Ecophysiological Responses of Macroalgae to Submarine Groundwater Discharge in Hawaiʻi

Total Page:16

File Type:pdf, Size:1020Kb

Ecophysiological Responses of Macroalgae to Submarine Groundwater Discharge in Hawaiʻi ECOPHYSIOLOGICAL RESPONSES OF MACROALGAE TO SUBMARINE GROUNDWATER DISCHARGE IN HAWAIʻI A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANY May 2015 By Daniel William Amato Dissertation Committee: Celia Smith, Chairperson Cynthia Hunter Thomas Kaeo Duarte Samir Khanal Craig Glenn Keywords: Algae, Nutrients, Submarine Groundwater Discharge, Wastewater, Coral Reef UMI Number: 3717142 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3717142 Published by Proquest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 i ACKNOWLEDGEMENTS I, truly and wholeheartedly, thank each and every person, agency, organization, university, and government that has assisted me on this incredible academic journey. I cannot express in words the gratitude I have for my academic committee. Since the inception of this work, Dr. Celia Smith, Dr. Craig Glenn, Dr. Kaeo Duarte, Dr. Cynthia Hunter, and Dr. Samir Khanal have been nothing less than outstanding advisors and collaborators in this work. The research within this dissertation would not have been possible without financial support from the United States Environmental Protection Agency (USEPA) Science To Achieve Results (STAR) Fellowship program (agreement no. FP-91727301-2), University of Hawaiʻi Sea Grant, L. Stephen Lau Water Research Endowed Scholarship, and the University of Hawaiʻi (UHM) Graduate Student Organization Grants and Awards Program. I would also like to acknowledge financial support provided by research and teaching assistantships through the Botany, Biology and Geology and Geophysics departments at UHM. I would like to acknowledge the support of Dr. Henrieta Dulaiova, whose expertise in the field, lab, and classroom made this work possible. I would like to thank Robert Whittier (State of Hawaiʻi, Department of Health) for assistance with groundwater modeling and access to pertinent GIS data. I appreciate the assistance of Rachel Wade, Dr. Charles O’Kelly, and the UHM Algal Biodiversity Lab in the molecular identification of algal samples. I would like to thank the City and County of Honolulu (Board of Water Supply) for assistance with sampling groundwater wells and tunnels. In addition, I appreciate the help of the Hawaiʻi Undersea Research Laboratory for access to the Makai Pier. I am grateful for the cooperation of the County of Maui (Division of Aquatic Resources), Kuʻulei Rodgers, Paul Jokiel, Ivor Williams, and Eric Brown for access to CRAMP data. I appreciate the support and guidance that Wendy Wiltse and Hudson Slay (USEPA, region 9) have provided. I am extremely thankful for the field and lab support provided by Joseph Fackrell, Chris Schuler, Christine Waters, Scott Chulakote, Samuel Wall, Jill Rotaru, Celine Stevens, Migiwa Kawachi, Mike Amato, Gabrielle Stewart, Morgan DePartee, Sean Croucher, Eli Clemens, Sandrine Meltewomu, and Jerimiah Simpson. It has been a great pleasure to work with James Bishop during our Maui adventures. I appreciate the support of my fellow grad students, the ii UHM Department of Botany faculty and staff, and the members of the Limu lab (Dave Spafford, Erin Cox, Heather Spalding, Cheryl Squair, Scott Chulakote, Ken Hamel, Sarah Vasconcellos, Donna Brown, Matthew Lurie, and others). I would especially like to thank my partner Elizabeth Rademacher for her unwavering love and support in the field and lab during this research. Lastly, I acknowledge the love and support of my sisters, brothers, mothers, fathers, and extended family, without whom this work may have never been possible. Mahalo nui loa iii ABSTRACT Submarine groundwater discharge (SGD) is a ubiquitous process that delivers significant amounts of nutrients and other solutes to coastal ecosystems worldwide. Although the quality and quantity of SGD has been characterized at many sites, the biological implications of this process remain poorly understood. The objective of this work was to compare the physiological response of macroalgae and benthic community structure across gradients of SGD and nutrient loading in Hawai‘i. Common marine algae were collected and/or deployed at several sites on O‘ahu, and Maui. Selection of sites was informed by adjacent land use, known locations of wastewater injection wells, and previous estimates of environmental risk due to onsite sewage disposal systems (OSDS). For deployed samples, initial values of algal tissue nitrogen (N) parameters were determined after pretreatment in low nutrient conditions. At all locations, algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with the N parameters (δ15N and N concentration) of coastal groundwater , marine surface water, or groundwater simulations. Algal tissue N was highest (> 2 %) in samples located nearshore at sites adjacent to coastal aquifers enriched with anthropogenic sources of N. The lowest tissue N values (< 1 %) were found offshore or at relatively unimpacted sites. In general, the δ15N values of algal tissues and water samples were highest (9 - 18 ‰) at sites adjacent to high-volume wastewater injection wells and high densities of OSDS; lowest values (< 4 ‰) were observed in samples adjacent to sugarcane fields. Benthic diversity was greatest in locations with low anthropogenic impact. In contrast, highly impacted locations were dominated by opportunistic species. This work advances the use and interpretation of algal bioassays by highlighting the importance of onshore-offshore trends, and deviations from initial N parameter values, for the detection of N source and relative N availability. Wastewater was detectable and a major source of N at many locations. These results support recent studies that indicate SGD is a significant transport pathway for anthropogenic pollutants with important biogeochemical implications. Minimizing contaminant loads to coastal aquifers will reduce pollutant delivery to nearshore reefs in areas with SGD flux. iv TABLE OF CONTENTS ABSTRACT………………………………………………………………………………………………………………………………... iv LIST OF TABLES…………………………………………………………………………………………………….