An Overview of the Bionomics, Host Plant Resistance and Molecular Perspectives of Sesamia Inferens Walker in Cereals and Millets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Echinochloa Frumentacea (Roxb). Link.
Received: 29 May 2020 Revised: 18 Jun 2020 Accepted: 18 Jun 2020 ,1',$162&,(7<2)3/$17%5(('(56 &HQWUHIRU3ODQW%UHHGLQJDQG*HQHWLFV Electronic Journal of Plant Breeding 7DPLO1DGX$JULFXOWXUDO8QLYHUVLW\&RLPEDWRUH 7DPLO1DGX,1',$ Research Article ATV=^ ( (($ 8B?1;<2TacXUXRPcT!!Sc!# !! 3aB6TTcWP 3aB<P]XRZP\ 3aAAPeXZTbPeP] Diversity and stability studies in barnyard millet ?aTbXST]c EXRT?aTbXST]c BTRaTcPah (Echinochloa frumentacea (Roxb). Link.) germplasm for 3a3:d\PaTbP] 3aB<P]^]\P]X grain yield and its contributing traits CaTPbdaTa 4SXc^a49?1 R. Prabu1, C. Vanniarajan1*, M. Vetrivanthan2, R. P. Gnanamalar1, R. Shanmughasundaram3 and J. Ramalingam4 &HUWLILFDWH 1Department of Plant Breeding and Genetics, 2Gene bank, International Crops Research Institute for the Semi-Arid Tropics, Patancheru -502324, Hyderabad, Telangana, India. 7KLVLVWRFHUWLI\WKDW 3Department of Soils and Environment, 4Department of Biotechnology, Agricultural College and Research Institute, Madurai – 625104, Tamil Nadu, India. 'U%,5(1'5$.80$5 *E-Mail: [email protected] 6HQLRU3ULQFLSDO6FLHQWLVW 1RGDODQG3URIHVVRU$F6,5$FDGHP\ *HQHWLFV 3ODQW%UHHGLQJ'LYLVLRQ&,0$3/XFNQRZ Abstract Nutritionally, Barnyard millet is an important crop, it is probably originated in central Asia and spread from central AsiaLVD /,)(0(0%(5RI,QGLDQ6RFLHW\RI3ODQW%UHHGHUV to Europe and America. Climate change will alert an extra constrains as many parts of the country are becoming drier with increasingly severe weather patterns. Developing better barnyard millet cultivars is always placing as an important strategy in crop improvement. This study was focused to evaluate the phenotypic diversity and stability of barnyard 7DPLO1DGX$JULFXOWXUDO8QLYHUVLW\&RLPEDWRUH millet germplasm for yield and its attributing traits. Diversity as revealed by D2 analysis indicated that the trait grain yield had contributed maximum towards the diversity followed by days to maturity. -
Abundance of Sesamia Nonagrioides (Lef.) (Lepidoptera: Noctuidae) on the Edges of the Mediterranean Basin
Hindawi Publishing Corporation Psyche Volume 2012, Article ID 854045, 7 pages doi:10.1155/2012/854045 Review Article Abundance of Sesamia nonagrioides (Lef.) (Lepidoptera: Noctuidae) on the Edges of the Mediterranean Basin Matilde Eizaguirre1 and Argyro A. Fantinou2 1 Department of Crop and Forest Sciences, University of Lleida, 25198 Lleida, Spain 2 Laboratory of Ecology, Agricultural University of Athens, 11855 Athens, Greece Correspondence should be addressed to Matilde Eizaguirre, [email protected] Received 5 September 2011; Revised 17 November 2011; Accepted 21 November 2011 Academic Editor: Matilda Savopoulou-Soultani Copyright © 2012 M. Eizaguirre and A. A. Fantinou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Organisms inhabiting seasonal environments are able to synchronize their life cycles with seasonal cycles of biotic and abiotic factors. Diapause, a state of low metabolic activity and developmental arrest, is used by many insect species to cope with adverse conditions. Sesamia nonagrioides is a serious pest of corn in the Mediterranean regions and Central Africa. It is multivoltine, with two to four generations per year, that overwinters as mature larva in the northern of the Sahara desert. Our purpose was to compare theresponseoftheS. nonagrioides populations occurring in the broader circum-Mediterranean area, with particular attention to the diapause period and the different numbers of generations per season. To this end, we tried to determine whether populations in the area differ in their response to photoperiod and whether we can foresee the number of generations in different areas. -
(Japanese Barnyard Millet) and E. Frumentacea (Indian Barnyard Millet) – a New Avenue for Genetic Enhancement of Barnyard Millet
