Ultimate Ruin Probability in the Dependent Claim Sizes and Claim Occurrence Times Models

Total Page:16

File Type:pdf, Size:1020Kb

Ultimate Ruin Probability in the Dependent Claim Sizes and Claim Occurrence Times Models University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-07-10 Ultimate Ruin Probability in the Dependent Claim Sizes and Claim Occurrence Times Models Thompson, Emmanuel Thompson, E. (2013). Ultimate Ruin Probability in the Dependent Claim Sizes and Claim Occurrence Times Models (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/28541 http://hdl.handle.net/11023/801 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Ultimate Ruin Probability in the Dependent Claim Sizes and Claim Occurrence Times Models by Emmanuel Thompson A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MATHEMATICS AND STATISTICS CALGARY, ALBERTA JULY, 2013 c Emmanuel Thompson 2013 Abstract In the literature of risk theory, two risk models have emerged to have been studied extensively. These are the Classical Compound Poisson risk model and the Continuous Time Renewal risk model also referred to as Sparre-Andersen model. The focus of this thesis is the latter and in the Sparre-Andersen risk model, the distribution of claim inter-arrival times (T ) and the claim sizes (amounts) (X) are assumed to be independent. This assumption is not only too restrictive but also inappropriate for some real world situations like collision coverages under automobile insurance in cities with hash weather conditions. In this thesis, the assumption of independence between T and X for different classes of bivariate distributions is relaxed prior to computing the ultimate ruin probability. Also, the effect of correlation on ruin probability is investigated. Correlation is introduced through the use of the Moran and Downton's bivariate Exponential distribution. The underlying method in the entire modeling process is the Wiener-Hopf factorization technique, details of which are covered in chapter 2. The main results are covered in chapters 3, 4, 5, 6 and 7. In all of these chapters, we assume T to follow an Exponential distribution while X is Gamma distributed with shape parameter 2 in chapter 3. In chapter 4, X follows Gamma distribution with shape parameter (m) where m is greater than 2. In chapter 5, a mixture of Exponential (Hyper Exponential) distributions is used to model X. The Pareto distribution is used to model X in chapter 6, in the modeling process however, the cummulative distribution function (CDF) of W = X − cT where (T;X) is Exponential-Pareto distribution is approximated by the CDF of Y = X − cT where (T;X) is Exponential-Hyper Exponential distribution and Exponential- Gamma (m) distribution with the main estimation approach being method of moments estimation. Chapter 7 follows somewhat a different approach by employing asymmetric finite mixture of Double Exponential distributions and the EM algorithm prior to computing i the ruin probability. In some of these situations, an explicit expression for the ultimate ruin probability is obtained and in chapters 3 and 5, we show that increasing correlation between T and X diminishes the impact of ruin probability. Also, in situations where an explicit expression for the ultimate ruin probability is not possible, excellent approximation is obtained. Chapter 8 summarizes the entire thesis, provides concluding remarks and future research. Acknowledgments This thesis would not have been possible without the guidance and the help of several indi- viduals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this study. First and foremost, my utmost gratitude to my su- pervisor, advisor and teacher, Professor Rohana S. Ambagaspitiya whose guidance, sincerity and encouragement I will never forget. I am grateful to my supervisory committee members, particularly Professor David Scollnik and Professor Alexandru Badescu for their concern and deep seated advice. I am highly indebted to Professor Abraham Olatunji Fapojuwo from Faculty of Engineering, University of Calgary who accepted to serve as internal/external examiner and my profound appreciation also goes to Professor Cary Tsai from Simon Fraser university actuarial science program who accepted to serve as an external examiner to this thesis. Professor Renate Scheidler, director of graduate studies in the department of Mathematics and Statistics had kind concern and consideration regarding my academic requirements to whom I say a big thank you. I am also thankful to the many wonderful people I came into contact with during both my Masters and PhD degree. Of particular reference is Niroshan Withanage, Beilei Wu my colleagues, and all my office mates Shuang Lu, Xia Bing and Shiva Gopal Wagle. Last but not the least, my lovely wife Sandra Senam Addison, my parents and the one above all of us, the omnipresent God, for answering my prayers for giving me the strength to plod on despite my constitution wanting to give up and throw in the towel, thank you so much Dear Lord. iii Table of Contents Abstract ........................................ i Acknowledgments .................................. iii Table of Contents . iv List of Tables . vii List of Figures . viii List of Symbols . ix 1 Introduction . 1 1.1 Collective Risk Theory . 1 1.1.1 Historical Perspective . 1 1.2 Risk Models . 3 1.2.1 The Compound Binomial Model . 4 1.2.2 The Compound Poisson Model . 5 1.2.3 The Compound Mixed Poisson Model . 6 1.2.4 The Compound Negative Binomial Model . 6 1.3 Claim Size Distributions . 7 1.3.1 Light-Tailed Claim Distribution . 7 1.3.2 Heavy-Tailed Claim Distribution . 8 1.4 Arrival Process . 8 1.5 Risk Surplus Process and Ruin Probability . 10 1.5.1 Classical Compound Poisson Risk Model . 11 1.5.2 Continuous Time Renewal Process . 11 1.6 Mathematical Preliminaries . 14 1.6.1 Moran and Downton's Bivariate Exponential Distribution . 14 1.6.2 Laplace Transform . 15 1.6.3 Inverse Laplace Transform . 15 1.6.4 Rational Function . 16 1.6.5 Locating Zeros of a Certain Polynomial . 16 2 Wiener-Hopf Factorization Method . 18 2.1 Introduction . 18 2.2 Ladder Processes . 18 2.3 Renewal Functions . 20 2.4 Maximum and Minimum . 24 2.5 Survival Probability . 27 3 Ruin Probability for Correlated Poisson Claim Count and Gamma (2) Risk Process . 30 3.1 Introduction . 30 3.1.1 Poisson Claim . 30 3.1.2 Relationship Between Poisson and Exponential Distribution . 31 3.2 Joint Moment Generating Function of (T;X).................. 31 3.3 Characteristic Function of Y and its Related Transform . 32 3.4 Zeros of the Polynomials g(s) and g(s) − z ................... 33 3.5 Factors and Properties of the Transform of Y . 36 iv 3.6 Survival Probability . 38 3.7 Effect of Correlation on Ultimate Ruin Probability . 40 3.8 Numerical Examples . 40 4 Ruin Probability for Correlated Poisson Claim Count and Gamma (m) Risk Process . 44 4.1 Introduction . 44 4.2 Joint Moment Generating Function of (T;X).................. 44 4.3 Characteristic Function of Y and its Related Transform . 45 4.4 Zeros of the Polynomial g(s) − z ......................... 46 4.4.1 Application of Rouche's Theorem . 50 4.5 Factors and Properties of the Transform of Y . 53 4.6 Survival Probability . 54 4.7 Numerical Examples . 56 5 Ruin Probability for Correlated Poisson Claim Count and Hyper Exponential Risk Process . 59 5.1 Introduction . 59 5.1.1 Hyper Exponential Distribution . 59 5.2 Joint Moment Generating Function of (T;Xj) . 62 5.3 Characteristic Function of Y and Related Transform . 62 5.3.1 Zeros of a Certain m + 1 Degree Polynomial . 65 5.4 Survival Probability . 71 5.5 Numerical Examples . 73 6 Ruin Probability for Correlated Poisson Claim Count and Pareto Risk Process 77 6.1 Introduction . 77 6.1.1 Pareto Distribution . 77 6.1.2 Method of Moments Matching . 78 6.2 The Bivariate Exponential-Pareto Distribution . 79 6.3 Approximating Distributions . 83 6.3.1 Mixture of Exponential Distributions . 83 6.3.2 Gamma (m) Distribution . 84 6.4 Numerical Results . 86 7 Asymmetric Double Exponential Distributions and its Finite Mixtures . 92 7.1 Introduction . 92 7.1.1 Double Exponential Distribution . 92 7.1.2 Finite Mixture Models . 93 7.2 Asymmetric Double Exponential Distribution . 94 7.2.1 MLE of Parameters . 94 7.3 Finite Mixture . 96 7.4 Numerical Results . 97 8 Summary, Concluding Remarks and Future Research . 115 8.1 Summary . 115 8.1.1 Chapter 2: Wiener-Hopf Factorization Method . 115 8.1.2 Chapter 3: Ruin Probability for Correlated Poisson Claim Count and Gamma (2) Risk Process . 116 v 8.1.3 Chapter 4: Ruin Probability for Correlated Poisson Claim Count and Gamma (m) Risk Process . 118 8.1.4 Chapter 5: Ruin Probability for Correlated Poisson Claim Count and Hyper Exponential Risk Process . 119 8.1.5 Chapter 6: Ruin Probability for Correlated Poisson Claim Count and Pareto Risk Process . 120 8.1.6 Chapter 7: Asymmetric Double Exponential Distributions and its Fi- nite Mixtures . 121 8.2 Concluding Remarks . 121 8.3 Future Research . 122 Bibliography . 123 A Maple and Matlab codes . 128 A.1 Maple Codes . ..
