JSR-223 Scripting for the Java™ Platform Version 1.2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scala: a Functional, Object-Oriented Language COEN 171 Darren Atkinson What Is Scala? Scala Stands for Scalable Language It Was Created in 2004 by Martin Odersky
Scala: A Functional, Object-Oriented Language COEN 171 Darren Atkinson What is Scala? Scala stands for Scalable Language It was created in 2004 by Martin Odersky. It was designed to grow with the demands of its users. It was designed to overcome many criticisms of Java. It is compiled to Java bytecode and is interoperable with existing Java classes and libraries. It is more of a high-level language than Java, having higher- order containers and iteration constructs built-in. It encourages a functional programming style, much like ML and Scheme. It also has advanced object-oriented features, much like Java and C++. Using Scala Using Scala is much like using Python or ML, and is not as unwieldy as using Java. The Scala interpreter can be invoked directly from the command line: $ scala Welcome to Scala 2.11.8 scala> println("Hi!") The Scala interpreter can also be given a file on the command line to execute: $ scala foo.scala Scala Syntax Scala has a Java-like syntax with braces. The assignment operator is simply =. Strings are built-in and use + for concatenation. Indexing is done using ( ) rather than [ ]. The first index is index zero. Parameterized types use [ ] rather than < >. A semicolon is inferred at the end of a line. However, since it is functional, everything is an expression and there are no “statements”. Scala Types In Java, the primitive types are not objects and wrapper classes must be used. Integer for int, Boolean for bool, etc. In Scala, everything is an object including the more “primitive” types. The Scala types are Int, Boolean, String, etc. -
Nashorn Architecture and Performance Improvements in the Upcoming JDK 8U40 Release
Oracle Blogs Home Products & Services Downloads Support Partners Communities About Login Oracle Blog Nashorn JavaScript for the JVM. Nashorn architecture and performance improvements in the upcoming JDK 8u40 release By lagergren on Dec 12, 2014 Hello everyone! We've been bad att blogging here for a while. Apologizes for that. I thought it would be prudent to talk a little bit about OpenJDK 8u40 which is now code frozen, and what enhancements we have made for Nashorn. 8u40 includes a total rewrite of the Nashorn code generator, which now contains the optimistic type system. JavaScript, or any dynamic language for that matter, doesn't have enough statically available type information to provide performant code, just by doing compile time analysis. That's why we have designed the new type system to get around this performance bottleneck. While Java bytecode, which is the output of the Nashorn JIT, is strongly typed and JavaScript isn't, there are problems translating the AST to optimal bytecode. Attila Szegedi, Hannes Wallnöfer and myself have spent significant time researching and implementing this the last year. Background: Conservatively, when implementing a JavaScript runtime in Java, anything known to be a number can be represented in Java as a double, and everything else can be represented as an Object. This includes numbers, ints, longs and other primitive types that aren't statically provable. Needless to say, this approach leads to a lot of internal boxing, which is quite a bottleneck for dynamic language execution speed on the JVM. The JVM is very good at optimizing Java-like bytecode, and this is not Java-like bytecode. -
Java in Embedded Linux Systems
Java in Embedded Linux Systems Java in Embedded Linux Systems Thomas Petazzoni / Michael Opdenacker Free Electrons http://free-electrons.com/ Created with OpenOffice.org 2.x Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 1 Rights to copy Attribution ± ShareAlike 2.5 © Copyright 2004-2008 You are free Free Electrons to copy, distribute, display, and perform the work [email protected] to make derivative works to make commercial use of the work Document sources, updates and translations: Under the following conditions http://free-electrons.com/articles/java Attribution. You must give the original author credit. Corrections, suggestions, contributions and Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license translations are welcome! identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/2.5/legalcode Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 2 Best viewed with... This document is best viewed with a recent PDF reader or with OpenOffice.org itself! Take advantage of internal -
Scripting for the Java Platform
