Estimating Water Temperatures in Small Streams in Western Oregon Using Neural Network Models

Total Page:16

File Type:pdf, Size:1020Kb

Estimating Water Temperatures in Small Streams in Western Oregon Using Neural Network Models Estimating Water Temperatures in Small Streams in Western Oregon Using Neural Network Models Prepared in cooperation with the OREGON WATERSHED ENHANCEMENT BOARD U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 02-4218 Estimating Water Temperatures in Small Streams in Western Oregon Using Neural Network Models By John C. Risley, U.S. Geological Survey, Edwin A. Roehl, Jr., Advanced Data Mining, LLC, and Paul A. Conrads, U.S. Geological Survey U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 02-4218 Prepared in cooperation with the OREGON WATERSHED ENHANCEMENT BOARD Portland, Oregon 2003 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Information Services 10615 S.E. Cherry Blossom Drive Building 810 Portland, Oregon 97216-3159 Box 25286, Federal Center Email: [email protected] Denver, CO 80225-0286 Internet: http://oregon.usgs.gov CONTENTS Abstract ................................................................................................................................................................ 1 Introduction .......................................................................................................................................................... 1 Background ................................................................................................................................................. 1 Purpose and Scope ...................................................................................................................................... 2 Study Area................................................................................................................................................... 3 Previous Investigations ............................................................................................................................... 3 Acknowledgments....................................................................................................................................... 6 Data Collection..................................................................................................................................................... 6 Water Temperature...................................................................................................................................... 6 Stream Habitat Surveys............................................................................................................................... 8 Basin Characteristics................................................................................................................................... 8 Climate ........................................................................................................................................................ 9 Model Development............................................................................................................................................. 11 Background Theory..................................................................................................................................... 11 Clustering Analysis ..................................................................................................................................... 12 Model Framework....................................................................................................................................... 15 Training....................................................................................................................................................... 19 Validation.................................................................................................................................................... 21 Model Application................................................................................................................................................ 30 Shade Adjustment ....................................................................................................................................... 30 Climate Adjustment .................................................................................................................................... 31 Future Improvements .................................................................................................................................. 34 Summary and Conclusions................................................................................................................................... 35 References Cited .................................................................................................................................................. 36 Appendix A. Site list for water temperature and habitat survey data collection ................................................. 38 Appendix B. Model input variable tables and sensitivity analyses..................................................................... 42 Appendix C. Model operation instructions ......................................................................................................... 56 Contents iii FIGURES Figure 1. Map showing western Oregon study region ...................................................................................... 4 Figure 2. Graphs showing mean monthly precipitation and air temperature at Astoria, Brookings, Crater Lake, Eugene, Medford, North Bend, and Salem, Oregon .................................. 