Robust Optimization for Decision-Making Under Endogenous Uncertainty

Total Page:16

File Type:pdf, Size:1020Kb

Robust Optimization for Decision-Making Under Endogenous Uncertainty Robust Optimization for Decision-making under Endogenous Uncertainty Nikolaos H. Lappas, Chrysanthos E. Gounaris* Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213 Abstract This paper contemplates the use of robust optimization as a framework for addressing prob- lems that involve endogenous uncertainty, i.e., uncertainty that is affected by the decision maker's strategy. To that end, we extend generic polyhedral uncertainty sets typically con- sidered in robust optimization into sets that depend on the actual decisions. We present the derivation of robust counterpart models in this setting, and we discuss relevant algorithmic con- siderations for solving these models to guaranteed optimality. Besides capturing the functional changes in parameter correlations that may be induced by given decisions, we show how the use of our decision-dependent uncertainty sets allows us to also eradicate conservatism effects from parameters that become irrelevant in view of the optimal decisions. We quantify these benefits via a number of case studies, demonstrating our proposed framework's versatility to be utilized in the context of various applications. Keywords: Robust Optimization, Endogenous Uncertainty, Decision-dependent Uncer- tainty Sets 1 Introduction Uncertainty is inherent in virtually every system we wish to optimize. Parameters affected by various external forces such as market prices and demand, unexpected disruptive events such as equipment malfunctions and natural disasters, or simply incomplete information about the system under study may render solutions of deterministic optimization models suboptimal or even infeasible 1 Author to whom all correspondence should be addressed ([email protected]). 1 when parameter realizations deviate from their nominal values. To that end, multiple approaches have been proposed so as to account for uncertainty during the decision-making process. The various alternative methodologies that have been developed serve different purposes, and selecting which one to adopt should be based on careful examination of the characteristics of the application in question. For example, when the number of uncertain parameters is relatively small, multi-parametric programming [1] can map the parameter space in order to offer closed- form solutions of optimization problems in terms of the former and to provide robustness estimates of any given solution. When detailed probabilistic information about the system parameters is available, often in the form of discrete scenario trees, stochastic programming [2] can be utilized to optimize system performance in expectation. Bounds on the variability of such performance can then be applied as explicit constraints on various statistically meaningful metrics [3]. In stochastic programming, the assumption of full recourse is commonly utilized and is often implemented by penalizing infeasibilities in the objective function. It should be mentioned, however, that this practice would not be suitable in applications where constraint violations cannot be tolerated (e.g., due to system safety concerns), are not meaningful (e.g., equipment physical limitations), or cannot be fairly \monetized." On the other hand, robust optimization (RO) [4{6] offers an attractive option for applications where distributional information about the uncertainty is limited and/or where solution feasibility is top priority. For such settings, RO seeks solutions that remain feasible for any possible uncertainty realization from within a postulated uncertainty set, which captures applicable correlations among uncertain parameters. Although one can derive such sets based on probabilistic information [7, 8], precise knowledge of probability distributions is not typically required to construct such sets. Multiple types of uncertainty sets (e.g., polyhedral, ellipsoidal, cardinality-constrained budgets) can be used in this context, exploiting correlations among uncertain parameters as a mechanism to control the trade-off between robustness and performance. A common characteristic across traditional uncertainty sets utilized in RO is their constant nature; that is, the range of parameter realizations they admit does not depend on the values we choose for the decision variables. This fact leads to an important limitation, namely that constant sets do not suffice to model settings where one's decisions directly affect the underlying probability distribution from which parameter realizations draw (e.g., entering a market sooner provides access 2 to a larger demand). Furthermore, a subtle manifestation arises in cases where one's decisions render a model parameter that is referenced in the uncertainty set physically meaningless (e.g., the yield of a process step that was not selected in the optimal flowsheet). Not only would it be unrealistic to postulate a correlation involving such a parameter, doing so might lead to overly conservative solutions as a result of an