Characterization of Precipitates in a Niobium-Zirconium-Carbon Alloy

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Precipitates in a Niobium-Zirconium-Carbon Alloy DOElNASAll6310-6 NASA TM-I 00848 Characterization of Precipitates in a Niobium-Zirconium-Carbon Alloy INASA-Tn- 100848) PRECIPITATES IN A NIOEIUff-2 IBCONIUR-CARBON ALLOY Final Report tHA3ACTEBIZATIOB(NASA) 18 p OF 888-22981 CSCL 11F Unclas G3/26 0142685 T.L. Grobstein and R.H. Titran National Aeronautics and Space Administration Lewis Research Center Work per.formed for U.S. DEPARTMENT OF ENERGY Nuclear Energy Reactor Systems Development and Technology Prepared for The Metallurgical Society Fall Meeting sponsored by the American Institute of Mechanical Engineers Orlando, Florida, October 5-9, 1986 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 NTlS price codes1 Printed copy: A02 Microfiche copy: A01 1Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: €nergy Research Abstracts (ERA); Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR); and publication, NTIS-PR-360 available from NTlS at the above address. DOE/NASA/I 631 0-6 NASA TM-100848 Characterization of Precipitates in a Niobium-Zirconium-Carbon Alloy T.L. Grobstein and R.H. Titran National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 441 35 Work performed for U.S. DEPARTMENT OF ENERGY Nuclear Energy Reactor Systems Development and Technology Washington, D.C. 20545 Under Interagency Agreement DE-A103-86SF16310 Prepared for The Metallurgical Society Fall Meeting sponsored by the American Institute of Mechanical Engineers Orlando, Florida, October 5-9, 1986 CHARACTERIZATION OF PRECIPATES IN A Nb-Zr-C ALLOY T.L. Grobstein and R.H. Titran National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 SUMMARY A niobium alloy with 1 percent zirconium and 0.063 percent carbon by weight was investigated in the as-rolled and annealed conditions, and after high-temperature (1350 and 1400 K) exposure with and without an applied stress. In the as-rolled and in the annealed conditions, large metastable carbides were observed in addition to a regular distribution of small particles. During the high-temperature exposure, the majority of the large carbides were dissolved and a more stable carbide phase formed. This finely dispersed phase had a com- ? position determined to be -70 percent ZrC and -30 percent NbC and showed some d 0 evidence of an orientation relationship with the matrix. The precipitates d I appeared to coarsen slightly after -5000 hr exposure at temperatures between w 1350 and 1400 K. This same high-temperature exposure in the presence of an applied stress resulted in a decrease in the size and in the interparticle spacing of the stable precipitates. However, the composition of the DreciDi- tate phase and its ability to pin dislocations were not affected by the temper- ature or stress conditions INTRODUCTION Niobium-zirconium-carbon alloys were first developed for space energy conversion applications due to their elevated temperature creep res stance , resistance to corrosion by liquid alkali metals, and relatively low density. These alloys rely on complex carbide precipitates for strengthening rather than zirconium oxide precipitation as in binary niobium-1 percent zircon um. It has been established that carbide precipitates are more effective stren theners, but the actual composition, morphology, and aging characteristics o, the second phase in alloys containing carbon have not been fully investigated. Several workers have analyzed precipitation in the Nb-Zr-C system (Arzamozov and Vasil'eva, 1978; Begley et al., 1963; Cuff, 1962; Kissil et al., 1976, 1978; Korotayev et al., 1980, 1981; Lyutyi et al., 1978; Maksimovich et al., 1978; Ostermann and Bollenrath, 1966, Ostermann, 1971; Tsvikilevich, 1980>, but bet- ter understanding of the kinetics of aging reactions with respect to the intended service conditions is required for determination of design parameters. The present work was undertaken to investigate the carbide morphology in a Nb-Zr-C alloy heat treated with and without the presence of an applied stress. The strength of Nb-Zr-C alloys has been shown to be much higher than binary Nb-Zr or Nb-C alloys (DelGrosso et al., 1967; Grigorovich and Sheftel, 1982). It is assumed that the suppression of the transition of the carbide phase from coherent to incoherent (as in