5 Figure 3. Map showing locations of stream temperature stations, climate stations, and snowpack measurement stations in western Oregon ......................................................................... 7 Figure 4. Diagram showing feed-forward neural network architecture with three inputs, five hidden-layer nodes, and a single output ..................................................................................... 12 Figure 5. Graph showing density of water temperature records ....................................................................... 13 Figure 6. Graph showing results of clustering analysis .................................................................................... 14 Figure 7. Map showing distribution of the three groups of stream temperature stations within the study area .......................................................................................................................... 16 Figure 8. Graph showing mean of normalized 24-hour moving average hourly water temperature time series from each of the three groups...................................................................... 17 Figure 9. Diagram showing components of artificial neural network water temperature models .................... 18 Figure 10. Map showing location of model validation sites ............................................................................... 22 Figure 11. Graphs showing measured and simulated 24-hour moving average hourly water temperatures for selected sites in western Oregon............................................................................. 25 Figure 12. Graphs showing measured and simulated hourly water temperatures for selected sites in western Oregon...................................................................................................................... 27 Figure 13. Graphs showing simulated 24-hour moving average hourly water temperatures for varying shade conditions for selected sites in western Oregon ......................................................... 32 iv Figures TABLES Table 1. Stream habitat and basin variables used as model inputs and their statistics .................................... 9 Table 2. Climate time series data assembled for the model simulations ......................................................... 10 Table 3. Statistical results for the training and testing of simulations for each model .................................... 20 Table 4. Location, stream habitat, and basin characteristics data for the validation stream sites.................... 23 Table 5. Comparison of static, 24-hour moving average, and hourly model errors for the simulation period (June 21, 1999, to September 20, 1999) for the validation stream sites............... 24 Table 6. Existing and adjusted shade and vegetation variable values for selected stream sites ...................... 31 Table 7. Mean of simulated hourly temperatures for varying shade conditions for selected stream sites ...... 31 Table 8. Departure of 1999 mean monthly water temperatures from the period of record at selected stations in western Oregon............................................................................................... 34 Tables v CONVERSION FACTORS AND VERTICAL DATUM Conversion Factors Multiply By To obtain cubic meter per second (m3/s) 35.31 cubic foot per second (ft3/s) millimeter (mm) 0.03937 inch meter (m) 3.281 foot (ft) kilometer (km) 0.5400 mile (mi) square kilometer (km2) 0.3861 square mile (mi2) cubic meter (m3) 1.308 cubic yard (yd3) Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: °F=1.8 °C+32 Vertical Datum In this report, vertical coordinates are referenced to the North American Vertical Datum of 1988 (NAVD
Recommended publications
  • Mckenzie River Sub-Basin Action Plan 2016-2026
    McKenzie River Sub-basin Strategic Action Plan for Aquatic and Riparian Conservation and Restoration, 2016-2026 MCKENZIE WATERSHED COUNCIL AND PARTNERS June 2016 Photos by Freshwaters Illustrated MCKENZIE RIVER SUB-BASIN STRATEGIC ACTION PLAN June 2016 MCKENZIE RIVER SUB-BASIN STRATEGIC ACTION PLAN June 2016 ACKNOWLEDGEMENTS The McKenzie Watershed Council thanks the many individuals and organizations who helped prepare this action plan. Partner organizations that contributed include U.S. Forest Service, Eugene Water & Electric Board, Oregon Department of Fish and Wildlife, Bureau of Land Management, U.S. Army Corps of Engineers, McKenzie River Trust, Upper Willamette Soil & Water Conservation District, Lane Council of Governments and Weyerhaeuser Company. Plan Development Team Johan Hogervorst, Willamette National Forest, U.S. Forest Service Kate Meyer, McKenzie River Ranger District, U.S. Forest Service Karl Morgenstern, Eugene Water & Electric Board Larry Six, McKenzie Watershed Council Nancy Toth, Eugene Water & Electric Board Jared Weybright, McKenzie Watershed Council Technical Advisory Group Brett Blundon, Bureau of Land Management – Eugene District Dave Downing, Upper Willamette Soil & Water Conservation District Bonnie Hammons, McKenzie River Ranger District, U.S. Forest Service Chad Helms, U.S. Army Corps of Engineers Jodi Lemmer, McKenzie River Trust Joe Moll, McKenzie River Trust Maryanne Reiter, Weyerhaeuser Company Kelly Reis, Springfield Office, Oregon Department of Fish and Wildlife David Richey, Lane Council of Governments Kirk Shimeall, Cascade Pacific Resource Conservation and Development Andy Talabere, Eugene Water & Electric Board Greg Taylor, U.S. Army Corps of Engineers Jeff Ziller, Springfield Office, Oregon Department of Fish and Wildlife MCKENZIE RIVER SUB-BASIN STRATEGIC ACTION PLAN June 2016 Table of Contents EXECUTIVE SUMMARY .................................................................................................................................