…………………… ix LIST OF FIGURES………………………………………………………………………………………………………………….….… x CHAPTER 1. BACKGROUND INFORMATION .................................................................................... 1 Introduction ............................................................................................................................. 1 Nitrogen and productivity in marine ecosystems ................................................................... 3 Macroalgae as bioindicators of water column N loading ....................................................... 5 Stable isotopes of N in the coastal environment .................................................................... 6 Nitrogen source determination using plant tissue δ15N values .............................................. 8 Submarine groundwater discharge in coastal environments ............................................... 10 Physiological stress associated with SGD: Salinity ................................................................ 12 Physiological stress associated with SGD: Temperature ....................................................... 13 SGD measurement techniques .............................................................................................. 14 Summary and objectives ....................................................................................................... 16 CHAPTER 2. SUBMARINE GROUNDWATER DISCHARGE MODIFIES PHOTOSYNTHESIS, GROWTH, AND MORPHOLOGY FOR TWO SPECIES OF GRACILARIA (RHODOPHYTA) ................................... 18 Abstract ................................................................................................................................. 18 Introduction ........................................................................................................................... 19 Methods ................................................................................................................................ 22 Field experiment: Wailupe Beach Park ............................................................................. 22 Simulated SGD study ......................................................................................................... 26 Results ................................................................................................................................... 29 Field experiment: Wailupe Beach Park ............................................................................. 29 Physical conditions at Wailupe ..................................................................................... 29 Physiological response of deployed algae .................................................................... 33 Benthic community diversity at Wailupe...................................................................... 38 v Simulated SGD study ........................................................................................................
Recommended publications
  • Frontiers in Zoology Biomed Central
    Frontiers in Zoology BioMed Central Research Open Access Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life Katharina Händeler*1, Yvonne P Grzymbowski1, Patrick J Krug2 and Heike Wägele1 Address: 1Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany and 2Department of Biological Sciences, California State University, Los Angeles, California, 90032-8201, USA Email: Katharina Händeler* - [email protected]; Yvonne P Grzymbowski - [email protected]; Patrick J Krug - [email protected]; Heike Wägele - [email protected] * Corresponding author Published: 1 December 2009 Received: 26 June 2009 Accepted: 1 December 2009 Frontiers in Zoology 2009, 6:28 doi:10.1186/1742-9994-6-28 This article is available from: http://www.frontiersinzoology.com/content/6/1/28 © 2009 Händeler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Among metazoans, retention of functional diet-derived chloroplasts (kleptoplasty) is known only from the sea slug taxon Sacoglossa (Gastropoda: Opisthobranchia). Intracellular maintenance of plastids in the slug's digestive epithelium has long attracted interest given its implications for understanding the evolution of endosymbiosis. However, photosynthetic ability varies widely among sacoglossans; some species have no plastid retention while others survive for months solely on photosynthesis. We present a molecular phylogenetic hypothesis for the Sacoglossa and a survey of kleptoplasty from representatives of all major clades. We sought to quantify variation in photosynthetic ability among lineages, identify phylogenetic origins of plastid retention, and assess whether kleptoplasty was a key character in the radiation of the Sacoglossa.