Recommended publications
  • Official Journal of the Bernoulli Society for Mathematical Statistics And
    Official Journal of the Bernoulli Society for Mathematical Statistics and Probability Volume Twenty One Number Four November 2015 ISSN: 1350-7265 CONTENTS Papers BEN ALAYA, M., HAJJI, K. and KEBAIER, A. 1947 Importance sampling and statistical Romberg method REBELLES, G. 1984 Pointwise adaptive estimation of a multivariate density under independence hypothesis OGIHARA, T. 2024 Local asymptotic mixed normality property for nonsynchronously observed diffusion processes ADAMCZAK, R. and BEDNORZ, W. 2073 Some remarks on MCMC estimation of spectra of integral operators AKASHI, F., LIU, Y. and TANIGUCHI, M. 2093 An empirical likelihood approach for symmetric α-stable processes VOS, P. and WU, Q. 2120 Maximum likelihood estimators uniformly minimize distribution variance among distribution unbiased estimators in exponential families BOURGUIN, S. 2139 Poisson convergence on the free Poisson algebra FANG, X. and RÖLLIN, A. 2157 Rates of convergence for multivariate normal approximation with applications to dense graphs and doubly indexed permutation statistics CHONG, C. and KLÜPPELBERG, C. 2190 Integrability conditions for space–time stochastic integrals: Theory and applications CHEN, F. and NKURUNZIZA, S. 2217 Optimal method in multiple regression with structural changes GIACOMIN, G. and MERLE, M. 2242 Weak noise and non-hyperbolic unstable fixed points: Sharp estimates on transit and exit times BULL, A.D. 2289 Adaptive-treed bandits (continued) The papers published in Bernoulli are indexed or abstracted in Current Index to Statistics, Mathematical Reviews, Statistical Theory and Method Abstracts-Zentralblatt (STMA-Z), and Zentralblatt für Mathematik (also avalaible on the MATH via STN database and Compact MATH CD-ROM). A list of forthcoming papers can be found online at http://www.
    [Show full text]
  • Convoluted Fractional Poisson Process
    ALEA, Lat. Am. J. Probab. Math. Stat. 18, 1241–1265 (2021) DOI: 10.30757/ALEA.v18-46 Convoluted Fractional Poisson Process Kuldeep Kumar Kataria and Mostafizar Khandakar Department of Mathematics Indian Institute of Technology Bhilai Raipur-492015, India. E-mail address: [email protected], [email protected] Abstract. In this paper, we introduce and study a convoluted version of the time fractional Poisson process by taking the discrete convolution with respect to space variable in the system of fractional differential equations that governs its state probabilities. We call the introduced process as the convoluted fractional Poisson process (CFPP). It has integer valued jumps of size j ≥ 1. The explicit expression for the Laplace transform of its state probabilities are obtained whose inversion yields its one-dimensional distribution. A special case of the CFPP, namely, the convoluted Poisson process (CPP) is studied and its time-changed subordination relationships with CFPP are discussed. It is shown that the CPP is a Lévy process using which the long-range dependence property of CFPP is established. Moreover, we show that the increments of CFPP exhibits short-range dependence property. 1. Introduction The Poisson process is a renewal process with exponentially distributed waiting times. This Lévy process is often used to model the counting phenomenon. Empirically, it is observed that the process with heavy-tailed distributed waiting times offers a better model than the ones with light-tailed distributed waiting times. For this purpose several fractional generalizations of the homogeneous Poisson process are introduced and studied by researchers in the past two decades.