    [Show full text]
  • Lower Mckenzie River Watershed
    McKenzie River Watershed Baseline Monitoring Report 2000 to 2009 Karl A. Morgenstern David Donahue Nancy Toth Eugene Water & Electric Board January 2011 ii Acknowledgements The Eugene Water & Electric Board would like to acknowledge the various agencies and organizations that assisted with water quality sampling, providing guidance and input and assisting with the development of this document. McKenzie Watershed Council Water Quality Committee Members McKenzie Watershed Council Larry Six Mohawk Watershed Partnership Jared Weybright Weyerhaueser Company Maryanne Reiter Weyerhaueser Company Bob Danehy International Paper Company Loren Leighton U.S. Forest Service Dave Kreitzing U.S. Forest Service Bonnie Hammond U.S. Bureau of Land Management Steve Liebhardt U.S. Bureau of Land Management Janet Robbins City of Springfield Chuck Gottfried City of Springfield Todd Miller Springfield Utility Board Amy Chinitz Springfield Utility Board Dave Embleton Retired from Springfield Utility Board Chuck Davis Oregon Dept. of Environmental Quality Chris Bayham Springfield School District Stuart Perlmeter Army Corps of Engineers Greg Taylor Eugene Water & Electric Board Karl Morgenstern Eugene Water & Electric Board David Donahue Eugene Water & Electric Board Nancy Toth Partners Providing Sampling Support, Database Support and Document Review U.S. Forest Service Mike Cobb U.S. Forest Service David Bickford City of Springfield Shawn Krueger Eugene Water & Electric Board Jared Rubin Eugene Water & Electric Board Bob DenOuden Eugene Water & Electric Board
    [Show full text]
  • Mckenzie River Subbasin Assessment Summary Table of Contents
    McKenzie River, ca. 1944 McKenzie River Subbasin Assessment Summary Report February 2000 McKenzie River, ca. 2000 McKenzie River, ca. 2000 Prepared for the McKenzie Watershed Council Prepared By: Alsea Geospatial, Inc. Hardin-Davis, Inc. Pacific Wildlife Research, Inc. WaterWork Consulting McKenzie River Subbasin Assessment Summary Table of Contents High Priority Action Items for Conservation, Restoration, and Monitoring 1 The McKenzie River Watershed: Introduction 8 I. Watershed Overview 9 II. Aquatic Ecosystem Issues & Findings 17 Recommendations 29 III. Fish Populations Issues & Findings 31 Recommendations 37 IV. Wildlife Species and Habitats of Concern Issues & Findings 38 Recommendations 47 V. Putting the Assessment to work 50 Juvenile Chinook Habitat Modeling 51 Juvenile Chinook Salmon Habitat Results 54 VI. References 59 VII. Glossary of Terms 61 The McKenzie River Subbasin Assessment was funded by grants from the Bonneville Power Administration and the U.S. Forest Service. High Priority Action Items for Conservation, Restoration, and Monitoring Our analysis indicates that aquatic and wildlife habitat in the McKenzie River subbasin is relatively good yet habitat quality falls short of historical conditions. High quality habitat currently exists at many locations along the McKenzie River. This assessment concluded, however, that the river’s current condition, combined with existing management and regulations, does not ensure conservation or restoration of high quality habitat in the long term. Significant short-term improvements in aquatic and wildlife habitat are not likely to happen through regulatory action. Current regulations rarely address remedies for past actions. Furthermore, regulations and the necessary enforcement can fall short of attaining conservation goals. Regulations are most effective in ensuring that habitat quality trends improve over the long period.
    [Show full text]
  • Mohawk/Mcgowan Watershed Analysis
    MOHAWK/McGOWAN WATERSHED ANALYSIS BLM MAY 1995 Chapter 1 Introduction What Is Watershed Analysis Watershed analysis is a systematic procedure for characterizing watershed and ecological processes to meet specific management and social objectives. Throughout the analytical process the Bureau of Land Management (BLM) is trying to gain an understanding about how the physical, biological, and social processes are intertwined. The objective is to identify where linkages and processes (functions) are in jeopardy and where processes are complex. The physical processes at work in a watershed establish limitations upon the biological relationships. The biological adaptations of living organisms balance in natural systems; however, social processes have tilted the balance toward resource extraction. The BLM attempt in the Mohawk/McGowan analysis is to collect baseline resource information and understand where physical, biological and social processes are or will be in conflict. What Watershed Analysis Is NOT Watershed analysis is not an inventory process, and it is not a detailed study of everything in the watershed. Watershed analysis is built around the most important issues. Data gaps will be identified and subsequent iterations of watershed analysis will attempt to fill in the important pieces. Watershed analysis is not intended to be detailed, site-specific project planning. Watershed analysis provides the framework in the context of the larger landscape and looks at the "big picture." It identifies and prioritizes potential project opportunities. Watershed analysis is not done under the direction and limitations of the National Environmental Policy Act (NEPA). When specific projects are proposed, more detailed project level planning will be done. An Environmental Assessment will be completed at that time.
