Safe Handling of Pyrophoric (PP) Reagents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Direct Preparation of Some Organolithium Compounds from Lithium and RX Compounds Katashi Oita Iowa State College
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1955 Direct preparation of some organolithium compounds from lithium and RX compounds Katashi Oita Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Oita, Katashi, "Direct preparation of some organolithium compounds from lithium and RX compounds " (1955). Retrospective Theses and Dissertations. 14262. https://lib.dr.iastate.edu/rtd/14262 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. -
Dilithium Sequestrene As Ananticoagulant
J Clin Pathol: first published as 10.1136/jcp.12.3.254 on 1 May 1959. Downloaded from J. clin. Path. (1959), 12, 254. DILITHIUM SEQUESTRENE AS AN ANTICOAGULANT BY L. S. SACKER,* K. E. SAUNDERS,t BERYL PAGE, AND MARGARET GOODFELLOW From the Departments of Pathology, Dulwich and Lewisham Hospitals, London (RECEIVED FOR PUBLICATION SEPTEMBER 20, 1958) The variety of different anticoagulants used for Ethylene diamine tetra-acetic acid (E.D.T.A.), 29.2 blood samples has increased, but there is still need g., and 7.4 g. of lithium carbonate were intimately for a suitable anticoagulant for the routine mixed. Then 200 ml. of water was added and solution estimation of sodium and potassium by flame took place with vigorous evolution of carbon dioxide. photometry. So far the only satisfactory substance for this purpose has been the expensive calcium Method 2 heparin (King and Wootton, 1956). Disodium sequestrene (Proescher, 1951 ; Hadley E.D.T.A., 29.2 g., was dissolved in 200 ml. of normal and Larson, 1953) and dipotassium sequestrene lithium hydroxide solution (41.96 g. LiOH.H20 per are the most valuable of litre). (Hadley and Weiss, 1955) In both cases the resulting solution contained the the recently introduced anticoagulants for routine dilithium salt. haematological procedures because they preserve Dilithium sequestrene was obtained from these morphology of leucocytes for short periods the solutions after filtration to remove a small quantity copyright. better than the ammonium and potassium oxalate of amorphous debris, by precipitation on the addition mixture or heparin, and they prevent platelets of an equal volume of absolute methyl alcohol and clumping and preserve them. -
Multigram Chromatography-Free Synthesis of Octa (Ethylene Glycol) P
ORGANIC CHEMISTRY FRONTIERS View Article Online METHOD View Journal | View Issue Multigram chromatography-free synthesis of octa(ethylene glycol) p-toluenesulfonate† Cite this: Org. Chem. Front., 2016, 3, 1524 Adam M. Wawro,a Takahiro Muraoka,b,c Maho Katob and Kazushi Kinbara*b Here we report a detailed synthetic procedure for monodisperse octa(ethylene glycol) p-toluenesulfonate, Received 27th July 2016, a member of the heterobifunctional oligo(ethylene glycol) derivatives family. The method offers Accepted 3rd September 2016 completely chromatography-free workup and purification, resulting in higher yields and a lower cost than DOI: 10.1039/c6qo00398b any of the alternative strategies. We also introduce several upgrades, simplifying the method even more, rsc.li/frontiers-organic and discuss the chromatography-free design limitations. Introduction building blocks of functional compounds. Although tradition- ally PEGs have been produced by polymerization, yielding stat- Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Poly(ethylene glycol)s (PEGs) are frequently used in chemistry, istically distributed mixtures of individual polymer molecules, most notably for protein cross-linking and modification, the recent demand for more uniform PEGs has stimulated surface functionalization, and as flexible and hydrophilic studies on well-defined, single-molecule polymers. These PEGs, known as ‘discrete’, ‘unimolecular’ or ‘monodisperse’, consist of a single chemical species with a specific molecular a Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, weight. Monodisperse PEGs are obtained by classical step- 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan bSchool of Life Science and Technology, Tokyo Institute of Technology, by-step chemical synthesis, usually from inexpensive short 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan. -