    [Show full text]
  • Text Mining and Ruin Theory: a Case Study of Research on Risk Models with Dependence ∗
    Text mining and ruin theory: A case study of research on risk models with dependence ∗ Authors: Renata G. Alcoforado { ISEG & CEMAPRE, Universidade de Lisboa; Department of Accounting and Actuarial Sciences, Universidade Federal dePernambuco, Portugal & Brazil ([email protected]) Alfredo D. Eg´ıdio dos Reis { ISEG & CEMAPRE, Universidade de Lisboa Portugal ([email protected]) Abstract: • This paper aims to analyze unstructured data using a text mining approach. The work was motivated in order to organize and structure research in Risk Theory. In our study, the subject to be analyzed is composed by 27 published papers of the risk and ruin theory topic, area of actuarial science. They were coded into 32 categories. For the purpose, all data was analyzed and figures were produced using the software NVivo 11 plus. Software NVivo is a specialized tool in analyzing unstructured data, although it is commonly used just for qualitative research. We used it for Quali-Quant analysis. Key-Words: • Big data; Unstructured data; Text mining; Risk theory; Ruin theory; Dependence modeling. AMS Subject Classification: • 49A05, 78B26. ∗The opinions expressed in this text are those of the authors and do not necessarily reflect the views of any organization. 2 Renata G. Alcoforado and Alfredo D. Eg´ıdiodos Reis Using the \revstat.sty" Package 3 1. INTRODUCTION As widely known, Big Data is an area of great development in statistics. We can define Big Data as \a phenomenon defined by the rapid acceleration in the expanding volume of high velocity, complex, and diverse types of data. Big Data is often defined along three dimensions { volume, velocity, and variety" (TechAmerica Foundation's Federal Big Data Commission, 2012).
    [Show full text]
  • On the Profitability of Selfish Blockchain Mining Under Consideration of Ruin Hansjörg Albrecher, Pierre-Olivier Goffard
    On the profitability of selfish blockchain mining under consideration of ruin Hansjörg Albrecher, Pierre-Olivier Goffard To cite this version: Hansjörg Albrecher, Pierre-Olivier Goffard. On the profitability of selfish blockchain mining under consideration of ruin. 2021. hal-02649025v3 HAL Id: hal-02649025 https://hal.archives-ouvertes.fr/hal-02649025v3 Preprint submitted on 26 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the profitability of selfish blockchain mining under consideration of ruin Hansjörg Albrecher∗ and Pierre-O. Goffard† Abstract Mining blocks on a blockchain equipped with a proof of work consensus protocol is well-known to be resource-consuming. A miner bears the operational cost, mainly electricity consumption and IT gear, of mining, and is compensated by a capital gain when a block is discovered. This paper aims at quantifying the profitability of min- ing when the possible event of ruin is also considered. This is done by formulating a tractable stochastic model and using tools from applied probability and analysis, including the explicit solution of a certain type of advanced functional differential equation. The expected profit at a future time point is determined for the situation when the miner follows the protocol as well as when he/she withholds blocks.