binary Nb-C alloys) is due to the for- mation of complexes of carbon, niobium, and zirconium atoms (Korotayev et al., 1981). The increased strength of the ternary alloy is due, therefore, to the precipitation of stable, zirconium-enriched (Nb,Zr>C instead of NbC, which breaks down at lower temperatures than the complex carbide. The increased sta- bility of the (Nb,Zr)C carbide can be attributed to the relative immobility of zirconium in niobium due to its larger atomic size. In addition, although the precipitate phase may contain oxygen, it must be primarily a carbide due to the increased strengthening of Nb-Zr-C alloys over Nb-1Zr with Zr02 precipitates. MAT E R IA L The material used in this study was received from the Oak Ridge National Laboratory in the form of as-rolled, 1-mm thick tensile specimens. This mate- rial was from a single arc-melt followed by a single primary breakdown extru- sion in the 1350 K regime. It was subsequently processed into tube material, which was split and rolled to produce sheet specimens. All material was annealed for 1 hr at 1755 K then 2 hr at 1475 K prior to any testing. Anneal- ing treatments were conducted in titanium sublimation pumped systems at a pres- sure below 10-5 Pa and included wrapping each specimen in cleaned tantalum foi 1. Two of the sheet samples were cut into smaller pieces, wrapped in Nb-1Zr foil, and aged at 1350 K with no applied stress. The heat treatments were carried out in LN2 trapped oil diffusion pumped systems at a pressure of -1 xlO-4 Pa. Several samples were aged in the presence of an appl ied stress at 1350 and 1400 K as described by Titran (1986) in internally loaded chambers at constant load. The vacuum, maintained by bakeable titanium sublimation pumps, was initially -10-5 and ranged to 5x10-7 Pa after several hundred hours. EXPERIMENTAL PROCEDURE Traditional etching for optical and scanning electron metallography was a difficult technique for examining the carbide structure due to the tendency of the particles to fall out of the structure during etching. This was due to the fact that the etchant removed material underneath the particles without attack- ing the carbides. An anodic staining technique was tried (Crouse, 1965), but was not easily interpretable due to the small size of the precipitates. Limited success was obtained using a nitriclhydrofluoric acid etchant. Phase extraction was performed on specimens supported with platinum wires in 100 ml of bromine in 900 ml of methanol with 10 g of tartaric acid in solu- tion. The cell was periodically subjected to ultrasound to disperse any pas- sive layer on the surface of the samples. X-ray analysis was used to identify and to determine the composition of the precipitate phase. Chemical analysis was also performed on the extracted material by inductively coupled plasma atomic emission spectrometry. Transmission electron microscopy foils were cut by electric discharge machining. After the oxide layer was removed by hand polishing, some samples 0 were jet thinned in an electrolyte consisting of 936 ml methanol, 62.8 ml H2SO4, 40 ml butyl alcohol, and 1.5 ml HF. The foils were prepared using a Struers Tenupol apparatus operated at a current density of -27 mA/mm2. Although the large carbide particles tended to fall out of the foils during thinning, adequate thin areas were obtained. In addition, some foils were dimpled then ion-milled. 2 RESULTS AND DISCUSSION Chemical Analysis The oxygen contents increased after aging with and without an applied stress as evidenced in table I, which lists the compositions in both weight percent and atomic percent. This increase was expected and realistic since the vacuum levels at which the material was tested approximated what the material would see during use in space power systems. The oxygen content of the alloy was 2.5 times greater after aging without applied stress, and was four times greater after aging with an applied stress of 40 MPa. These two cases were for approximately the same time and temperature, and the vacuum was one to two orders of magnitude better for the sample under stress. The larger increase in this case is attributed to the increased oxygen mobility in the presence of the applied stress. The increased oxygen content, however, was not discernible through metallography or phase extraction, indicating that most of the oxygen remained in solution.