    [Show full text]
  • Morphometric Analysis of Surface Utricles in Halimeda Tuna (Bryopsidales, Ulvophyceae) Reveals Variation in Their Size and Symmetry Within Individual Segments
    S S symmetry Article Morphometric Analysis of Surface Utricles in Halimeda tuna (Bryopsidales, Ulvophyceae) Reveals Variation in Their Size and Symmetry within Individual Segments Jiri Neustupa * and Yvonne Nemcova Department of Botany, Faculty of Science, Charles University, Prague, 12801 Benatska 2, Czech Republic; [email protected] * Correspondence: [email protected] Received: 26 June 2020; Accepted: 20 July 2020; Published: 1 August 2020 Abstract: Calcifying marine green algae of genus Halimeda have siphonous thalli composed of repeated segments. Their outer surface is formed by laterally appressed peripheral utricles which often form a honeycomb structure, typically with varying degrees of asymmetry in the individual polygons. This study is focused on a morphometric analysis of the size and symmetry of these polygons in Mediterranean H. tuna. Asymmetry of surface utricles is studied using a continuous symmetry measure quantifying the deviation of polygons from perfect symmetry. In addition, the segment shapes are also captured by geometric morphometrics and compared to the utricle parameters. The area of surface utricles is proved to be strongly related to their position on segments, where utricles near the segment bases are considerably smaller than those located near the apical and lateral margins. Interestingly, this gradient is most pronounced in relatively large reniform segments. The polygons are most symmetric in the central parts of segments, with asymmetry uniformly increasing towards the segment margins. Mean utricle asymmetry is found to be unrelated to segment shapes. Systematic differences in utricle size across different positions might be related to morphogenetic patterns of segment development, and may also indicate possible small-scale variations in CaCO3 content within segments.
    [Show full text]
  • Exhaustive Reanalysis of Barcode Sequences from Public
    Exhaustive reanalysis of barcode sequences from public repositories highlights ongoing misidentifications and impacts taxa diversity and distribution: a case study of the Sea Lettuce. Antoine Fort1, Marcus McHale1, Kevin Cascella2, Philippe Potin2, Marie-Mathilde Perrineau3, Philip Kerrison3, Elisabete da Costa4, Ricardo Calado4, Maria Domingues5, Isabel Costa Azevedo6, Isabel Sousa-Pinto6, Claire Gachon3, Adrie van der Werf7, Willem de Visser7, Johanna Beniers7, Henrice Jansen7, Michael Guiry1, and Ronan Sulpice1 1NUI Galway 2Station Biologique de Roscoff 3Scottish Association for Marine Science 4University of Aveiro 5Universidade de Aveiro 6University of Porto Interdisciplinary Centre of Marine and Environmental Research 7Wageningen University & Research November 24, 2020 Abstract Sea Lettuce (Ulva spp.; Ulvophyceae, Ulvales, Ulvaceae) is an important ecological and economical entity, with a worldwide distribution and is a well-known source of near-shore blooms blighting many coastlines. Species of Ulva are frequently misiden- tified in public repositories, including herbaria and gene banks, making species identification based on traditional barcoding hazardous. We investigated the species distribution of 295 individual distromatic foliose strains from the North East Atlantic by traditional barcoding or next generation sequencing. We found seven distinct species, and compared our results with all worldwide Ulva spp sequences present in the NCBI database for the three barcodes rbcL, tuf A and the ITS1. Our results demonstrate a large degree of species misidentification in the NCBI database. We estimate that 21% of the entries pertaining to foliose species are misannotated. In the extreme case of U. lactuca, 65% of the entries are erroneously labelled specimens of another Ulva species, typically U. fenestrata. In addition, 30% of U.