Electronic Journal of Plant Breeding, 5(2): 248-253 (June 2014) ISSN 0975-928X Research Note Interspecific Hybrid between Echinochloa esculenta (Japanese barnyard millet) and E. frumentacea (Indian barnyard millet) – A New Avenue for Genetic Enhancement of Barnyard Millet Salej Sood*, R. K. Khulbe, Navinder Saini1, Arun Gupta2 and P. K. Agrawal Vivekananda Parvatiya Krishi Anusandhan Sansthan (ICAR), Almora, 263601- Uttarakhand, India Present Address:1Indian Agricultural Research Institute, New Delhi, India 2Directorate of Wheat Research, Karnal, India Email: [email protected] (Received: 15 Apr 2014; Accepted:28 Apr 2014 ) Abstract Inter-specific hybridization between the two cultivated species of barnyard millet, Echinochloa frumentacea (Indian barnyard millet) and E. esculenta (Japanese barnyard millet) holds enormous potential for their mutual genetic enhancement. Here, we report the success in obtaining inter-specific hybrid between E. esculenta and E. frumentacea involving cultivars PRJ 1 and ER 72 of the two species, respectively. The hybridity of F1 plants was confirmed through rice SSR (Simple Sequence Repeat) markers. The hybrid plants of the cross PRJ 1 x ER 72 were vigorous, heavily tillered with high culm branching and were free from grain smut disease but failed to set seed due to sterility. Successful hybridization between the two species opens up vast avenues for introgression of desirable traits and exploitation of genetic variability present in the two species for their mutual genetic improvement, besides a wide array of conventional and genomic researches particularly dissection of traits such as yield and disease resistance. Key words: Barnyard millet, hybrid sterility, SSR cross-transferability Barnyard millet (Echinochloa spp.) is one of the in the states of Uttarakhand, Madhya Pradesh, oldest domesticated millets in the semi-arid tropics Karnataka, Uttar Pradesh and North east region of of Asia and Africa. -
Evolution and Spread of Glyphosate Resistant Barnyard Grass (Echinochloa Colona (L.) Link) from Australia
Evolution and Spread of Glyphosate Resistant Barnyard Grass (Echinochloa colona (L.) Link) from Australia By Thai Hoan Nguyen This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Agriculture, Food and Wine Faculty of Sciences The University of Adelaide Waite Campus March, 2015 Abbreviations ACCase: Acetyl-CoA carboxylase AFLP: Amplified fragment length polymorphism AGRF: Australian Genome Research Facility ALS: Acetolactate synthase EPSP: 5-enolpyruvylshikimate-3-phosphate synthase HAT: Hour after treatment LD50: Lethal dosage (dose required to control 50% of individuals in the population) LSD: Least significant different NSW: New South Wales PCR: Polymerase chain reaction QLD: Queensland R/S: Resistance/susceptibility RAPD: Randomly amplified polymorphic DNAs RFLP: Restriction fragment length polymorphism SA: South Australia SE: Standard error SSR: Simple sequence repeats VIC: Victoria WA: Western Australia i Table of Contents Abbreviations ............................................................................................................................... i Table of contents ......................................................................................................................... ii List of tables ............................................................................................................................ viii List of figures ............................................................................................................................. -
Walker) (Lepidoptera
Journal of Entomology and Zoology Studies 2018; 6(6): 26-32 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Development of SSRs and its application in JEZS 2018; 6(6): 26-32 © 2018 JEZS genetic diversity study of Indian population of Received: 07-09-2018 Accepted: 09-10-2018 Sesamia inferens (Walker) (Lepidoptera: B Motcha Anthony Reetha Noctuidae) Ph.D. Scholar, Department of Biotechnology, Jain University, Bengaluru, Karnataka, India B Motcha Anthony Reetha and M Mohan M Mohan Principal Scientist, Division of Abstract Germplasm Collection and Pink stem borer (PSB) has become the major pest of cereals in India and other parts of the Asia. The Characterization, ICAR-National wide geographic distribution and broad host range of PSB is likely to result in high genetic variability Bureau of Agricultural Insect Resources, Bangalore, within the species. To understand this in better way we have identified six polymorphic SSRs out of 64 Karnataka, India SSRs developed from 497 genomic DNA sequences available in NCBI database. These six SSRs were able to show the genetic difference among the Sesamia inferens population with respect to their host preference. The result of UPGMA dendrogram and Principal component analysis by using jaccards similarity coefficient data, different populations of S. inferens were clustered according to host. These results suggest a low level of inter-population gene flow in pairwise populations from sorghum, sugarcane, maize and rice fields in India. Such levels of differentiation among populations may indicate only a moderate dispersal capacity of S. inferens, even when no remarkable geographic barriers exist. For an effective management of this pest in the future, there is urgent need for a better understanding of the gene flow of sympatric S. -