Recommended publications
  • Radiochemistry of Zirconium and Niobium
    .... I 5+1 ,.. S8J9P cd ,.. R.ADIOCHEFUX3TRYOF Z=COM,~ AND HIOBIUM BY Ei,liFJ:P. Steinberg RADIOCHEHISTRYOF ZIRCONIUMAND NIOBI~ Table of Contents ——— .. ,. ., Page Zirconium. ..g . ...* .,* 1 .,* 5 Solvent ExtraotlonPrmedure for Zr . ● *. 9 Zirconium Procedure . ● . ● .12 ~~ NloblumProaedure. preparationof’Carrier-FreeZr Traoer . , 24 preparationof Carrier-~ee zr-~ ~aw= . ● ● . ● . - . 26 Improved Preparationof Camier-Free Mb Traaer with ● m9 30 mlo2 RWUWHEMISTRY OF Z~CWUUM MB HIOBIUVl by Ellis P. Stetnberg (Based largely on an wqmbltshed review by D. M. Hume) Zmm!?rfm Macro Chemistry The only importantoxldatio~number Is +4. The normal state in aqueous sel.uttonts the ztreomyl ion (ZrC$~);the tetrapositlvaion Is net capable of existenceIn dilute acid solutions. Alkall hydroxides and ~nia precipitatezlrconyl salts as ZrO(OH)2, insolubleIn excess base but soluble In mineral aeide. The precipitationis hi~dered by mu@h ammonium \ fluoride...On~eat@g or drying, the hydroxide is converted to the muoh more oxide is soluble only In hy@w3$lu6@e acid. I@lrogen sulfide has no effeot on ,sQlutlonsof’zirconiumsalts. Alkali sulfides ,~eoipitatebhe kq~xide. zireQnyl ni~rate, chloride,and sulf’ateare sol,uble,ln aoid solution. Zircwayl fluoride is Znsolublek@ readily dis.eolvesin k@rdlu@rie add. Reduetlom ,, ,, to the metal”is very dif’flcult.Uommeroialzirconiumecmtains an appreciableamun’k of’-iwz,impurity. Among the..mere Wportant insoluble oompmnds is the very -18 tBtic@blephosphate,Zm(H@04) ~, Kap = 2●28 x 10 which 2 precipitateseven 20$ sulfurioaoid. It has properties from .. similar to those of cerlc phosphatebut is dissolvedby hydro- fluoric acid. The iodate preolpttatesfrom 8 g HN03 and the aryl-substitutedarsenatesand oupferrtdeprecipitatefrom acid solutions;none are appreciablysoluble in excess reagent.
    [Show full text]
  • Surface Chemistry of Zirconium
    Progress in Surface Science 78 (2005) 101–184 www.elsevier.com/locate/progsurf Review Surface chemistry of zirconium N. Stojilovic, E.T. Bender, R.D. Ramsier * Departments of Physics and Chemistry, The University of Akron, 250 Buchtel Commons, Ayer Hall 111, Akron, OH 44325-4001, USA Abstract This article presents an overview of the surface chemistry of zirconium, focusingon the relationship of what is known from model studies and how this connects to current and future applications of Zr-based materials. The discussion includes the synergistic nature of adsorbate interactions in this system, the role of impurities and alloyingelements, and temperature- dependent surface–subsurface transport. Finally, some potential uses of zirconium and its alloys for biomedical and nanolithographic applications are presented. Ó 2005 Elsevier Ltd. All rights reserved. Keywords: Zirconium; Oxidation; Surface chemistry; Subsurface species; Diffusion; Water; Oxygen; Hydrogen; Nuclear materials; Alloys; Zircaloy Contents 1. Contextual overview........................................ 102 2. Systems of interest ......................................... 104 2.1. Water ............................................. 104 2.2. Oxygen ............................................ 122 2.3. Hydrogen .......................................... 132 2.4. Sulfur ............................................. 143 2.5. Carbon ............................................ 147 * Correspondingauthor. Tel.: +1 330 9724936; fax: +1 330 9726918. E-mail address: [email protected] (R.D.
