3) – + – + + – ... + (–1)k + . = (–1) k . 3 5 7 9 11 2k+1 ∑ 2k+1 k=1 Figures 1, 2 and 3 show graphs and tables of values of several partial sums sn for each of these series. As we move from left to right in each graph (as n increases), the partial sums alternately get larger and smaller, a common pattern for the partial sums of alternating series. The same pattern appears in the tables. n s n sn n n k k n s = (–1) 1 –0.3333 k+1 1 1.0 n ! k+2 s = (–1) 1 k=1 2 0.1667 1 n ! k 2 0.5 k=1 3 – 0.4333 3 0.8333 0.3 0.693 4 0.5833 4 0.2333 5 0.7833 5 –0.4810 6 0.6166 1 2 3 4 5 10 15 6 0.2690 7 0.7595 7 – 0.5087 8 0.2913 1 2 3 4 5 10 15 8 0.6345 –0.6 9 0.7456 9 – 0.5269 10 0.6456 10 0.3064 Fig.
    [Show full text]
  • Alternating Series
    Math 113 Lecture #29 x11.5: Alternating Series The Alternating Series Test. After defining what is means for a series to converge, we have mainly focused on developing tools to determine convergence or divergence for series with positive terms. We now turn our attention to developing a tool to deal with a series whose terms alternate in sign, such as 1 X (−1)n−1 : n n=1 P Theorem. If bn is a series with positive terms for which (i) bn+1 ≤ bn for all n, and (ii) limn!1 bn = 0, then the alternating series 1 X n+1 (−1) bn = b1 − b2 + b3 − b4 + ··· n=1 converges. Remark. What is remarkable about this Theorem is that NO assumption about the P P convergence or divergence of bn is made. It could be that bn diverges, and the conclusion of this Theorem stills holds. Remark. Let us consider what the alternating series in this Theorem is doing before proving the Theorem. The partial sums are s1 = b1; s2 = b1 − b2; s3 = b1 − b2 + b3; s4 = b1 − b2 + b3 − b4; etc: The assumptions that bn ≥ 0 and bn+1 ≤ bn for all n implies that s1 ≥ s2; s2 ≤ s3; s3 ≥ s4; etc: More importantly, s2 ≤ s4 ≤ s6 ≤ · · · and s1 ≥ s3 ≥ s5 ≥ · · ·: The even partial sums are an nondecreasing sequence (i.e., can go up or stay the same, but never go down), and the odd partial sums are a nonincreasing sequence (i.e., can go down or stay the same, but never go up). It seems like the even partitions and the odd partial sums ought to converge to something in between them.
    [Show full text]
  • 11.3 the Integral Test, 11.4 Comparison Tests, 11.5 Alternating Series
    Math 115 Calculus II 11.3 The Integral Test, 11.4 Comparison Tests, 11.5 Alternating Series Mikey Chow March 23, 2021 Table of Contents Integral Test Basic and Limit Comparison Tests Alternating Series p-series 1 ( X 1 converges for = np n=1 diverges for 1 X Z 1 an converges if and only if f (x)dx converges. n=1 1 The Integral Test Theorem (The Integral Test) Suppose the sequence an is given by f (n) where f is a continuous, positive, decreasing sequence on [1; 1). Then Example Determine the convergence of the series of the sequence e−1; 2e−2; 3e−3;::: Table of Contents Integral Test Basic and Limit Comparison Tests Alternating Series 1 1 X X 0 ≤ an ≤ bn n=1 n=1 P1 P1 n=1 an n=1 bn P1 P1 n=1 bn n=1 an The (Basic) Comparison Test Theorem (The (Basic) Comaprison Test) Suppose fang and fbng are two sequences such that 0 ≤ an ≤ bn for all n. Then In particular, If converges, then converges also. If diverges, then diverges also. (What does this remind you of?) Remark We can still apply the basic comparison test if we know that a lim n = L n!1 bn where L is a finite number and L 6= 0. 1 1 X X an converges if and only if bn converges. n=1 n=1 The Limit Comparison Test Theorem (The Limit Comaprison Test) Suppose fang and fbng are two sequences such that Then Example P1 k sin2 k Determine the convergence of k=2 k3−1 Example P1 logpn Determine the convergence of n=1 n n Group Problem Solving Instructions: For each pair of series below, determine the convergence of one of them without using a comparison test.
    [Show full text]
  • 1 Convergence Tests
    Lecture 24Section 11.4 Absolute and Conditional Convergence; Alternating Series Jiwen He 1 Convergence Tests Basic Series that Converge or Diverge Basic Series that Converge X Geometric series: xk, if |x| < 1 X 1 p-series: , if p > 1 kp Basic Series that Diverge X Any series ak for which lim ak 6= 0 k→∞ X 1 p-series: , if p ≤ 1 kp Convergence Tests (1) Basic Test for Convergence P Keep in Mind that, if ak 9 0, then the series ak diverges; therefore there is no reason to apply any special convergence test. P k P k k Examples 1. x with |x| ≥ 1 (e.g, (−1) ) diverge since x 9 0. [1ex] k X k X 1 diverges since k → 1 6= 0. [1ex] 1 − diverges since k + 1 k+1 k 1 k −1 ak = 1 − k → e 6= 0. Convergence Tests (2) Comparison Tests Rational terms are most easily handled by basic comparison or limit comparison with p-series P 1/kp Basic Comparison Test 1 X 1 X 1 X k3 converges by comparison with converges 2k3 + 1 k3 k5 + 4k4 + 7 X 1 X 1 X 2 by comparison with converges by comparison with k2 k3 − k2 k3 X 1 X 1 X 1 diverges by comparison with diverges by 3k + 1 3(k + 1) ln(k + 6) X 1 comparison with k + 6 Limit Comparison Test X 1 X 1 X 3k2 + 2k + 1 converges by comparison with . diverges k3 − 1 √ k3 k3 + 1 X 3 X 5 k + 100 by comparison with √ √ converges by comparison with k 2k2 k − 9 k X 5 2k2 Convergence Tests (3) Root Test and Ratio Test The root test is used only if powers are involved.
    [Show full text]