Western Ghats), Idukki District, Kerala, India
International Journal of Entomology Research International Journal of Entomology Research ISSN: 2455-4758 Impact Factor: RJIF 5.24 www.entomologyjournals.com Volume 3; Issue 2; March 2018; Page No. 114-120 The moths (Lepidoptera: Heterocera) of vagamon hills (Western Ghats), Idukki district, Kerala, India Pratheesh Mathew, Sekar Anand, Kuppusamy Sivasankaran, Savarimuthu Ignacimuthu* Entomology Research Institute, Loyola College, University of Madras, Chennai, Tamil Nadu, India Abstract The present study was conducted at Vagamon hill station to evaluate the biodiversity of moths. During the present study, a total of 675 moth specimens were collected from the study area which represented 112 species from 16 families and eight super families. Though much of the species has been reported earlier from other parts of India, 15 species were first records for the state of Kerala. The highest species richness was shown by the family Erebidae and the least by the families Lasiocampidae, Uraniidae, Notodontidae, Pyralidae, Yponomeutidae, Zygaenidae and Hepialidae with one species each. The results of this preliminary study are promising; it sheds light on the unknown biodiversity of Vagamon hills which needs to be strengthened through comprehensive future surveys. Keywords: fauna, lepidoptera, biodiversity, vagamon, Western Ghats, Kerala 1. Introduction Ghats stretches from 8° N to 22° N. Due to increasing Arthropods are considered as the most successful animal anthropogenic activities the montane grasslands and adjacent group which consists of more than two-third of all animal forests face several threats (Pramod et al. 1997) [20]. With a species on earth. Class Insecta comprise about 90% of tropical wide array of bioclimatic and topographic conditions, the forest biomass (Fatimah & Catherine 2002) [10]. -
The Role of Wild Host Plants in the Abundance of Lepidopteran Stem Borers Along Altitudinal Gradients in Kenya
Ann. soc. enromol. Fr. (n.s.), 2006, 42 (3-4) : 363-370 ARTICLE The role ofwild host plants in the abundance oflepidopteran stem borers along altitudinal gradient in Kenya GEORGE O. ONG'AMO(I), BRUNO P. LE RD(I), STI~,PHANE DUPAS(l), PASCAL MOYAL(l), ERIC MUCHUGU(3), PAUL-ANDRE CALATAYUD(I) & JEAN-FRAN<;:OIS SILVAIN(2) (I) Nocruid Stem Borer Biodiversity Project (NSBB), Insrirur de Recherche pour le Developpernenr I International Cenrre of Insect Physiology and Ecology (IRD/ICIPE), P.O. Box 30772, Nairobi, Kenya (2) IRD, UR R072 clo CNRS, UPR 9034, Laboraroire Evolution, Genomes et Speciarion, avenue de la Terrasse, 91198 Gif/Yvene, France (31 Stem borer Biological Control Project (ICIPE), P.O. Box 30772, Nairobi, Kenya Abstract. Presence of wild host plants of stem borers in cereal-growing areas has been considered as reservoirs of lepidopteran stem borers, responsible for attack of crops during the growing season. Surveys to catalogue hosts and borers as well as to assess the abundance of the hosts were carried out during the cropping and non-cropping seasons in different agro-ecological zones along varying altitude gradient in Kenya. A total of 61 stem borer species belonging to families Noctuidae (25), Crambidae (14), Pyralidae (9), Tortricidae (11) and Cossidae (2) were recovered from 42 wild plant species. Two noctuids, Busseola fusca (Fuller), Sesamia calamistis Hampson, and two crambids, Chilo partellus (Swinhoe) and Chilo orichalcociliellus (Strand) were the four main borer species found associated with maize plants. In the wild, B. fusca was recovered from a limited number of host plant species and among them were Sorghum arundinaceum (Desvaux) Stapf, Setaria megaphylla (Steudel) 1. -
INSECT RESISTANCE MONITORING REPORT for Sesamia Nonagrioides ASSOCIATED with MON 810 MAIZE CULTIVATION in the EU