    [Show full text]
  • The Marine Species of Cladophora (Chlorophyta) from the South African East Coast
    NovaHedwigia 76 1—2 45—82 Stuttgart, Februar 2003 The marine species of Cladophora (Chlorophyta) from the South African East Coast by F. Leliaert and E. Coppejans Research Group Phycology, Department of Biology, Ghent University, Krijgslaan 281, S8 B-9000 Ghent, Belgium E-mails: [email protected] and [email protected] With 16 figures and 5 tables Leliaert, F. & E. Coppejans (2003): The marine species of Cladophora (Chlorophyta) from the South African East Coast. - Nova Hedwigia 76: 45-82. Abstract: Twelve species of the genus Cladophora occur along the South African East Coast. Detailed descriptions and illustrations are presented. Four species are recorded for the first time in South Africa: C. catenata , C. vagabunda , C. horii and C. dotyana; the last two are also new records for the Indian Ocean. A comparison of the South African C. rugulosa specimens with specimens of C. prolifera from South Africa and other regions have shown that these species are not synonymous as previously considered, leading to the resurrection of C. rugulosa which is probably a South African endemic. Key words: Cladophora, C. catenata , C. dotyana, C. horii, C. prolifera , C. rugulosa , C. vagabunda , South Africa, KwaZulu-Natal. Introduction Cladophora Kützing is one of the largest green-algal genera and has a worldwide distribution. Within the class Cladophorophyceae the genus Cladophora is characterized by its simple thallus architecture: branched, uniseriate filaments of multinucleate cells. Eleven different architectural types (sections) are distinguished in the genus (van den Hoek 1963, 1982; van den Hoek & Chihara 2000). Recent studies based on morphological and molecular data have proven that Cladophora is polyphyletic (van den Hoek 1982; Bakker et al.
    [Show full text]
  • Species-Specific Consequences of Ocean Acidification for the Calcareous Tropical Green Algae Halimeda
    Vol. 440: 67–78, 2011 MARINE ECOLOGY PROGRESS SERIES Published October 28 doi: 10.3354/meps09309 Mar Ecol Prog Ser Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda Nichole N. Price1,*, Scott L. Hamilton2, 3, Jesse S. Tootell2, Jennifer E. Smith1 1Center for Marine Biodiversity and Conservation, Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, USA 2 Ecology, Evolution and Marine Biology Department, University of California, Santa Barbara, California 93106, USA 3Moss Landing Marine Laboratories, 8272 Moss Landing Rd., Moss Landing, California 95039, USA ABSTRACT: Ocean acidification (OA), resulting from increasing dissolved carbon dioxide (CO2) in surface waters, is likely to affect many marine organisms, particularly those that calcify. Recent OA studies have demonstrated negative and/or differential effects of reduced pH on growth, development, calcification and physiology, but most of these have focused on taxa other than cal- careous benthic macroalgae. Here we investigate the potential effects of OA on one of the most common coral reef macroalgal genera, Halimeda. Species of Halimeda produce a large proportion of the sand in the tropics and are a major contributor to framework development on reefs because of their rapid calcium carbonate production and high turnover rates. On Palmyra Atoll in the cen- tral Pacific, we conducted a manipulative bubbling experiment to investigate the potential effects of OA on growth, calcification and photophysiology of 2 species of Halimeda. Our results suggest that Halimeda is highly susceptible to reduced pH and aragonite saturation state but the magni- tude of these effects is species specific.
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]
  • Ecology of Mesophotic Macroalgae and Halimeda Kanaloana Meadows in the Main Hawaiian Islands
    ECOLOGY OF MESOPHOTIC MACROALGAE AND HALIMEDA KANALOANA MEADOWS IN THE MAIN HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGY) AUGUST 2012 By Heather L. Spalding Dissertation Committee: Celia M. Smith, Chairperson Michael S. Foster Peter S. Vroom Cynthia L. Hunter Francis J. Sansone i © Copyright by Heather Lee Spalding 2012 All Rights Reserved ii DEDICATION This dissertation is dedicated to the infamous First Lady of Limu, Dr. Isabella Aiona Abbott. She was my inspiration for coming to Hawai‘i, and part of what made this place special to me. She helped me appreciate the intricacies of algal cross-sectioning, discover tela arachnoidea, and understand the value of good company (and red wine, of course). iii ACKNOWLEDGEMENTS I came to Hawai‘i with the intention of doing a nice little intertidal project on macroalgae, but I ended up at the end of the photic zone. Oh, well. This dissertation would not have been possible without the support of many individuals, and I am grateful to each of them. My committee has been very patient with me, and I appreciate their constant encouragement, gracious nature, and good humor. My gratitude goes to Celia Smith, Frank Sansone, Peter Vroom, Michael Foster, and Cindy Hunter for their time and dedication. Dr. Isabella Abbott and Larry Bausch were not able to finish their tenure on my committee, and I thank them for their efforts and contributions.