Volumetric Labware Volumetric Labware
Volumetric Labware Volumetric Labware Volumetric Glassware NABL Certificate Please see list of Accreditation Bodies Worldwide from Page 148-151 38 Volumetric Labware In ASTM standards cylinders are now calibrated "to deliver" (TD), which has been recently introduce in Cylinder section. 39 Volumetric Labware BATCH CERTIFICATE Volumetric flasks comes with a batch certificate in which mean value, standard deviation is incorporated along with batch number like which signifies the month 01 and 10 is the year 01.10 This comes in a pack of 1 and comes along with the flask in the box you can also download it from www.glasscolabs.com and by scanning the QR Code from the label of the box. QR CODES ! Scan For Certicates Now On Cartons Of All Glassco Wares! Use your Smartphone to scan the QR Code on the box labels … Just select the Certicate you wish to see… Conformity… Calibration … (Individual or Batch) INDIVIDUAL CERTIFICATE These flasks comes with a certificate on which individual serial number, mean value, standard deviation and measured uncertainty is given along with the batch number and serial number like 01.10 (Month and year of manufacturing) 505 (serial number) 01.10 5 0 5 This comes in a pack of one and each flask is having a certificate with it in the box you can also download it from www.glasscolabs.com and by scanning the QR Code from the label of the box. USP Glassware All the volumetric glassware or measuring instruments to be used in laboratories which are under surveillance of US authorities such as Food and Drug Administration (FDA), have a mandatory requirement to use products which adhere to standards set by US PHARMACOPEIA. -
Reducible Sulfur in Paper and Paperboard (Revision of T 406 Om-08) (No Changes from Draft 2)
NOTICE: This is a DRAFT of a TAPPI Standard in ballot. Although available for public viewing, it is still under TAPPI’s copyright and may not be reproduced or distributed without permission of TAPPI. This draft is NOT a currently published TAPPI Standard. WI 120802.02 T 406 DRAFT NO. 3 DATE April 30, 2013 WORKING GROUP CHAIRMAN James C. Abbott SUBJECT CATEGORY Chemical Properties RELATED METHODS See “Additional Information” CAUTION: This Test Method may include safety precautions which are believed to be appropriate at the time of publication of the method. The intent of these is to alert the user of the method to safety issues related to such use. The user is responsible for determining that the safety precautions are complete and are appropriate to their use of the method, and for ensuring that suitable safety practices have not changed since publication of the method. This method may require the use, disposal, or both, of chemicals which may present serious health hazards to humans. Procedures for the handling of such substances are set forth on Material Safety Data Sheets which must be developed by all manufacturers and importers of potentially hazardous chemicals and maintained by all distributors of potentially hazardous chemicals. Prior to the use of this method, the user must determine whether any of the chemicals to be used or disposed of are potentially hazardous and, if so, must follow strictly the procedures specified by both the manufacturer, as well as local, state, and federal authorities for safe use and disposal of these chemicals. Reducible sulfur in paper and paperboard (Revision of T 406 om-08) (no changes from Draft 2) 1. -
Sulfur Dioxide