INSECT RESISTANCE MONITORING REPORT FOR Sesamia nonagrioides ASSOCIATED WITH MON 810 MAIZE CULTIVATION IN THE EU Season 2017 CONTENTS 1. Introduction 2 2. Materials and methods 2.1. Insect collection 4 2.2. Insect culture 5 2.3. Quality of the laboratory strain 5 2.4. Cry1Ab protein 6 2.5. Bioassays 7 2.5.1. Susceptibility of the reference strains of S. nonagrioides 7 and O. nubilalis to the Cry1Ab protein in dose-response bioassays 2.5.2. Susceptibility of S. nonagrioides to the Cry1Ab protein in 8 diagnostic concentration bioassays 2.5.3. Larval development on MON 810 tissue 8 2.6. Statistical analysis 9 3. Results and Discussion 3.1. Collection of larvae 9 3.2. Susceptibility of the reference strains to the C ry1Ab protein in 10 dose-response bioassays 3.3. Diagnostic concentration bioassays 11 3.4. Confirmatory experiment: Development of larvae on MON 810 12 leaves 4. Summary of results 13 5. Concluding remarks 14 6. References 15 7. Tables and Figures 17-26 Annex I Stepwise approach followed to do the bioassays 27 Annex II Map with the sampling locations of S. nonagrioides larvae in 2017 28-29 Annex III Map with the sampling locations of O. nubilalis larvae in 2017 30-31 1 1. Introduction Maize containing event MON 810 is transgenic improved maize expressing the Cry1Ab protein derived from Bacillus thuringiensis subsp. kurstaki , and conferring protection against certain lepidopteran insect pests such as Ostrinia nubilalis and Sesamia nonagrioides . Resistance development in targeted lepidopteran pests is a potential concern arising from the widespread cultivation of MON 810 maize varieties. -
Molecular Characterization of Fall Armyworm (Spodoptera Frugiperda) Resistant to Vip3aa20 Protein Expressed in Corn
Molecular Characterization of Fall Armyworm (Spodoptera frugiperda) Resistant to Vip3Aa20 Protein Expressed in Corn Dissertation Presented in partial fulfillment of the requirements for the degree of doctor of philosophy in the Graduate School of The Ohio State University Julio Cesar Fatoretto, B. Sc. Graduate Program in Translational Plant Science The Ohio State University 2017 Dissertation Committee: Andrew P. Michel, Advisor Marcio C. Silva Filho Thomas Mitchell Fernando Consoli Copyright by Julio Cesar Fatoretto 2017 Abstract Transgenic plants containing genes from Bacillus thuringiensis have been used as an alternative to chemical insecticides for insect pest control. The vegetative insecticidal proteins (Vip) secreted during the vegetative growth phase of bacteria are considered a second generation of insecticidal proteins since they do not share any structural or sequence homology with previously used crystal proteins (Cry) as well as having a wide insecticidal spectrum. One of the target pests for this protein is the fall armyworm (FAW) (Spodoptera frugiperda), the most important corn pest in South America. Previously it has been controlled by insecticides and corn expressing Cry proteins, but has rapidly evolved resistance to many control practices and remains a top concern for sustainable biotechnology control efforts. Thus, resistance characterization involving mode of action and genetics of resistance can help with Insect Resistance Management strategies, and improve the durability of control. In this dissertation, using selected FAW population resistant to Vip3Aa20 Bt protein (Vip-R1and Vip-R2) we generated comparative proteomic and transcriptomic data among resistant and susceptible colonies. In the chapter 2, we bring FAW biology/ecology and Brazilian agriculture landscape data to support the high adaptive potential of this pest to genetically modified corn expressing Bt Cry proteins in Brazil. -
What We Have Learned About the Bermudagrass Stem Maggot
WHAT WE HAVE LEARNED ABOUT THE BERMUDAGRASS STEM MAGGOT D.W. Hancock, W.G. Hudson, L.L. Baxter, and J.T. McCullers1 Abstract Since first being discovered in southern Georgia in July 2010, the bermudagrass stem maggot (BSM; Atherigona reversura Villeneuve) has infested and damaged forage bermudagrass (Cynodon dactylon) throughout the southeastern United States. Our objectives for this presentation were to summarize the available literature on this new, invasive species and provide additional insight from what is currently known about other Atherigona spp. The BSM, along with other Atherigona spp., are small, muscid flies native to Central and Southeast Asia. The adult fly of the BSM lays its eggs on bermudagrass leaves. Upon hatching, the BSM larva slips into the sheath, down the tiller, and penetrates the pseudostem at the first node. The BSM larva then feeds on the vascular tissue, sap, and (potentially) the subsequent decaying