Scripting for the Java Platform Christopher M. Judd President/Consultant Judd Solutions, LLC Christopher M. Judd • President/Consultant of Judd Solutions • Central Ohio Java User Group (COJUG) coordinator Agenda • Java Scripting Overview •Examples –API – Script Shell – Java EE Debugging • Alternative Java Scripting Engines – Configuring –Creating • Closing Thoughts • Resources •Q&A Java is the greatest language ever invented Developer’s tools Every developer’s toolbox should contain a static typed language like Java or C# and a dynamically typed scripting language like JavaScript, Ruby or Groovy. Java Scripting • Java Scripting support added in Java SE 6 • JSR 223: Scripting for the Java Platform • Java Virtual Machine – Executes “language-neutral” bytecode – Rich class library Java JavaScript Groovy – Multi-platform JVM •Features JavaScript Groovy – API to evaluate scripts – Embedded JavaScript engine (Rhino 1.6R2) – Scripting engine discovery mechanism – Java Scripting command-line interpreter (jrunscript) Reasons for Scripting •Flexibility • Simplicity (Domain Specific Language) • Interpreted • Development productivity •Dynamic typing • Expressive syntax •FUN Scripting Uses • Configuration •Customization • Automation • Debugging • Templating •Unit Testing •Prototyping • Web Scripting • Data transport Scripting Options •JavaScript – Rhino – www.mozilla.org/rhino/ •Groovy (JSR-241) – groovy.codehaus.org •Python –Jython –www.jython.org •Ruby –JRuby–jruby.codehaus.org •TCL –Jacl–tcljava.sourceforge.net • Java (JSR-274) – BeanShell www.beanshell.org -
Evaluation of Clojure, Java, and Scala
Evaluation of Clojure, Java, and Scala Analysis of Programming Languages TTÜ Toke Abildgaard von Ryberg 10.12.2015 Evaluation of Clojure, Java, and Scala 10.12.2015 Analysis of Programming Languages Toke Abildgaard von Ryberg Introduction Java Virtual Machine Java Scala Clojure Programming languages evaluation Essential characteristics Well defined syntactic and semantic definition of language Reliability Fast translation Machine independence Desirable characteristics Generality Consistency with commonly used notations Uniformity Extensibility (ease to add features) Summary References 2 Evaluation of Clojure, Java, and Scala 10.12.2015 Analysis of Programming Languages Toke Abildgaard von Ryberg Introduction In this paper I will evaluate three languages that all uses Java Virtual Machine (JVM). The three languages are Clojure, Java, and Scala. First, I will briefly describe JVM and the three languages. Then I will evaluate the languages based on essential characteristics and desirable characteristics. The essential characteristics I use for evaluating programming languages are: ● Well defined syntactic and semantic definition of language ● Reliability ● Fast translation ● Machine independence The desirable characteristics are: ● Generality ● Consistency with commonly used notations ● Uniformity ● Extensibility (ease to add features) Java Virtual Machine1 The Java Virtual Machine(JVM) is a virtual machine used for executing Java bytecode. JVM is part of Java Runtime Environment(JRE) along with Java Class library. JRE is available on multiple platforms including Windows, Mac OS X, and Linux. The features of JVM include garbage collection and a JIT compiler. A programming language with functionality expressed in valid class files and able to be hosted by JVM is called a JVM language. When choosing to create a new programming language one might choose to create a JVM language to take advantage of the features of JVM. -
Java and C I CSE 351 Autumn 2016
L26: JVM CSE351, Spring 2018 Java Virtual Machine CSE 351 Spring 2018 Model of a Computer “Showing the Weather” Pencil and Crayon on Paper Matai Feldacker-Grossman, Age 4 May 22, 2018 L26: JVM CSE351, Spring 2018 Roadmap C: Java: Memory & data Integers & floats car *c = malloc(sizeof(car)); Car c = new Car(); x86 assembly c->miles = 100; c.setMiles(100); c->gals = 17; c.setGals(17); Procedures & stacks float mpg = get_mpg(c); float mpg = Executables free(c); c.getMPG(); Arrays & structs Memory & caches Assembly get_mpg: Processes language: pushq %rbp Virtual memory movq %rsp, %rbp ... Memory allocation popq %rbp Java vs. C ret OS: Machine 0111010000011000 code: 100011010000010000000010 1000100111000010 110000011111101000011111 Computer system: 2 L26: JVM CSE351, Spring 2018 Implementing Programming Languages Many choices in how to implement programming models We’ve talked about compilation, can also interpret Interpreting languages has a long history . Lisp, an early programming language, was interpreted Interpreters are still in common use: . Python, Javascript, Ruby, Matlab, PHP, Perl, … Interpreter Your source code implementation Your source code Binary executable Interpreter binary Hardware Hardware 3 L26: JVM CSE351, Spring 2018 An Interpreter is a Program Execute (something close to) the source code directly Simpler/no compiler – less translation More transparent to debug – less translation Easier to run on different architectures – runs in a simulated environment that exists only inside the interpreter process . Just port the interpreter (program), not the program-intepreted Slower and harder to optimize 4 L26: JVM CSE351, Spring 2018 Interpreter vs. Compiler An aspect of a language implementation . A language can have multiple implementations . Some might be compilers and other interpreters “Compiled languages” vs. -
Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine
Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine Entwurf und Analyse einer Scala Benchmark Suite für die Java Virtual Machine Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation von Diplom-Mathematiker Andreas Sewe aus Twistringen, Deutschland April 2013 — Darmstadt — D 17 Fachbereich Informatik Fachgebiet Softwaretechnik Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine Entwurf und Analyse einer Scala Benchmark Suite für die Java Virtual Machine Genehmigte Dissertation von Diplom-Mathematiker Andreas Sewe aus Twistrin- gen, Deutschland 1. Gutachten: Prof. Dr.-Ing. Ermira Mezini 2. Gutachten: Prof. Richard E. Jones Tag der Einreichung: 17. August 2012 Tag der Prüfung: 29. Oktober 2012 Darmstadt — D 17 For Bettina Academic Résumé November 2007 – October 2012 Doctoral studies at the chair of Prof. Dr.-Ing. Er- mira Mezini, Fachgebiet Softwaretechnik, Fachbereich Informatik, Techni- sche Universität Darmstadt October 2001 – October 2007 Studies in mathematics with a special focus on com- puter science (Mathematik mit Schwerpunkt Informatik) at Technische Uni- versität Darmstadt, finishing with a degree of Diplom-Mathematiker (Dipl.- Math.) iii Acknowledgements First and foremost, I would like to thank Mira Mezini, my thesis supervisor, for pro- viding me with the opportunity and freedom to pursue my research, as condensed into the thesis you now hold in your hands. Her experience and her insights did much to improve my research as did her invaluable ability to ask the right questions at the right time. I would also like to thank Richard Jones for taking the time to act as secondary reviewer of this thesis. -
Java (Software Platform) from Wikipedia, the Free Encyclopedia Not to Be Confused with Javascript
Java (software platform) From Wikipedia, the free encyclopedia Not to be confused with JavaScript. This article may require copy editing for grammar, style, cohesion, tone , or spelling. You can assist by editing it. (February 2016) Java (software platform) Dukesource125.gif The Java technology logo Original author(s) James Gosling, Sun Microsystems Developer(s) Oracle Corporation Initial release 23 January 1996; 20 years ago[1][2] Stable release 8 Update 73 (1.8.0_73) (February 5, 2016; 34 days ago) [±][3] Preview release 9 Build b90 (November 2, 2015; 4 months ago) [±][4] Written in Java, C++[5] Operating system Windows, Solaris, Linux, OS X[6] Platform Cross-platform Available in 30+ languages List of languages [show] Type Software platform License Freeware, mostly open-source,[8] with a few proprietary[9] compo nents[10] Website www.java.com Java is a set of computer software and specifications developed by Sun Microsyst ems, later acquired by Oracle Corporation, that provides a system for developing application software and deploying it in a cross-platform computing environment . Java is used in a wide variety of computing platforms from embedded devices an d mobile phones to enterprise servers and supercomputers. While less common, Jav a applets run in secure, sandboxed environments to provide many features of nati ve applications and can be embedded in HTML pages. Writing in the Java programming language is the primary way to produce code that will be deployed as byte code in a Java Virtual Machine (JVM); byte code compil ers are also available for other languages, including Ada, JavaScript, Python, a nd Ruby. -
Session 6 - Main Theme J2EE Component-Based Computing Environments
Application Servers G22.3033-011 Session 6 - Main Theme J2EE Component-Based Computing Environments Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences 1 Agenda Component Technologies Database Technology Review EJB Component Model J2EE Services JNDI, JMS, JTS, CMP/BMP/JDBC, JavaMail, etc. J2EE Web Architectures Security in J2EE Application Servers Structured Applications Design Tips Summary Readings Assignment #5 2 1 Summary of Previous Session COM and COM+ Introduction to .Net Component Technologies Object Management Architectures Java-Based Application Servers Windows Services Summary Readings Assignment #5 3 Additional References Intranet Architectures and Performance Report http://www.techmetrix.com/lab/benchcenter/archiperf/archiper