Corn Sugar (crude & refined) Analysis F-54-1 SULFUR DIOXIDE PRINCIPLE Sulfur dioxide is released by boiling an acidic sample solution, and it is removed by sweeping with a stream of nitrogen. The gas stream is passed through dilute hydrogen peroxide solution where sulfur dioxide is oxidized to sulfuric acid. The acid is titrated with standard alkali. (Note 1) SCOPE The method applies to crude and refined sugars (Note 2) and, with minor modification, to most liquid and solid samples even in the presence of other volatile compounds. SPECIAL APPARATUS 1. The FDA modified "Monier-Williams" apparatus (Figure 1) is available from Fisher Scientific, 91/92 Cat. No. K513800 (Kontes 513800), Pittsburgh, PA, and affiliates worldwide. It or some of its parts are also available from other laboratory supply houses. (Note 3) 2. Heating mantle, for a 1000 mL boiling flask, controlled by a variable transformer. 3. Flow controlling valve, with flow indicator, capable of controlling nitrogen gas flow to 200 mL/min. 4. Refrigerated, circulating bath capable of maintaining flow through condenser at 5-10 °C (Note 4) 5. Vortex mixer 6. Buret, class A, 10 mL 7. Pipet bulb Analytical Methods of the Member Companies of the Corn Refiners Association, Inc. Accepted 11-13-61 Revised 4-9-91 Corn Sugar (crude & refined) Analysis F-54-2 SULFUR DIOXIDE ⎯ continued REAGENTS 1. Hydrogen Peroxide Solution, 3%: Dilute 10 mL of C.P. neutral 30% hydrogen peroxide (H2O2) with purified water to 100 mL. Prepare daily. 2. Sodium Hydroxide Solution, 0.01 N: Dilute 10 mL of 0.100 N NaOH solution to 100 mL. -
Electrolyte Stability and Discharge Products of an Ionic-Liquid-Based Li-O2 Battery Revealed by Soft X-Ray Emission Spectroscopy
Lawrence Berkeley National Laboratory Recent Work Title Electrolyte Stability and Discharge Products of an Ionic-Liquid-Based Li-O2 Battery Revealed by Soft X-Ray Emission Spectroscopy Permalink https://escholarship.org/uc/item/6gd3f1x1 Journal Journal of Physical Chemistry C, 123(51) ISSN 1932-7447 Authors León, A Fiedler, A Blum, M et al. Publication Date 2019-12-26 DOI 10.1021/acs.jpcc.9b08777 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Electrolyte Stability and Discharge Products of an Ionic- Liquid-based Li-O2 Battery Revealed by Soft X-Ray Emission Spectroscopy Aline Léon*1, Andy Fiedler2, Monika Blum3,4, Wanli Yang4, Marcus Bär5,6,7, Frieder Scheiba2, Helmut Ehrenberg2, Clemens Heske1,3,8, and Lothar Weinhardt1,3,8 1) Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany 2) Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany 3) Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), NV 89154-4003, USA 4) Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States 5) Department of Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany 6) Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Albert-Einstein-Str. 15, 12489 Berlin, Germany 1 7) Department of Chemistry and Pharmacy, Friedrich-Alexander- Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Erlangen, Germany 8) Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. -
Azoniaspiro Salts: Towards Bridging the Gap Between Room-Temperature Ionic Liquids and Molten Salts
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016 Azoniaspiro salts: towards bridging the gap between room-temperature ionic liquids and molten salts Matthew T. Clough,a,b Karolin Geyer,c Patricia A. Hunt,*a Alastair J. S. McIntosh,a Rebecca Rowe,a Tom Welton*a and Andrew J. P. Whitea a Department of Chemistry, Imperial College London, London, UK, SW7 2AZ, United Kingdom b Max-Planck-Institut für Kohlenforschung, 45470 Mülheim-an-der-Ruhr, Germany c BASF SE, Ludwigshafen, Germany * Corresponding Authors: [email protected] [email protected] Electronic Supplementary Information 1. General laboratory procedures 2 2. Synthesis of ionic compounds 2 3. TGA procedures 8 4. TGA-MS procedures 9 5. TGA-GCMS procedures 9 6. X-Ray Crystallography