    [Show full text]
  • Print This Article
    Mediterranean Marine Science Vol. 15, 2014 Seaweeds of the Greek coasts. II. Ulvophyceae TSIAMIS K. Hellenic Centre for Marine Research PANAYOTIDIS P. Hellenic Centre for Marine Research ECONOMOU-AMILLI A. Faculty of Biology, Department of Ecology and Taxonomy, Athens University KATSAROS C. of Biology, Department of Botany, Athens University https://doi.org/10.12681/mms.574 Copyright © 2014 To cite this article: TSIAMIS, K., PANAYOTIDIS, P., ECONOMOU-AMILLI, A., & KATSAROS, C. (2014). Seaweeds of the Greek coasts. II. Ulvophyceae. Mediterranean Marine Science, 15(2), 449-461. doi:https://doi.org/10.12681/mms.574 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 25/09/2021 06:44:40 | Review Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net Doi: http://dx.doi.org/ 10.12681/mms.574 Seaweeds of the Greek coasts. II. Ulvophyceae K. TSIAMIS1, P. PANAYOTIDIS1, A. ECONOMOU-AMILLI2 and C. KATSAROS3 1 Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, Anavyssos 19013, Attica, Greece 2 Faculty of Biology, Department of Ecology and Taxonomy, Athens University, Panepistimiopolis 15784, Athens, Greece 3 Faculty of Biology, Department of Botany, Athens University, Panepistimiopolis 15784, Athens, Greece Corresponding author: [email protected] Handling Editor: Sotiris Orfanidis Received: 5 August 2013 ; Accepted: 5 February 2014; Published on line: 14 March 2014 Abstract An updated checklist of the green seaweeds (Ulvophyceae) of the Greek coasts is provided, based on both literature records and new collections. The total number of species and infraspecific taxa currently accepted is 96.
    [Show full text]
  • Bioactive Compounds from Three Green Algae Species Along Romanian Black Sea Coast with Therapeutically Properties
    ISSN 2601-6397 (Print) European Journal of January - April 2019 ISSN 2601-6400 (Online) Medicine and Natural Sciences Volume 3, Issue 1 Bioactive Compounds from Three Green Algae Species along Romanian Black Sea Coast with Therapeutically Properties R. Sirbu T. Negreanu-Pirjol M. Mirea B.S. Negreanu-Pirjol Ovidius” University of Constanta, Faculty of Pharmacy, No. 1, University Alley, Campus, Corp B, Constanta, Romania ”Ovidius” University of Constanta, Faculty of Economic Sciences, No. 1, University Alley, Campus, Corp A, Constanta, Romania Abstract During the past years, it became obvious that the ecosystem presents a marine algae excedent, which should be utilized in one way or another. In the marine world, algae have been intensely studied, but the Black Sea seaweeds are not sufficiently harnessed. To survive in such various diverse and extreme environments, macroalgae produce a variety of natural bioactive compounds and metabolites, such as polysaccharides, polyunsaturated fatty acids, and phlorotannins. In the Black Sea there are three species of green algae: Ulvae lactuca sp., Enteromorpha intestinalis and Cladophora sp. The superior exploitation of the marine biomass represents a highly important resource for the pharmaceutical industry, supplying raw material for the extraction of bioactive substances (vitamins, polysaccharides, sterols, phenols and amino-acids) and various other substances. The purity of this compounds is strongly connected to the state of the marine ecosystem. In the present paper are presented the main bioactive compounds existing in the chemical composition of the green algae in the Black Sea studied. The details of the therapeutic properties of the green algae generated by their chemical compositions.