effective relaxation of the uncertainty set's projection to the space of parameters that remain relevant in view of the optimal decisions. In order to overcome the above challenges, we recently proposed the use of decision-dependent uncertainty sets (DDUS) in the context of robust optimization models for process scheduling appli- cations [9]. In that work, the effects of task processing times were removed from the uncertainty set whenever the decision was taken to not execute such tasks, offering a more realistic representation of the uncertainty encountered in the actual application, as well as leading to less conservative solutions compared to robust solutions reported in prior literature. Expanding upon a previously published shorter version [10], the contributions of the current paper are four-fold: • We classify decision-making contexts involving uncertain parameters of endogenous nature for which the use of DDUS is warranted. • We propose DDUS of generic polyhedral form that feature decision-dependency in both left- and right-hand sides, and we discuss ways to instantiate such sets. • We derive the robust counterpart model in the context of our proposed DDUS, and we discuss applicable algorithmic approaches to solve the former to guaranteed optimality. • We assess the performance benefits as well as the computational burden associated with using our proposed DDUS over a series of case studies that are addressed with RO for the first time in the open literature. The remainder of this paper is structured as follows. We begin by providing a brief overview of the static RO methodology in Section 2. In Section 3, we discuss the possibility for uncertain parameters to exhibit an endogenous nature, and we introduce our novel DDUS that allow us to model this setting. We then derive the robust counterpart under DDUS in Section 4, while in Section 5, we present a comprehensive computational study involving a number of case studies 3 stemming from a diverse set of application contexts. We conclude the paper with some final remarks in Section 6. Notation. Lowercase letters with regular typeface denote scalars (e.g., a), lowercase letters with bold typeface denote column vectors (e.g., a), while uppercase letters in bold typeface denote th matrices (e.g., A). We use jaj to indicate the size of vector a, and we use ai to denote its i element. We also use e to denote the vector of ones, 0 to denote the vector of zeros, E to denote the matrix of all ones, and O to denote the matrix of all zeros. Sizes for these are to be inferred from the expressions in which they participate. The ◦ operator corresponds to the element-wise product of two equally-sized vectors or matrices, while for a quantity a, we use a and a to represent this quantity's applicable lower and upper bound, respectively. Finally, an equation involving vector or matrix terms (e.g., a ≤ b) is to be viewed as a set of equations referencing the terms element-wise (e.g., ai ≤ bi 8 i), while an implication or equivalence with a set of equations in its sides (e.g., fa = bg , fc ≤ dg) is also to be viewed element-wise (e.g., fai = big , fci ≤ dig 8 i). 2 Static Robust Optimization Let us consider the mixed-integer linear optimization problem (1),1 which features continuous decision variables x, discrete decision variables w, and inequality constraints indexed over the set M. min x1 x;w jxj jwj s.t. x 2 R ; w 2 f0; 1g (1) > > > > > cmx + q Cmx + rmw + q Rmw ≤ am + q bm 8 m 2 M (x; w) 2 F For ease of exposition, the various expressions in the constraints have been partitioned into terms that do and terms that do not involve parameters q, which we shall consider to be uncertain jqj and about to realize from within an uncertainty set Q ⊆ R . The quantities cm, Cm, rm, Rm, am, and bm are therefore constants known with certainty, for all m 2 M, while the set jxj jwj F ⊆ R × f0; 1g is introduced to represent the space that results from intersecting all linear constraints (both equalities and inequalities) that do not reference any of the uncertain parameters 1 We remark that, although in this paper we focus on problems that can be represented via mixed-integer linear formulations, the RO methodology can be extended to nonlinear models as well. 4 q. For clarity, we mention that we consider all constraints in the set M to reference at least one parameter from q; that is, at least one of the elements of Cm, Rm, or bm must be non-zero, for each constraint m 2 M. Furthermore, the objective function has been brought into the set of constraints using a standard epigraph reformulation (where, without loss of generality, the continuous variable x1 is used to denote the epigraph variable). Consequently, any mixed-integer linear problem that does not reference uncertain parameters in equality constraints2 can be equivalently transformed to the form (1). We also highlight that this formulation can accommodate uncertain parameters in both left- and right-hand sides as well as in objective function coefficients. In this setting, all decisions are to be taken in a single stage, before the actual realizations of the uncertain parameters are observed.