plant material before exiting the tiller, pupating in the soil, and emerging as a fly. As a result of the larval feeding, bermudagrass exhibits senescence and necrosis of the terminal leaves on the affected shoots. The affected leaves are easily pulled out of the sheath and show obvious damage near the affected node. In severe infestations, over 80% of the tillers in a given area may be affected. There is a paucity of information about the lifecycle of A. reversura and how it can be managed or controlled, but some information is available on basic larva behavior, fly physiology, and the potential differences in resistance among some bermudagrass varieties. Additional research is underway to better understand the lifecycle of this species, confirm and quantify the degree of preference A. -
Comparison of Insects Species Composition in Natural, Semi
© 2021 JETIR May 2021, Volume 8, Issue 5 www.jetir.org (ISSN-2349-5162) Comparison of Insects Species Composition in Natural, Semi-Natural and Man-Made Ecosystems at Kuttiady Village, Kozhikode District, Kerala, Southern India S R Sreelakshmi1 and J Roopavathy2* 1 M.Sc., Student, PG and Research Department of Zoology, Nirmala College for Women (Autonomous), Coimbatore-18, Tamil Nadu 2 Assistant Professor, PG and Research Department of Zoology, Nirmala College for Women (Autonomous), Coimbatore-18, Tamil Nadu, *E-mail: [email protected] Abstract: A study investigated to explore the comparison of insect species composition in natural, semi natural and Man-made ecosystems at Kuttiady village, Kozhikode district of Kerala state, Southern India. Collection of insects belonging to different order and family was made by using variety of collection equipments and methods due to the diversity in their habitate. Study was carried out at selected habitats from August 2020- January 2021. A total of 51 insect species belonging to 8 different orders and 34 different families were recorded in the study area. Among these, 23 species were identified from natural ecosystem (12 families), 17 from semi-natural ecosystem (12 families) and 11 from Man-made ecosystem (11 families). During the present investigation high species composition was recorded in natural ecosystem followed by semi-natural ecosystem whereas the minimum species composition was noticed in Man-made ecosystem. The study conclude that the natural ecosystem support the existence of rich insect species might be due to favourable environmental and habitat conditions. Therefore, the continuous monitoring and conservation of natural ecosystems is highly essential for the sustenance of rich flora and fauna. -
Utilization of Kodo Millet in Flatbread Formulation
Utilization of kodo millet in flatbread formulation Dissertation-1 Report Submitted by: Amandeep Kaur Registration no. 11707233 Program – M.sc (food technology) Section – H1730 Department of Food Science and Technology School of Agriculture Lovely professional university, Phagwara Under the guidance of Dr Navnidhi Chhikkara Assistant professor Department of food technology School of Agriculture Lovely professional university 1 CERTIFICATE This is to certify that Amandeep Kaur (registration No.11707233) has personally completed M.Sc, dissertation entitled, “nutritional qualities and utilization of kodo millet” under my guidance and supervision. To the best of my knowledge, the present work is the result of her original investigation and study. No part of the dissertation has ever been submitted for any other purpose at any university. The project report is appropriate for the submission and the partial fulfilment of the condition for the evaluation leading to the award of Master of food technology. Dr. Navnidhi chikkara Assistance professor School of agriculture and food technology Lovely professional university 2 Declaration I hereby declare that the framework presented in the Thesis entitled “Nutritional qualities and utilization of kodo millet” is my own and original. The work will be carried out by me at the school of Agriculture, Lovely Professional University, Phagwara, Punjab, India, for the award of the degree of Master of Science in Food Technology. Amandeep Kaur Registration No: 11707233 I certified that the above statement made by the student is correct to the best of my knowledge and belief. Dr. Navnidhi chhikara Assistant professor (Food Technology) School of agriculture Lovely Professional University Phagwara, Punjab, India 3 Table of contents S.