    [Show full text]
  • Duality in Ruin Problems for Ordered Risk Models Pierre-Olivier Goffard, Claude Lefèvre
    Duality in ruin problems for ordered risk models Pierre-Olivier Goffard, Claude Lefèvre To cite this version: Pierre-Olivier Goffard, Claude Lefèvre. Duality in ruin problems for ordered risk models. 2016. hal-01398910v2 HAL Id: hal-01398910 https://hal.archives-ouvertes.fr/hal-01398910v2 Preprint submitted on 9 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Duality in ruin problems for ordered risk models Pierre-Olivier Goffard∗, Claude Lef`evrey September 18, 2017 Abstract On one hand, an ordered dual risk model is considered where the profit arrivals are governed by an order statistic point process (OSPP). First, the ruin time distribution is obtained in terms of Abel-Gontcharov polynomials. Then, by duality, the ruin time distribution is deduced for an insurance model where the claim amounts correspond to the inter-arrival times in an OSPP. On the other hand, an ordered insurance model is considered with an OSPP as claim arrival process. Lef`evreand Picard [28] determined the finite-time ruin probability in terms of Appell polynomials. Duality is used to derive the ruin probability in a dual model where the profit sizes correspond to the inter-arrival times of an OSPP.
    [Show full text]
  • Text Mining and Ruin Theory: a Case Study of Research on Risk Models with Dependence
    REVSTAT – Statistical Journal Volume 18, Number 4, October 2020, 483–499 TEXT MINING AND RUIN THEORY: A CASE STUDY OF RESEARCH ON RISK MODELS WITH DEPENDENCE Authors: Renata G. Alcoforado – ISEG & CEMAPRE, Universidade de Lisboa, Portugal and Department of Accounting and Actuarial Sciences, Universidade Federal de Pernambuco, Brazil [email protected] Alfredo D. Eg´ıdio dos Reis – ISEG & CEMAPRE, Universidade de Lisboa Portugal [email protected] Received: December 2017 Revised: June 2018 Accepted: June 2018 Abstract: • This paper aims to analyze unstructured data using a text mining approach. The work was motivated in order to organize and structure research in Risk Theory. In our study, the subject to be analyzed is composed by 27 published papers of the risk and ruin theory topic, area of actuarial science. They were coded into 32 categories. For the purpose, all data was analyzed and figures were produced using the software NVivo 11 plus. Software NVivo is a specialized tool in analyzing unstructured data, although it is commonly used just for qualitative research. We used it for Quali-Quant analysis. Keywords: • big data; unstructured data; text mining; risk theory; ruin theory; dependence modeling. AMS Subject Classification: • 49A05, 78B26. 484 Renata G. Alcoforado and Alfredo D. Eg´ıdio dos Reis 1. INTRODUCTION As widely known, Big Data is an area of great development in statistics. We can define Big Data as “a phenomenon defined by the rapid acceleration in the expanding volume of high velocity, complex, and diverse types of data. Big Data is often defined along three dimensions — volume, velocity, and variety” (TechAmerica Foundation’s Federal Big Data Commission [44], 2012).
    [Show full text]
  • Mathematical Tripos Part III Lecture Courses in 2013-2014
    Mathematical Tripos Part III Lecture Courses in 2013-2014 Department of Pure Mathematics & Mathematical Statistics Department of Applied Mathematics & Theoretical Physics Notes and Disclaimers. • Students may take any combination of lectures that is allowed by the timetable. The examination timetable corresponds to the lecture timetable and it is therefore not possible to take two courses for examination that are lectured in the same timetable slot. There is no requirement that students study only courses offered by one Department. • The code in parentheses after each course name indicates the term of the course (M: Michaelmas; L: Lent; E: Easter), and the number of lectures in the course. Unless indicated otherwise, a 16 lecture course is equivalent to 2 credit units, while a 24 lecture course is equivalent to 3 credit units. Please note that certain courses are non-examinable, and are indicated as such after the title. Some of these courses may be the basis for Part III essays. • At the start of some sections there is a paragraph indicating the desirable previous knowledge for courses in that section. On one hand, such paragraphs are not exhaustive, whilst on the other, not all courses require all the pre-requisite material indicated. However you are strongly recommended to read up on the material with which you are unfamiliar if you intend to take a significant number of courses from a particular section. • The courses described in this document apply only for the academic year 2013-14. Details for subsequent years are often broadly similar, but not necessarily identical. The courses evolve from year to year.