    [Show full text]
  • John's Corner
    www.natureswayresources.com JOHN’S CORNER: MINERALS - The Elements and What They Do (Part 29) by John Ferguson 39) Yttrium (Y) - One writer describes Yttrium as a "hippy" element. Yttrium is a silvery metal of group 3 of the periodic table and behaves chemically similarly to the lanthanide group. It is often classified as a rare earth element (even though it is twice as abundant as lead). Yttrium is found in igneous rocks at 33 ppm, shale at 18 ppm, sandstone at 9 ppm, and limestone at 4.3 ppm. Very little is found in seawater (0.0003 ppm) however in soils it is found at an average of 50 ppm with a range of 2-100 ppm. In marine mammals, it occurs at 0.1-0.2 ppm and land animals at 0.04 ppm. Yttrium is found in mammalian bone, teeth, and liver. Yttrium has an electrical or oxidation state +3 and never occurs alone in nature. However, it is often found in association with many minerals like oxides, carbonates, silicates, and phosphates. When yttrium is combined with barium and copper into an oxide (YBa2Cu3O7), it becomes a superconductor of electricity when cooled to very cold temperatures. When yttrium is combined with aluminum and silicates we get garnet crystals which is used to produce powerful lasers and it can also make very hard diamond-like gemstones. It is used in color television and computer monitors, luminescence and semi-conductor devices. It is used in ceramics and glass manufacturing and is used as a catalyst in the production of some plastics.
    [Show full text]
  • Tensile Properties of Yttrium-Titanium and Yttrium-Zirconium Alloys" (1960)
    Ames Laboratory Technical Reports Ames Laboratory 12-1960 Tensile properties of yttrium-titanium and yttrium- zirconium alloys D. W. Bare Iowa State University E. D. Gibson Iowa State University O. N. Carlson Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_isreports Part of the Materials Chemistry Commons Recommended Citation Bare, D. W.; Gibson, E. D.; and Carlson, O. N., "Tensile properties of yttrium-titanium and yttrium-zirconium alloys" (1960). Ames Laboratory Technical Reports. 35. http://lib.dr.iastate.edu/ameslab_isreports/35 This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tensile properties of yttrium-titanium and yttrium-zirconium alloys Abstract Complete series of yttrium-titanium and yttrium-zirconium alloys were tested in tension at room temperature, and ultimate tensile strength, yield strength and reduction in area data are reported for these alloys. Yield point phenomena were encountered in both of these alloy systems. Disciplines Chemistry | Materials Chemistry This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_isreports/35 TENSILE PROPERTIES OF YTTRIUM-TITANIUM AND YTTRIUM- ZIRCONIUM ALLOYS by D. W. Bare, E. D. Gibson, andO. N. Carlson UNCL ASSIFIED / IS-240 Metallurgy and Ceramics (UC-25) TID 4500, August 1, 1959 . UNITED STATES ATOMIC ENERGY COMMISSION Research and Development Report TENSILE PROPER TIES OF YTTRIUM-TITANIUM AND YTTRIUM- ZIRCONIUM ALLOYS by D.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • Carbides and Nitrides of Zirconium and Hafnium
    materials Review Carbides and Nitrides of Zirconium and Hafnium Sergey V. Ushakov 1,* , Alexandra Navrotsky 1,* , Qi-Jun Hong 2,* and Axel van de Walle 2,* 1 Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, CA 95616, USA 2 School of Engineering, Brown University, Providence, RI 02912, USA * Correspondence: [email protected] (S.V.U.); [email protected] (A.N.); [email protected] (Q.-J.H.); [email protected] (A.v.d.W.) Received: 6 August 2019; Accepted: 22 August 2019; Published: 26 August 2019 Abstract: Among transition metal carbides and nitrides, zirconium, and hafnium compounds are the most stable and have the highest melting temperatures. Here we review published data on phases and phase equilibria in Hf-Zr-C-N-O system, from experiment and ab initio computations with focus on rocksalt Zr and Hf carbides and nitrides, their solid solutions and oxygen solubility limits. The systematic experimental studies on phase equilibria and thermodynamics were performed mainly 40–60 years ago, mostly for binary systems of Zr and Hf with C and N. Since then, synthesis of several oxynitrides was reported in the fluorite-derivative type of structures, of orthorhombic and cubic higher nitrides Zr3N4 and Hf3N4. An ever-increasing stream of data is provided by ab initio computations, and one of the testable predictions is that the rocksalt HfC0.75N0.22 phase would have the highest known melting temperature. Experimental data on melting temperatures of hafnium carbonitrides are absent, but minimum in heat capacity and maximum in hardness were reported for Hf(C,N) solid solutions.