Recommended publications
  • A Practical Guide to Robust Optimization
    A Practical Guide to Robust Optimization Bram L. Gorissen, Ihsan Yanıkoğlu, Dick den Hertog Tilburg University, Department of Econometrics and Operations Research, 5000 LE Tilburg, Netherlands {b.l.gorissen,d.denhertog}@tilburguniversity.edu, [email protected] Abstract Robust optimization is a young and active research field that has been mainly developed in the last 15 years. Robust optimization is very useful for practice, since it is tailored to the information at hand, and it leads to computationally tractable formulations. It is therefore remarkable that real-life applications of robust optimization are still lagging behind; there is much more potential for real-life applications than has been exploited hitherto. The aim of this paper is to help practitioners to understand robust optimization and to successfully apply it in practice. We provide a brief introduction to robust optimization, and also describe important do’s and don’ts for using it in practice. We use many small examples to illustrate our discussions. 1 Introduction Real-life optimization problems often contain uncertain data. Data can be inherently stochas- tic/random or it can be uncertain due to errors. The reasons for data errors could be measure- ment/estimation errors that come from the lack of knowledge of the parameters of the mathematical model (e.g., the uncertain demand in an inventory model) or could be implementation errors that come from the physical impossibility to exactly implement a computed solution in a real-life set- ting. There are two approaches to deal with data uncertainty in optimization, namely robust and stochastic optimization. Stochastic optimization (SO) has an important assumption, i.e., the true probability distribution of uncertain data has to be known or estimated.
    [Show full text]
  • Distributionally Robust Optimization for Engineering Design Under Uncertainty
    Distributionally Robust Optimization for Engineering Design under Uncertainty Michael G. Kapteyn∗ Massachusetts Institute of Technology, Cambridge, MA 02139, USA Karen E. Willcoxy The University of Texas at Austin, Austin, TX 78712, USA Andy B. Philpottz The University of Auckland, Auckland 1010, New Zealand This paper addresses the challenge of design optimization under uncertainty when the de- signer only has limited data to characterize uncertain variables. We demonstrate that the error incurred when estimating a probability distribution from limited data affects the out- of-sample performance (i.e., performance under the true distribution) of optimized designs. We demonstrate how this can be mitigated by reformulating the engineering design prob- lem as a distributionally robust optimization (DRO) problem. We present computationally efficient algorithms for solving the resulting DRO problem. The performance of the DRO approach is explored in a practical setting by applying it to an acoustic horn design prob- lem. The DRO approach is compared against traditional approaches to optimization under uncertainty, namely, sample-average approximation and a multi-objective optimization in- corporating a risk reduction objective. In contrast with the multi-objective approach, the proposed DRO approach does not use an explicit risk reduction objective but rather speci- fies a so-called ambiguity set of possible distributions, and optimizes against the worst-case distribution in this set. Our results show that the DRO designs in some cases significantly outperform those designs found using the sample-average or multi-objective approaches. I. Introduction The importance of considering the nature of the uncertain parameters in engineering design has long been established,1{3 the primary reason being that simply considering all parameters to be deterministic tends to over-fit designs to the chosen parameter values.
    [Show full text]
  • Robust and Data-Driven Optimization: Modern Decision-Making Under Uncertainty
    Robust and Data-Driven Optimization: Modern Decision-Making Under Uncertainty Dimtris Bertsimas¤ Aur¶elieThieley March 2006 Abstract Traditional models of decision-making under uncertainty assume perfect information, i.e., ac- curate values for the system parameters and speci¯c probability distributions for the random variables. However, such precise knowledge is rarely available in practice, and a strategy based on erroneous inputs might be infeasible or exhibit poor performance when implemented. The purpose of this tutorial is to present a mathematical framework that is well-suited to the limited information available in real-life problems and captures the decision-maker's attitude towards uncertainty; the proposed approach builds upon recent developments in robust and data-driven optimization. In robust optimization, random variables are modeled as uncertain parameters be- longing to a convex uncertainty set and the decision-maker protects the system against the worst case within that set. Data-driven optimization uses observations of the random variables as direct inputs to the mathematical programming problems. The ¯rst part of the tutorial describes the robust optimization paradigm in detail in single-stage and multi-stage problems. In the second part, we address the issue of constructing uncertainty sets using historical realizations of the random variables and investigate the connection between convex sets, in particular polyhedra, and a speci¯c class of risk measures. Keywords: optimization under uncertainty; risk preferences; uncertainty sets; linear program- ming. 1 Introduction The ¯eld of decision-making under uncertainty was pioneered in the 1950s by Dantzig [25] and Charnes and Cooper [23], who set the foundation for, respectively, stochastic programming and ¤Boeing Professor of Operations Research, Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, [email protected] yP.C.