    [Show full text]
  • Ruin Models with Investment Income 417 the 20Th Century the Theory of Stochastic Processes Was Far Less Developed, and Also Far Less Known, Than It Is Today
    Probability Surveys Vol. 5 (2008) 416–434 ISSN: 1549-5787 DOI: 10.1214/08-PS134 Ruin models with investment income Jostein Paulsen∗ Department of Mathematics University of Bergen Johs. Brunsgt. 12 5008 Bergen, Norway Abstract: This survey treats the problem of ruin in a risk model when assets earn investment income. In addition to a general presentation of the problem, topics covered are a presentation of the relevant integro- differential equations, exact and numerical solutions, asymptotic results, bounds on the ruin probability and also the possibility of minimizing the ruin probability by investment and possibly reinsurance control. The main emphasis is on continuous time models, but discrete time models are also covered. A fairly extensive list of references is provided, particularly of pa- pers published after 1998. For more references to papers published before that, the reader can consult [47]. AMS 2000 subject classifications: Primary 60G99; secondary 60G40, 60G44, 60J25, 60J75. Keywords and phrases: Ruin probability, Risk theory, Compounding assets. Received June 2008. Contents 1 Introduction................................. 416 2 SomegeneralresultsintheMarkovmodel . 419 3 Adiscretetimemodel ........................... 420 4 Analytical and numerical solutions . 421 5 Asymptoticresults ............................. 422 6 Inequalities ................................. 425 7 Stochasticinterestrates . 425 8 Minimization of ruin probabilities . 426 References.................................... 429 arXiv:0806.4125v2 [q-fin.RM] 18 Dec 2008 1. Introduction The problem of ruin has a long history in risk theory, going back to Lundberg [40]. In Lundberg’s model, the company did not earn any investment on its capital. An obvious reason for this assumption, although there may be other reasons as well, is that the mathematics is easier, and back in the first half of ∗This survey was written while the author was a visiting professor at the departments of mathematics and statistics at The University of Chicago 416 J.
    [Show full text]
  • A Risk Surplus Model Using Hawkes Point Processes
    U.U.D.M. Project Report 2015:11 A Risk Surplus Model using Hawkes Point Processes Hanna Magnusson Examensarbete i matematik, 15 hp Handledare och examinator: Ingemar Kaj Maj 2015 Department of Mathematics Uppsala University A Risk Surplus Model using Hawkes Point Processes Hanna Magnusson Abstract In this thesis we define a Hawkes process with exponential decay that later on is used in an application to insurance. We have also applied a simulation algorithm for the Hawkes process that are able to model cluster arrival of claims. In the classical risk model one uses a homogeneous Poisson process to model the arrival of claims which is not realistic. What is most crucial for an insurance company is to price their premiums such that the probability of bankruptcy is small. Hence, we discuss the effect of modelling claim arrivals with a Hawkes process and different choices of premium principles with respect to the probability of ruin. Contents 1 Introduction 1 2 Hawkes Process 1 3 Simulation Algorithm 4 3.1 An Illustration of a Hawkes Process . 5 4 Application of a Hawkes Process in Insurance 5 4.1 The Cram´er-Lundberg Model . 5 4.2 Net Profit Condition . 8 4.3 The Expected Value Principle . 8 4.4 Hawkes Point Processes in a Risk Model . 9 4.5 The Variance Principle . 16 5 Summary and Conclusion 18 1 Introduction Insurance companies offer their customers insurance against a risk in exchange for a premium. The main challenge for actuaries is to find an optimal premium, meaning that the probability of bankruptcy for the company should be small and the price of the pre- mium not too high.