    [Show full text]
  • Ground Water in the Eugene-Springfield Area, Southern Willamette Valley, Oregon
    Ground Water in the Eugene-Springfield Area, Southern Willamette Valley, Oregon GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2018 Prepared in cooperation with the Oregon State Engineer Ground Water in the Eugene-Springfield Area, Southern Willamette Valley, Oregon By F. J. FRANK GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2018 Prepared in cooperation with the Oregon State Engineer UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 72-600346 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Price: Paper cover $2.75, domestic postpaid; $2.50, GPO Bookstore Stock Number 2401-00277 CONTENTS Page Abstract ______________________ ____________ 1 Introduction _________ ____ __ ____ 2 Geohydrologic system ___________ __ _ 4 Topography _____________ ___ ____ 5 Streams and reservoirs ______ ___ _ __ _ _ 5 Ground-water system ______ _ _____ 6 Consolidated rocks __ _ _ - - _ _ 10 Unconsolidated deposits ___ _ _ 10 Older alluvium ____ _ 10 Younger alluvium __ 11 Hydrology __________________ __ __ __ 11 Climate _______________ _ 12 Precipitation ___________ __ 12 Temperature -__________ 12 Evaporation _______ 13 Surface water __________ ___ 14 Streamflow _ ____ _ _ 14 Major streams __ 14 Other streams ________ _ _ 17 Utilization of surface water _ 18 Ground water __________ _ __ ___ 18 Upland and valley-fringe areas 19 West side _________ __ 19 East side __________ ________________________ 21 South end ______________________________ 22 Central lowland ________ __ 24 Occurrence and movement of ground water 24 Relationship of streams to alluvial aquifers __ _ 25 Transmissivity and storage coefficient ___ _ 29 Ground-water storage _ __ 30 Storage capacity _ .
    [Show full text]
  • National Register of Historic Places Continuation Sheet
    RECEIVED 2280 NFS Form 10-900 OMB No. 10024-0018 (Oct. 1990) Oregon WordPerfect 6.0 Format (Revised July 1998) National Register of Historic Places iC PLACES Registration Form • NATIONAL : A SERVICE This form is for use in nominating or requesting determinations of eligibility for individual properties or districts. See instructions in How to Complete the National Register of Historic Places Form (National Register Bulletin 16A). Complete each item by marking Y in the appropriate box or by entering the information requested. If an item does not apply to the property being documented, enter "N/A"for "not applicable. For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NFS Form 10-900a). Use a typewriter, word processor, or computer to complete all items. 1. Name of Property historic name The La Grande Commercial Historic District other names/site number N/A 2. Location street & number Roughly bounded by the U.P Railroad tracts along Jefferson St, on __not for publication the north; Greenwood and Cove streets on the east; Washington St. on __ vicinity the south; & Fourth St. on the west. city or town La Grande state Oregon code OR county Union code 61 zip code 97850 3. State/Federal Agency Certification As the designated authority under the National Historic Preservation Act, as amended, I hereby certify that this ^nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60.
    [Show full text]
  • Subsistence Variability in the Willamette Valley Redacted for Privacy
    AN ABSTRACT OF THE THESIS OF Francine M. Havercroft for the degree of Master of Arts in Interdisciplinary Studies in Anthropology, History and Anthropology presented on June 16, 1986. Title: Subsistence Variability in the Willamette Valley Redacted for Privacy Abstract approved: V Richard E. Ross During the summer of 1981, Oregon State University archaeologically tested three prehistoric sites on the William L. Finley National Wildlife Refuge. Among the sites tested were typical Willamette Valley floodplain and adjacent upland sites. Most settlement-subsistence pattern models proposed for the Willamette Valley have been generated with data from the eastern valley floor, western Cascade Range foothills. The work at Wm. L. Finley National Wildlife Refuge provides one of the first opportunities to view similar settings along the western margins of the Willamette Valley. Valley Subsistence Variabilityin the Willamette by Francine M. Havercroft A THESIS submitted to Oregon StateUniversity in partial fulfillmentof the requirementsfor the degree of Master of Arts in InterdisciplinaryStudies Completed June 15, 1986 Commencement June 1987 APPROVED: Redacted for Privacy Professor of Anthropology inAT6cg-tof major A Redacted for Privacy Professor of History in charge of co-field Redacted for Privacy Professor of Anthropology in charge of co-field Redacted for Privacy Chairman of department of Anthropology Dean of Graduate School Date thesis is presented June 16, 1986 Typed by Ellinor Curtis for Francine M. Havercroft ACKNOWLEDGEMENTS Throughout this project, several individuals have provided valuable contributions, and I extend a debt of gratitude to all those who have helped. The Oregon State university Archaeology field school, conducted atthe Wm. L. Finley Refuge, wasdirected by Dr.