procedures and data 10 7. Computational methods 12 8. Ion pair conformers and transition state structures 13 1 1. General laboratory procedures All reactions requiring an inert atmosphere were performed under a blanket of nitrogen gas, which was dried through a column of phosphorus pentoxide. All commercially acquired chemicals were obtained from Sigma- Aldrich or Tokyo Chemical Industry, and were used without further purification unless otherwise stated. Anhydrous solvents were dried through an HPLC column on an Innovative Technology Inc. solvent purification system. NMR spectra were recorded on Bruker Avance-400 (1H NMR (400 MHz), 13C (100 MHz), 19F (376 MHz)) NMR spectrometers. Chemical shifts are reported in ppm (relative to the DMSO-d6 residual peak). IR spectra were recorded on a Perkin Elmer spectrum 100 FTIR using an ATR inset with a diamond crystal. -
Common Name: LITHIUM ALUMINUM HYDRIDE HAZARD
Common Name: LITHIUM ALUMINUM HYDRIDE CAS Number: 16853-85-3 RTK Substance number: 1121 DOT Number: UN 1410 Date: April 1986 Revision: November 1999 ----------------------------------------------------------------------- ----------------------------------------------------------------------- HAZARD SUMMARY * Lithium Aluminum Hydride can affect you when * Exposure to hazardous substances should be routinely breathed in. evaluated. This may include collecting personal and area * Contact can cause severe skin and eye irritation and burns. air samples. You can obtain copies of sampling results * Breathing Lithium Aluminum Hydride can irritate the from your employer. You have a legal right to this nose and throat. information under OSHA 1910.1020. * Breathing Lithium Aluminum Hydride can irritate the * If you think you are experiencing any work-related health lungs causing coughing and/or shortness of breath. Higher problems, see a doctor trained to recognize occupational exposures can cause a build-up of fluid in the lungs diseases. Take this Fact Sheet with you. (pulmonary edema), a medical emergency, with severe shortness of breath. WORKPLACE EXPOSURE LIMITS * Exposure can cause loss of appetite, nausea, vomiting, The following exposure limits are for Aluminum pyro powders diarrhea and abdominal pain. (measured as Aluminum): * Lithium Aluminum Hydride can cause headache, muscle weakness, loss of coordination, confusion, seizures and NIOSH: The recommended airborne exposure limit is coma. 5 mg/m3 averaged over a 10-hour workshift. * High exposure can affect the thyroid gland function resulting in an enlarged thyroid (goiter). ACGIH: The recommended airborne exposure limit is * Lithium Aluminum Hydride may damage the kidneys. 5 mg/m3 averaged over an 8-hour workshift. * Lithium Aluminum Hydride is a REACTIVE CHEMICAL and an EXPLOSION HAZARD. -
Lithium Aluminum Hydride
Lithium aluminum hydride sc-215254 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Lithium aluminum hydride STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY4 HEALTH3 HAZARD INSTABILITY2 W SUPPLIER Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 SYNONYMS Li-Al-H4, Al-H4-Li, "lithium aluminum hydride", "lithium aluminum tetrahydride", "lithium aluminium tetrahydride", "lithium tetrahydroaluminate", "aluminate, tetrahydro-, lithium", "lithium aluminohydride", "aluminum lithium hydride", "lithium alanate", LAH Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability 4 Toxicity 2 Body Contact 4 Min/Nil=0 Low=1 Reactivity 2 Moderate=2 High=3 Chronic 2 Extreme=4 CANADIAN WHMIS SYMBOLS 1 of 10 CANADIAN WHMIS CLASSIFICATION CAS 16853-85-3Lithium tetrahydroaluminate E-Corrosive Material EMERGENCY OVERVIEW RISK Causes severe burns. Risk of serious damage to eyes. Reacts violently with water liberating extremely flammable gases. Extremely flammable. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ■ The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion. ■ Ingestion of alkaline corrosives may produce burns around the mouth, ulcerations and swellings of the mucous membranes, profuse saliva production, with an inability to speak or swallow. Both the oesophagus and stomach may experience burning pain; vomiting and diarrhoea may follow. ■ Accidental ingestion of the material may be damaging to the health of the individual. -