    [Show full text]
  • Generalized Ornstein-Uhlenbeck Processes in Ruin Theory Jerôme Spielmann
    Generalized Ornstein-Uhlenbeck Processes in Ruin Theory Jerôme Spielmann To cite this version: Jerôme Spielmann. Generalized Ornstein-Uhlenbeck Processes in Ruin Theory. Probability [math.PR]. Université d’Angers, 2019. English. NNT : 2019ANGE0066. tel-03148887 HAL Id: tel-03148887 https://tel.archives-ouvertes.fr/tel-03148887 Submitted on 22 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L'UNIVERSITE D'ANGERS COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 601 Mathématiques et Sciences et Technologies de l'Information et de la Communication Spécialité : Mathématiques et leurs interactions Jérôme SPIELMANN Generalized Ornstein-Uhlenbeck Processes in Ruin Theory Thèse présentée et soutenue à Angers, le 13 décembre 2019 Unité de recherche : LAREMA UMR CNRS 6093 Thèse N° : 181271 Rapporteurs avant soutenance : Youri Kabanov Professeur, Université de Franche-Comté Jostein Paulsen Professor, Københavns Universitet Composition du Jury : Loïc Chaumont Professeur, Université d’Angers Alexander Lindner Professor, Universität
    [Show full text]
  • Fractional Poisson Process
    FRACTIONAL RISK PROCESS IN INSURANCE Arun KUMAR1 Nikolai LEONENKO2 Alois PICHLER3 Abstract The Poisson process suitably models the time of successive events and thus has numerous applications in statistics, in economics, it is also fun- damental in queueing theory. Economic applications include trading and nowadays particularly high frequency trading. Of outstanding importance are applications in insurance, where arrival times of successive claims are of vital importance. It turns out, however, that real data do not always support the genuine Poisson process. This has lead to variants and augmentations such as time dependent and varying intensities, for example. This paper investigates the fractional Poisson process. We introduce the process and elaborate its main characteristics. The exemplary ap- plication considered here is the Carm´er–Lundberg theory and the Sparre Andersen model. The fractional regime leads to initial economic stress. On the other hand we demonstrate that the average capital required to recover a company after ruin does not change when switching to the frac- tional Poisson regime. We finally address particular risk measures, which allow simple evaluations in an environment governed by the fractional Poisson process. 1Department of Mathematics, Indian Institute of Technology Ropar, Rup- nagar, Punjab 140001, India [email protected] 2Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK LeonenkoN@Cardiff.ac.uk 3Chemnitz University of Technology, Faculty of Mathematics, Chemnitz, Germany [email protected] Key words: Fractional Poisson process, convex risk measures Mathematics Subject Classification (1991): arXiv:1808.07950v2 [math.ST] 13 Apr 2019 1 Introduction Companies, which are exposed to random orders or bookings, face the threat of ruin.
    [Show full text]
  • Working Paper Series
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics INTERNATIONAL CENTRE FOR ECONOMIC RESEARCH WORKING PAPER SERIES Ramsés H. Mena and Luis E. Nieto-Barajas EXCHANGEABLE CLAIM SIZES IN A COMPOUND POISSON TYPE PROCESS Working Paper no. 19/2007 October 2007 APPLIED MATHEMATICS AND QUANTITATIVE METHODS WORKING PAPER SERIES Exchangeable claim sizes in a compound Poisson type process Ramses´ H. Mena1∗and Luis E. Nieto-Barajas2 y 1Department of Probability and Statistics, IIMAS{UNAM, 01000 Mexico, D.F. 2Department of Statistics, ITAM, Rio Hondo 1, Progreso Tizapan, 01080 Mexico, D.F. ABSTRACT. When dealing with risk models the typical assumption of indepen- dence among claim size distributions is not always satisfied. Here we consider the case when the claim sizes are exchangeable and study the implications when constructing aggregated claims through compound Poisson type processes. In par- ticular, exchangeability is achieved through conditional independence and using parametric and nonparametric measures for the conditioning distribution. A full Bayesian analysis of the proposed model is carried out to illustrate. Key words: Bayes nonparametrics, compound Poisson process, exchangeable claim process, exchangeable sequence, risk model. 1. Introduction In insurance and risk modelling, the compound Poisson process has played a fundamental role. The compound Poisson process (CPP), denoted as fXt; t ≥ 0g, can be defined by N Xt Xt = Yi; (1) i=1 where fNt; t ≥ 0g is a homogeneous Poisson process with intensity λ > 0 and Y1;Y2;::: a se- quence of independent and identically distributed (nonnegative) random variables with a com- mon density f, independent of Nt.
    [Show full text]