    [Show full text]
  • Seaweed Species Diversity from Veraval and Sikka Coast, Gujarat, India
    Int.J.Curr.Microbiol.App.Sci (2020) 9(11): 3667-3675 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 11 (2020) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2020.911.441 Seaweed Species Diversity from Veraval and Sikka Coast, Gujarat, India Shivani Pathak*, A. J. Bhatt, U. G. Vandarvala and U. D. Vyas Department of Fisheries Resource Management, College of Fisheries Science, Veraval, Gujarat, India *Corresponding author ABSTRACT The aim of the present investigation focused on a different group of seaweeds observed K e yw or ds from Veraval and Sikka coasts, Gujarat from September 2019 to February 2020, to understand their seaweeds diversity. Seaweed diversity at Veraval and Sikka coasts has Seaweeds diversity, been studied for six months the using belt transect random sampling method. It was Veraval, Sikka observed that seaweeds were not found permanently during the study period but some species were observed only for short periods while other species occurred for a particular season. A total of 50 species of seaweeds were recorded in the present study, of which 17 Article Info species belong to green algae, 14 species belong to brown algae and 19 species of red Accepted: algae at Veraval and Sikka coasts. Rhodophyceae group was dominant among all the 24 October 2020 classes. There were variations in species of marine macroalgae between sites and Available Online: seasons.During the diversity survey, economically important species like Ulva lactuca, U. 10 November 2020 fasciata, Sargassum sp., and Caulerpa sp., were reported.
    [Show full text]
  • Molecular Phylogeny of the Cladophoraceae (Cladophorales
    J. Phycol. *, ***–*** (2016) © 2016 Phycological Society of America DOI: 10.1111/jpy.12457 MOLECULAR PHYLOGENY OF THE CLADOPHORACEAE (CLADOPHORALES, € ULVOPHYCEAE), WITH THE RESURRECTION OF ACROCLADUS NAGELI AND WILLEELLA BØRGESEN, AND THE DESCRIPTION OF LUBRICA GEN. NOV. AND PSEUDORHIZOCLONIUM GEN. NOV.1 Christian Boedeker2 School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand Frederik Leliaert Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium and Giuseppe C. Zuccarello School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand The taxonomy of the Cladophoraceae, a large ribosomal DNA; s. l., sensu lato; s. s., sensu stricto; family of filamentous green algae, has been SSU, small ribosomal subunit problematic for a long time due to morphological simplicity, parallel evolution, phenotypic plasticity, and unknown distribution ranges. Partial large subunit The Cladophorales (Ulvophyceae, Chlorophyta) is (LSU) rDNA sequences were generated for 362 a large group of essentially filamentous green algae, isolates, and the analyses of a concatenated dataset and contains several hundred species that occur in consisting of unique LSU and small subunit (SSU) almost all types of aquatic habitats across the globe. rDNA sequences of 95 specimens greatly clarified the Species of Cladophorales have rather simple mor- phylogeny of the Cladophoraceae. The phylogenetic phologies, ranging from branched
    [Show full text]
  • Thesis MILADI Final Defense
    Administrative Seat: University of Sfax, Tunisia University of Messina, Italy National School of Engineers of Sfax Department of Chemical, Biological, Biological Engineering Department Pharmaceutical and Environmental Sciences Unité de Biotechnologie des Algues Doctorate in Applied Biology and Doctorate in Biological Engineering Experimental Medicine – XXIX Cycle DNA barcoding identification of the macroalgal flora of Tunisia Ramzi MILADI Doctoral Thesis 2018 S.S.D. BIO/01 Supervisor at the University of Sfax Supervisor at the University of Messina Prof. Slim ABDELKAFI Prof. Marina MORABITO TABLE OF CONTENTS ACKNOWLEDGEMENTS ........................................................................................... 3 ABSTRACT ..................................................................................................................... 6 1. INTRODUCTION ...................................................................................................... 8 1.1. SPECIES CONCEPT IN ALGAE ..................................................................................... 9 1.2. WHAT ARE ALGAE? ................................................................................................. 11 1.2.1. CHLOROPHYTA ....................................................................................................... 12 1.2.2. RHODOPHYTA ........................................................................................................ 13 1.3. CLASSIFICATION OF ALGAE ....................................................................................
    [Show full text]