    [Show full text]
  • A New Robust Optimization Approach for Scheduling Under Uncertainty II
    Computers and Chemical Engineering 31 (2007) 171–195 A new robust optimization approach for scheduling under uncertainty II. Uncertainty with known probability distribution Stacy L. Janak, Xiaoxia Lin, Christodoulos A. Floudas∗ Department of Chemical Engineering, Princeton University, Princeton, NJ 08544-5263, USA Received 1 April 2005; received in revised form 3 May 2006; accepted 22 May 2006 Available online 1 August 2006 Abstract In this work, we consider the problem of scheduling under uncertainty where the uncertain problem parameters can be described by a known probability distribution function. A novel robust optimization methodology, originally proposed by Lin, Janak, and Floudas [Lin, X., Janak, S. L., & Floudas, C. A. (2004). A new robust optimization approach for scheduling under uncertainty: I. Bounded uncertainty. Computers and Chemical Engineering, 28, 1069–1085], is extended in order to consider uncertainty described by a known probability distribution. This robust optimization formulation is based on a min–max framework and when applied to mixed-integer linear programming (MILP) problems, produces “robust” solutions that are immune against data uncertainty. Uncertainty is considered in the coefficients of the objective function, as well as the coefficients and right-hand-side parameters of the inequality constraints in MILP problems. Robust optimization techniques are developed for uncertain data described by several known distributions including a uniform distribution, a normal distribution, the difference of two normal distributions, a general discrete distribution, a binomial distribution, and a poisson distribution. The robust optimization formulation introduces a small number of auxiliary variables and additional constraints into the original MILP problem, generating a deterministic robust counterpart problem which provides the optimal/feasible solution given the (relative) magnitude of the uncertain data, a feasibility tolerance, and a reliability level.
    [Show full text]
  • Algorithms and Concepts for Robust Optimization
    Algorithms and Concepts for Robust Optimization Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades Doctor rerum naturalium der Georg-August Universit¨atG¨ottingen vorgelegt von Marc Goerigk aus Berlin G¨ottingen2012 Referentin: Prof. Dr. Anita Sch¨obel Koreferent: Prof. Dr. Marco L¨ubbecke Tag der m¨undlichen Pr¨ufung 24.9.2012 Preface The more I occupied myself with robust optimization, the more it grew from a mathe- matical discipline to a pattern of thought that influenced my everyday decisions. Un- certainty is all around us - from the flight to Tromsø or the train to Saarbr¨ucken, to the details like lactose in sandwiches (better don't try if you're not sure). Along my way I had plenty of people who helped me and generously overlooked some overconservatism stemming from restrictive robustness concepts. First of all, I thank Anita Sch¨obel for endless support and her impressive ability to not sleep - at least, that's how it seems. Also the great spirit of the optimization working group at the Institute for Numerical and Applied Mathematics made writing this thesis a joy: Thanks to Marco Bender, Ruth H¨ubner,Jonas Ide (\your partner in science"), Mark K¨orner(\der große Mark"), Thorsten Krempasky (\Dr. Lightning"), Michael Schachtebeck, Robert Schieweck, Marie Schmidt (\der kleine Marc"), Daniel Scholz, Morten Tiedemann and Stephan Westphal. Also, the proof-reading of Marie, Ruth, Marco and Robert was a great help during the final phase of the work. I thank Florian Bruns, Emilio Carrizosa, Markus Chimani, Martin Knoth, Sigrid Knust, Matthias M¨uller-Hannemann,Petra Mutzel, and Bernd Zey for the inspira- tional and challenging joint work (see Chapter 8 for an overview).
    [Show full text]
  • The Art and Science of Modeling Decision-Making Under Severe Uncertainty
    Decision Making in Manufacturing and Services Vol. 1 • 2007 • No. 1{2 • pp. 111{136 The Art and Science of Modeling Decision-Making Under Severe Uncertainty Moshe Sniedovich∗ Abstract. For obvious reasons, models for decision-making under severe uncertainty are austere. Simply put, there is precious little to work with under these conditions. This fact highlights the great importance of utilizing in such cases the ingredients of the mathematical model to the fullest extent, which in turn brings under the spotlight the art of mathematical modeling. In this discussion we examine some of the subtle considerations that are called for in the mathematical modeling of decision-making under severe uncertainty in general, and worst-case analysis in particular. As a case study we discuss the lessons learnt on this front from the Info-Gap experience. Keywords: mathematical modeling, severe uncertainty, maximin, worst-case analysis, robust optimization, info-gap. Mathematics Subject Classification: 90B50, 90C47, 91B06. Received/Revised: 04 April 2007/30 May 2007 1. INTRODUCTION Methodologies designed for decision-making under severe uncertainty are austere in the extreme because one has precious little to work with in such cases. This is vividly manifested in the simple structure of the mathematical models deployed by these methodologies. And so given the simplicity of such models, it is not surprising that these method- ologies are discussed in introductory OR/MS textbooks, eg. Markland and Sweigart (1987), Winston (1994), Ragsdale (2004), Hillier and Lieberman (2005). But from a practical point of view this means that users of such models are called upon to be imaginative and inventive if they are to make the most of them.