    [Show full text]
  • Implications for the Calapooya Divide, Oregon
    AN ABSTRACT OF THE THESIS OF Karen Joyce Starr for the degree of Master of Arts in Interdiscinlinary Studies in Anthr000loay. Geogranhv, and _Agricultural and Resource Economics presented on October 1, 1982 Title: THE CULTURAL SIGNIFICANCE OF MOUNTAIN REGIONS; IMPLICATIONS FOR THE QALAPOOYA DIVIDE. OREGON Abstract approved: Redacted for Privacy Thomas C. Hogg Altitudinal variations in upland regions of the earthcreate variable climatic zones and conditions. Plant andanimal communities must adapt to these conditions, andwhen theyreach their tolerance limits for environmental conditions at the upper levels of a zone, they cease to exist inthe environment. Humans also utilize mountains for a variety of reasons. The cultural traits which result from the adaptationof groups of people to mountainenvironments are unique from those of the surrounding lowlanders. Adaptation to upland areas is most often expressed in a transhumant or agro-pastoral lifestyle attuned to the climatic variations and demands of the mountain environment. This distribution of cultural traits suggests thatmountains are considered unique culture areas, apart from but sharing sometraits in common with neighboring lowland areas. The Cultural Significance of Mountain Regions Implications for the Calapooya Divide, Oregon by Karen Joyce Starr A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Arts in Interdisciplinary Studies Completed October 1, 1982 Commencement June 1983 APPROVED: Redacted for Privacy Professor of Anthropology in charge of major Redacted for Privacy Chairman of Department of Anthropology Redacted for Privacy AssociateiDrofssor of Geography in charge of minor Redacted for Privacy Profe4or of Agricultural and Resource Economics in charge of minor Redacted for Privacy Dean of Graduat chool Date thesis is presented October 1.
    [Show full text]
  • Digital Commons @
    sALUMnotesALUMnotesALUMnotesALUMnotesALUMno Western Oregon University April 2007WOUMagazine 1 Alum n o tes Western Oregon University You watch your financesclosely . They do their best. The average education loan debt of many college students when they graduate exceeds the national average credit card debt of $9,000. Yesterday’s Western Oregon University student could work a summer job and earn enough money to pay their next year’s tuition and expenses. Over half of today’s WOU students work in the summer and during the school year to help pay for tuition and expenses. And still they graduate with an average education loan debt of nearly $20,000. Your contribution in support of student scholarships absolutely makes a difference! • Outright gifts • Gifts of appreciated assets such as property and securities • Charitable gift annuities Contact James Birken Director of Gift Planning Western Oregon University University Advancement The Cottage Monmouth, Oregon 97361 503-838-8145 [email protected] Western Oregon University Magazine © April 2007 • Volume 8, No. 2 What’s Inside PRESIDENT John P. Minahan Washington EXECUTIVE EDITOR Leta Edwards Vice President for University Advancement Envisioning the MANAGING EDITOR ‘06 Maria Austin future Coordinator of Alumni Programs 4 Oregon President discusses his three-year Idaho CONTRIBUTING WRITERS vision for WOU Maria Austin Russ Blunck Lori Jordan Brown Craig Coleman Leta Edwards Being prepared Lisa Pulliam WOU-based Homeland Security Nevada Alaska PHOTOGRAPHERS 6 grant assists Native Americans Lori
    [Show full text]
  • An Overview Sally Campbell, Dave Azuma, Dale Weyermann
    Forests of Western Oregon: An Overview Sally Campbell, Dave Azuma, Dale Weyermann United States Pacific Northwest Forest Research Station Department of Service Agriculture PNW-GTR-525 April 2002 Revised 2004 Authors Sally Campbell is a plant pathologist, Dave Azuma is a research forester, and Dale Weyermann is geographic information system manager, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, P.O. Box 3890, Portland, OR 97208-3890. Cover: Southwest Oregon Photo by Tom Iraci. Above: Oregon Coast Photo by Don Gedney Forests of Western Oregon: An Overview Sally Campbell, Dave Azuma, and Dale Weyermann U.S. Department of Agriculture Forest Service Pacific Northwest Research Station Portland, OR April 2002 State Forester’s Welcome Dear Reader: Western Oregon has some of the most productive forest lands in the world, important for sustainable supplies of fish and wildlife habitat, recreation, timber, clean water, and many other values that Oregonians hold dear.The Oregon Department of Forestry and the USDA Forest Service invite you to read this overview of western Oregon forests, which illustrates the importance these forests have to our forest industries and quality of life.This publication has been made possible by the USDA FS Forest Inventory and Analysis (FIA) program, with support from the Oregon Department of Forestry. The Oregon Department of Forestry and FIA have a long history of collaboration that has benefited both agencies and others who use the data and the information developed from it.This report was developed from data gathered by FIA in western Oregon’s forests between 1994 and 1997, and has been supplemented by inventories from Oregon’s national forests and the Bureau of Land Management.We greatly appreciate FIA’s willingness to collect information in addition to that usually collected in forest inventories, data about insects and disease, young stands, and land use change and development.