ftoc.shtml#TopOfPage RMI FAQ http://java.sun.com/products/javaspaces/faqs/rmifaq.html CORBA beyond the firewall http://www.bejug.org/new/pages/articles/corbaevent/orbix/ Web Object Integration (vision document) http://www.objs.com/survey/web-object-integration.htm 4 2 Application Servers Architectures Application Servers for Enhanced HTML (traditional) a.k.a., Page-Based Application Servers Mostly Used to Support Standalone Web Applications New Generation Page-Based Script-Oriented App. Servers First Generation Extensions (e.g., Microsoft IIS with COM+/ASP) Servlet/JSP Environments XSP Environment Can now be used as front-end to enterprise applications Hybrid development environments Distributed Object -
Abkürzungs-Liste ABKLEX
Abkürzungs-Liste ABKLEX (Informatik, Telekommunikation) W. Alex 1. Juli 2021 Karlsruhe Copyright W. Alex, Karlsruhe, 1994 – 2018. Die Liste darf unentgeltlich benutzt und weitergegeben werden. The list may be used or copied free of any charge. Original Point of Distribution: http://www.abklex.de/abklex/ An authorized Czechian version is published on: http://www.sochorek.cz/archiv/slovniky/abklex.htm Author’s Email address: [email protected] 2 Kapitel 1 Abkürzungen Gehen wir von 30 Zeichen aus, aus denen Abkürzungen gebildet werden, und nehmen wir eine größte Länge von 5 Zeichen an, so lassen sich 25.137.930 verschiedene Abkür- zungen bilden (Kombinationen mit Wiederholung und Berücksichtigung der Reihenfol- ge). Es folgt eine Auswahl von rund 16000 Abkürzungen aus den Bereichen Informatik und Telekommunikation. Die Abkürzungen werden hier durchgehend groß geschrieben, Akzente, Bindestriche und dergleichen wurden weggelassen. Einige Abkürzungen sind geschützte Namen; diese sind nicht gekennzeichnet. Die Liste beschreibt nur den Ge- brauch, sie legt nicht eine Definition fest. 100GE 100 GBit/s Ethernet 16CIF 16 times Common Intermediate Format (Picture Format) 16QAM 16-state Quadrature Amplitude Modulation 1GFC 1 Gigabaud Fiber Channel (2, 4, 8, 10, 20GFC) 1GL 1st Generation Language (Maschinencode) 1TBS One True Brace Style (C) 1TR6 (ISDN-Protokoll D-Kanal, national) 247 24/7: 24 hours per day, 7 days per week 2D 2-dimensional 2FA Zwei-Faktor-Authentifizierung 2GL 2nd Generation Language (Assembler) 2L8 Too Late (Slang) 2MS Strukturierte -
Liferay Third Party Libraries
Third Party Software List Liferay Portal 6.2 EE SP20 There were no third party library changes in this version. Liferay Portal 6.2 EE SP19 There were no third party library changes in this version. Liferay Portal 6.2 EE SP18 There were no third party library changes in this version. Liferay Portal 6.2 EE SP17 File Name Version Project License Comments lib/portal/monte-cc.jar 0.7.7 Monte Media Library (http://www.randelshofer.ch/monte) LGPL 3.0 (https://www.gnu.org/licenses/lgpl-3.0) lib/portal/netcdf.jar 4.2 NetCDF (http://www.unidata.ucar.edu/packages/netcdf-java) Netcdf License (http://www.unidata.ucar.edu/software/netcdf/copyright.html) lib/portal/netty-all.jar 4.0.23 Netty (http://netty.io) Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0) Liferay Portal 6.2 EE SP16 File Name Version Project License Comments lib/development/postgresql.jar 9.4-1201 JDBC 4 PostgreSQL JDBC Driver (http://jdbc.postgresql.org) BSD Style License (http://en.wikipedia.org/wiki/BSD_licenses) lib/portal/commons-fileupload.jar 1.2.2 Commons FileUpload (http://commons.apache.org/fileupload) Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0) This includes a public Copyright (c) 2002-2006 The Apache Software Foundation patch for CVE-2014-0050 and CVE-2016-3092. lib/portal/fontbox.jar 1.8.12 PDFBox (http://pdfbox.apache.org) Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0) lib/portal/jempbox.jar 1.8.12 PDFBox (http://pdfbox.apache.org) Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0) lib/portal/pdfbox.jar 1.8.12 PDFBox (http://pdfbox.apache.org) Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0) lib/portal/poi-ooxml.jar 3.9 POI (http://poi.apache.org) Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0) This includes a public Copyright (c) 2009 The Apache Software Foundation patch from bug 56164 for CVE-2014-3529 and from bug 54764 for CVE-2014-3574. -
Programmers Guide
JBossESB 4.6 Programmers Guide JBESB-PG-7/17/09 JBESB-PG-7/17/09 Legal Notices The information contained in this documentation is subject to change without notice. JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™, Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited. Copyright JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as indicated by the @authors tag. All rights reserved. See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it will be useful, but WITHOUT A WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.