    [Show full text]
  • Statistics of Robust Optimization: a Generalized Empirical Likelihood Approach
    Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach John C. Duchi1 Peter W. Glynn2 Hongseok Namkoong2 1Department of Statistics 2Department of Management Science and Engineering Stanford University fjduchi,glynn,[email protected] Stanford University Abstract We study statistical inference and robust solution methods for stochastic optimization prob- lems. We first develop an empirical likelihood framework for stochastic optimization. We show an empirical likelihood theory for Hadamard differentiable functionals with general f-divergences and give conditions under which T (P ) = infx2X EP [`(x; ξ)] is Hadamard differentiable. Noting that the right endpoint of the generalized empirical likelihood confidence interval is a distribu- tionally robust optimization problem with uncertainty regions given by f-divergences, we show various statistical properties of robust optimization. First, we give a statistically principled method of choosing the size of the uncertainty set to obtain a calibrated one-sided confidence interval. Next, we give general conditions under which the robust solutions are consistent. Fi- nally, we prove an asymptotic expansion for the robust formulation, showing how robustification regularizes the problem. 1 Introduction In this paper, we study the properties of robust solution methods, in particular statistical and inferential guarantees, for the stochastic optimization problem Z minimize EP0 [`(x; ξ)] = `(x; ξ)dP0(ξ): (1) x2X Ξ d In the formulation (1), the feasible region X ⊂ R is a nonempty closed set, ξ is a random vector on the probability space (Ξ; A;P0), where the domain Ξ is a (subset of) a separable metric space, and the function ` : X × Ξ ! R is a lower semi-continuous (loss) functional.
    [Show full text]
  • Data-Driven Robust Optimization
    Math. Program., Ser. A DOI 10.1007/s10107-017-1125-8 FULL LENGTH PAPER Data-driven robust optimization Dimitris Bertsimas1 · Vishal Gupta2 · Nathan Kallus3 Received: 13 September 2015 / Accepted: 14 February 2017 © Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2017 Abstract The last decade witnessed an explosion in the availability of data for opera- tions research applications. Motivated by this growing availability, we propose a novel schema for utilizing data to design uncertainty sets for robust optimization using sta- tistical hypothesis tests. The approach is flexible and widely applicable, and robust optimization problems built from our new sets are computationally tractable, both theoretically and practically. Furthermore, optimal solutions to these problems enjoy a strong, finite-sample probabilistic guarantee whenever the constraints and objective function are concave in the uncertainty. We describe concrete procedures for choos- ing an appropriate set for a given application and applying our approach to multiple uncertain constraints. Computational evidence in portfolio management and queueing confirm that our data-driven sets significantly outperform traditional robust optimiza- tion techniques whenever data are available. Keywords Robust optimization · Data-driven optimization · Chance-constraints · Hypothesis testing B Vishal Gupta [email protected] Dimitris Bertsimas [email protected] Nathan Kallus [email protected] 1 Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Marshall School of Business, University of Southern California, Los Angeles, CA 90029, USA 3 School of Operations Research and Information Engineering, Cornell University and Cornell Tech, New York, NY 10011, USA 123 D. Bertsimas et al. Mathematics Subject Classification 80M50 (Optimization: Operations research, mathematical programming) · 62H15 (Multivariate Analysis: Hypothesis Testing) 1 Introduction Robust optimization is a popular approach to optimization under uncertainty.