    [Show full text]
  • Geologic Formations of Western Oregon
    BULLETIN 70 GEOLOGIC fORMATION§ OF WESTERN OREGON WEST OF LONGITUDE 121° 30' STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1971 STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1069 Stal·e Office Building Portland, Oregon 97201 BULLETIN 70 GEOLOGIC FORMATIONS OF WESTERN OREGON (WEST OF LONGITUDE 12 1 °30') By John D. Beaulieu 1971 GOVERNING BOARD Fayette I. Bristol, Rogue River, Chairman R. W. deWeese, Portland Harold Banta, Baker STATE GEOLOGIST R. E. Corcoran CONTENTS Introduction . Acknowledgements 2 Geologic formations 3 Quadrang I es. 53 Corre I ation charts. 60 Bibliography. 63 ii GE OLOGIC FORMA T IONS OF WESTERN OR EGON (W E ST OF LONG ITUD E 12 1°30') By John D. Beaulieu* INTRODUCTION It is the purpose of th is publi cation to provide a concise , yet comprehensive discussion of the for­ mations of western Oregon. It is the further aim that the data for each of the formations be as current as possi ble. Consequently, the emphasis has been placed on th e recent literature . Although this paper should not be viewed as a discussion of the historical development of each of the fo rmations, the original reference for each of the units is given . Also, in cases where the historical development of the formation has a direct bearing on present-day problems it is included in the discussion . A wide variety of published literature and unpublished reports , theses, and dissertations was con­ sul ted and several professional opin ions regarding specific problems were so licited . In recent years re­ search has been concentrated in the Klamath Mountains and the southern Coast Range and for these regions literature was volumi nous.
    [Show full text]
  • Chapter 5 State(S): Oregon Recovery Unit Name: Willamette River
    Chapter 5 State(s): Oregon Recovery Unit Name: Willamette River Recovery Unit Region 1 U.S. Fish and Wildlife Service Portland, Oregon DISCLAIMER Recovery plans delineate reasonable actions that are believed necessary to recover and protect listed species. Plans are prepared by the U.S. Fish and Wildlife Service and, in this case, with the assistance of recovery unit teams, contractors, State and Tribal agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not necessarily represent the views or the official positions or indicate the approval of any individuals or agencies involved in the plan formulation, other than the U.S. Fish and Wildlife Service. Recovery plans represent the official position of the U.S. Fish and Wildlife Service only after they have been signed by the Director or Regional Director as approved. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery tasks. Literature Cited: U.S. Fish and Wildlife Service. 2002. Chapter 5, Willamette River Recovery Unit, Oregon. 96 p. In: U.S. Fish and Wildlife Service. Bull Trout (Salvelinus confluentus) Draft Recovery Plan. Portland, Oregon. ii ACKNOWLEDGMENTS Two working groups are active in the Willamette River Recovery Unit: the Upper Willamette (since 1989) and Clackamas Bull Trout Working Groups. In 1999, these groups were combined, and, along with representation from the Santiam subbasin, comprise the Willamette River Recovery Unit Team.
    [Show full text]