    [Show full text]
  • The Radiochemistry of Zirconium and Hafnium
    ‘~,11 —National T Academy v of I Sciences National Research Council B NUCLEAR SCIENCE SERIES The Radiochemistry of Zirconium and lHafnium :$-:9: CNcmLHRARY c,)) COMMITTEE ON NUCLEAR SCIENCE. :’- ‘... :. L. F.CUR=, Chuitvnan ROBLE,Y D. EVAN& ViceC~rman NationalBureauofSt.adards MassachusettsInstituteofTedmology ,,., J.A. bJUREN, Secretury WestlnghoueeElectricCorporation H. J.CURTIS G. G.MANOV BrookhavenNat.lonalLaboratory Tmmerlab,Inc. SAMUEL EPSTEIN W<.WAYNE bfIiIkE “““ CaliforniaIuetituteofTechnol~ UniversityofMichigan HERBERT GOLDSTEIN A. H. SNELL NuclearDevelopmentCorpfitionof ‘“ oak Ridge,NationalL@ho~torY knerlca E. A. UEHLING ‘H.J.GOMBERG UnlversltyofWashbgton UnlversltyofMichigan D. M. VAN PATTER E.D. KLEMA BartolResearchFoundation NorthwesternUniversity ROBERT L. PLATZMAN ArgonneNationalLaboratory LIAISON ,MEMBERS PAUL C.AEBERSOLD W. D. URRY AtomioEneqy Comdsston U. S.Air Foroe J.HOW~”?dd#fLLEN WIIiW”E: WFUGHT NationalScienceFoundation OfficeofNavalReeearoh SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE MEINKEC Ckirnwn EARL HYDE UnlversiWof Mkhigan Unlversl&ofCdlforda (Berkeley) NATHAN BALLOU HAROLDKIRBY NavyRadologlcalDsfenaeLshoratory Moud Lahmatory GREGORY R. CHOPPIN GEORGE LEDDICOI”TE Florida-bs Universally Oak RidgeNationd Lahomtory GEORGE A. COWAN ELLIS P.STEINBERG Loe AlamosSclentlflcLaboratory ArgonneNationalLaboratory ARTHUR W. FAIRHALL PETER C. ~EVENEON UnlvereltyofWaehlngton UnlversltyofCalifornia(Livermore) HARMoN FINSTON LEO YAFFE BrookhavenNationalL@oratory McGU1 University The Radiochemistry of Zircomium and Hlafnium By
    [Show full text]
  • Material Safety Data Sheet Yttria-Stabilized Zirconia (YSZ) ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 1
    LTS Research Laboratories, Inc. Material Safety Data Sheet Yttria-Stabilized Zirconia (YSZ) ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 1. Product and Company Identification ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Trade Name: Yttria-stabilized zirconia (YSZ) Chemical Formula: ZrO2-Y2O3 Recommended Use: Scientific research and development Manufacturer/Supplier: LTS Research Laboratories, Inc. Street: 37 Ramland Road City: Orangeburg State: New York Zip Code: 10962 Country: USA Tel #: 845-587-2436 / 845-lts-chem 24-Hour Emergency Contact: 800-424-9300 (US & Canada) +1-703-527-3887 (International) ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 2. Hazards Identification ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Signal Word: None Hazard Statements: None Precautionary Statements: None HMIS Health Ratings (0-4): Health: 1 Flammability: 0 Physical: 0 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 3. Composition ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Chemical Family: Ceramic Additional Names: Zirconium yttrium oxide, YSZ Zirconium oxide-yttria stabilized Percentage: 0-100 wt. % CAS #: 64417-98-7 EC #: 215-227-2 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 4. First Aid Procedures –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
    [Show full text]
  • BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged To
    BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged to Four and Five Significant Figures Norman E. Holden Energy Sciences & Technology Department National Nuclear Data Center Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov Prepared for the 44th IUPAC General Assembly, in Torino, Italy August 2007 Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Titrimetric Determination of Zirconium M
    Ames Laboratory ISC Technical Reports Ames Laboratory 3-1955 Titrimetric determination of zirconium M. O. Fulda Iowa State College J. S. Fritz Iowa State College Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_iscreports Part of the Chemistry Commons Recommended Citation Fulda, M. O. and Fritz, J. S., "Titrimetric determination of zirconium" (1955). Ames Laboratory ISC Technical Reports. 95. http://lib.dr.iastate.edu/ameslab_iscreports/95 This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory ISC Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Titrimetric determination of zirconium Abstract A brief literature survey on the present gravimetric, colorimetric, spectrographic, and volumetric methods for the determination of zirconium has been presented. Keywords Ames Laboratory Disciplines Chemistry This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_iscreports/95 IoW()...u••n• ·ASS IFlED sc. AL ISC- S91P UNITED STATES ATOMIC ENERGY COMMISSION TITRIMETRIC DETERMINATION OF ZIRCONIUM By M. 0. Fulda J. S. Fritz March 1955 Ames Laboratory Iowa State College Ames, Iowa T e c h n i c a I I n form at i o n S e r v i c e, 0 a k R i d g e, T e nne 55 e e UNCLASSIFIED Work perf'onned under Contract No. W-7405-Eng-82. F. H. Spedding, Director, Ames Laboratory The Atomic Energy Commission makes no representation or warranty as to the accuracy or usefulness of the Information or statements contained In this report, or that the use of any lnfonnatlon, apparatus, method or process disclosed In this report may not Infringe prlvately~wned rights.
    [Show full text]
  • Separation of Hafnium from Zirconium Using Tributyl Phosphate R
    Ames Laboratory ISC Technical Reports Ames Laboratory 12-23-1955 Separation of hafnium from zirconium using tributyl phosphate R. P. Cox Iowa State College G. H. Beyer Iowa State College Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_iscreports Part of the Chemistry Commons, and the Metallurgy Commons Recommended Citation Cox, R. P. and Beyer, G. H., "Separation of hafnium from zirconium using tributyl phosphate" (1955). Ames Laboratory ISC Technical Reports. 109. http://lib.dr.iastate.edu/ameslab_iscreports/109 This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory ISC Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Separation of hafnium from zirconium using tributyl phosphate Abstract The es paration of hafnium from zirconium using tributyl phosphate offers interesting alternatives to present methods for making reactor-grade zirconium. Feed solution for the extraction step can be prepared from the reaction product of caustic and zircon sand. The purified zirconium can be converted into a variety of compounds, depending on the process chosen for reduction to the metal. It may be that future developments will show tributyl phosphate extraction to have advantages in new plants for the production of low-hafnium zirconium metal. Keywords Ames Laboratory Disciplines Chemistry | Engineering | Materials Science and Engineering | Metallurgy This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_iscreports/109 ISC-682 . UNCLASSIFIED I() WfJ., A.E.C.
    [Show full text]