Chemical List
1 EXHIBIT 1 2 CHEMICAL CLASSIFICATION LIST 3 4 1. Pyrophoric Chemicals 5 1.1. Aluminum alkyls: R3Al, R2AlCl, RAlCl2 6 Examples: Et3Al, Et2AlCl, EtAlCl2, Me3Al, Diethylethoxyaluminium 7 1.2. Grignard Reagents: RMgX (R=alkyl, aryl, vinyl X=halogen) 8 1.3. Lithium Reagents: RLi (R = alkyls, aryls, vinyls) 9 Examples: Butyllithium, Isobutyllithium, sec-Butyllithium, tert-Butyllithium, 10 Ethyllithium, Isopropyllithium, Methyllithium, (Trimethylsilyl)methyllithium, 11 Phenyllithium, 2-Thienyllithium, Vinyllithium, Lithium acetylide ethylenediamine 12 complex, Lithium (trimethylsilyl)acetylide, Lithium phenylacetylide 13 1.4. Zinc Alkyl Reagents: RZnX, R2Zn 14 Examples: Et2Zn 15 1.5. Metal carbonyls: Lithium carbonyl, Nickel tetracarbonyl, Dicobalt octacarbonyl 16 1.6. Metal powders (finely divided): Bismuth, Calcium, Cobalt, Hafnium, Iron, 17 Magnesium, Titanium, Uranium, Zinc, Zirconium 18 1.7. Low Valent Metals: Titanium dichloride 19 1.8. Metal hydrides: Potassium Hydride, Sodium hydride, Lithium Aluminum Hydride, 20 Diethylaluminium hydride, Diisobutylaluminum hydride 21 1.9. Nonmetal hydrides: Arsine, Boranes, Diethylarsine, diethylphosphine, Germane, 22 Phosphine, phenylphosphine, Silane, Methanetellurol (CH3TeH) 23 1.10. Non-metal alkyls: R3B, R3P, R3As; Tributylphosphine, Dichloro(methyl)silane 24 1.11. Used hydrogenation catalysts: Raney nickel, Palladium, Platinum 25 1.12. Activated Copper fuel cell catalysts, e.g. Cu/ZnO/Al2O3 26 1.13. Finely Divided Sulfides: Iron Sulfides (FeS, FeS2, Fe3S4), and Potassium Sulfide 27 (K2S) 28 REFERRAL -
Synthesis of Lithium Peroxide from Hydrogen Peroxide and Lithium Hydroxide in Aqueous-Organic Medium: Wasteless Technology
MATEC Web of Conferences 96, 00004 (2017) DOI: 10.1051/ matecconf/20179600004 REE-2016 Synthesis of Lithium Peroxide from Hydrogen Peroxide and Lithium Hydroxide in Aqueous-Organic Medium: Wasteless Technology Roman Nefedov* and Yury Ferapontov Tambov State Technical University, Tambov, Russia Abstract. Lithium is a rare element, and widely used in manufacturing, electronics, medicine, and etc. One of the important lithium compounds is lithium peroxide. It is a component of regenerating products to protect the human respiratory system from damaging factors of chemical and biological nature. This paper describes the methods of obtaining the lithium peroxide. All industrial techniques for the synthesis of lithium peroxide are presented. A critical assessment of these techniques is given. A new wasteless synthesis technology of lithium peroxide from Hydrogen Peroxide and Lithium Hydroxide in Aqueous-Organic Medium is presented. This technology allows obtaining the pure product containing Li2O2 up to 94 %. The possibility of the solvent regeneration by the anhydrous lithium hydroxide has been shown. The yield of the lithium – 98 % and a significant reduction in solvent consumption per unit of finished product has been obtained. 1 Introduction The use of ethanol is not a prerequisite for obtaining lithium peroxide, although it is beneficial in terms of that The inorganic peroxide compounds based on rare, lithium peroxide contained in it unlike other organic radioactive, and especially alkali metals have a wide substances practically insoluble (dissolved in methanol range of industrial applications (e.g., energy storage and about 3.5 g/L Li2O2. Ethanol can be replaced by other oxygen source, etc.) [1, 2]. organic solvents (methanol, pyridine, propanol, kenotic An identifying characteristic of inorganic peroxide and others [12, 14]).