    [Show full text]
  • Robust Optimization — Methodology and Applications1
    Robust Optimization — Methodology and Applications1 Aharon Ben-Tal and Arkadi Nemirovski [email protected] [email protected] Faculty of Industrial Engineering and Management Technion – Israel Institute of Technology Technion City, Haifa 32000, Israel Abstract Robust Optimization (RO) is a modeling methodology, combined with computational tools, to process optimization problems in which the data are uncertain and is only known to belong to some uncertainty set. The paper surveys the main results of RO as applied to uncertain linear, conic quadratic and semidefinite programming. For these cases, computa- tionally tractable robust counterparts of uncertain problems are explicitly obtained, or good approximations of these counterparts are proposed, making RO a useful tool for real-world applications. We discuss some of these applications, specifically: antenna design, truss topol- ogy design and stability analysis/synthesis in uncertain dynamic systems. We also describe a case study of 90 LPs from the NETLIB collection. The study reveals that the feasibility properties of the usual solutions of real world LPs can be severely affected by small pertur- bations of the data and that the RO methodology can be successfully used to overcome this phenomenon. AMS 1991 subject classification. Primary: 90C05, 90C25, 90C30. OR/MS subject classification. Primary: Programming/Convex. Key words. Convex optimization, data uncertainty, robustness, linear programming, quadratic program- ming, semidefinite programming, engineering design, Lyapunov stability synthesis. 1 Introduction A generic mathematical programming problem is of the form min x : f (x, ζ) x 0, f (x, ζ) 0, i = 1,...,m (P[ξ]) n 0 0 0 i x0 R,x R { − ≤ ≤ } ∈ ∈ where x is the design vector, the functions f0 (the objective function) and f1,...,fm are structural elements of the problem, and ζ stands for the data specifying a particular problem instance.
    [Show full text]
  • Distributionally Robust Optimization: a Review
    DISTRIBUTIONALLY ROBUST OPTIMIZATION: A REVIEW HAMED RAHIMIAN∗ AND SANJAY MEHROTRAy Abstract. The concepts of risk-aversion, chance-constrained optimization, and robust opti- mization have developed significantly over the last decade. Statistical learning community has also witnessed a rapid theoretical and applied growth by relying on these concepts. A modeling frame- work, called distributionally robust optimization (DRO), has recently received significant attention in both the operations research and statistical learning communities. This paper surveys main concepts and contributions to DRO, and its relationships with robust optimization, risk-aversion, chance-constrained optimization, and function regularization. Key words. Distributionally robust optimization; Robust optimization; Stochastic optimiza- tion; Risk-averse optimization; Chance-constrained optimization; Statistical learning AMS subject classifications. 90C15, 90C22, 90C25, 90C30, 90C34, 90C90, 68T37, 68T05 1. Introduction. Many real-world decision problems arising in engineering and management have uncertain parameters. This parameter uncertainty may be due to limited observability of data, noisy measurements, implementations and predic- tion errors. Stochastic optimization (SO) and (2) robust optimization frameworks have classically allowed to model this uncertainty within a decision-making frame- work. Stochastic optimization assumes that the decision maker has complete knowl- edge about the underlying uncertainty through a known probability distribution and minimizes
    [Show full text]
  • Aimms Language Reference Provides a Complete Description of the Aimms Reference Modeling Language, Its Underlying Data Structures and Advanced Language Con- Structs
    AIMMS The Language Reference AIMMS 4 AIMMS The Language Reference AIMMS Marcel Roelofs Johannes Bisschop Copyright c 1993–2019 by AIMMS B.V. All rights reserved. Email: [email protected] WWW: www.aimms.com ISBN 978–0–557–06379–6 Aimms is a registered trademark of AIMMS B.V. IBM ILOG CPLEX and CPLEX is a registered trademark of IBM Corporation. GUROBI is a registered trademark of Gurobi Optimization, Inc. Knitro is a registered trademark of Artelys. Windows and Excel are registered trademarks of Microsoft Corporation. TEX, LATEX, and AMS-LATEX are trademarks of the American Mathematical Society. Lucida is a registered trademark of Bigelow & Holmes Inc. Acrobat is a registered trademark of Adobe Systems Inc. Other brands and their products are trademarks of their respective holders. Information in this document is subject to change without notice and does not represent a commitment on the part of AIMMS B.V. The software described in this document is furnished under a license agreement and may only be used and copied in accordance with the terms of the agreement. The documentation may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from AIMMS B.V. AIMMS B.V. makes no representation or warranty with respect to the adequacy of this documentation or the programs which it describes for any particular purpose or with respect to its adequacy to produce any particular result. In no event shall AIMMS B.V., its employees, its contractors or the authors of this documentation be liable for special, direct, indirect or consequential damages, losses, costs, charges, claims, demands, or claims for lost profits, fees or expenses of any nature or kind.
    [Show full text]
  • Theory and Applications of Robust Optimization 465
    SIAM REVIEW c 2011 Society for Industrial and Applied Mathematics Vol. 53, No. 3, pp. 464–501 Theory and Applications of ∗ Robust Optimization † Dimitris Bertsimas David B. Brown‡ Constantine Caramanis§ Abstract. In this paper we survey the primary research, both theoretical and applied, in the area of robust optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multistage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering. Key words. robust optimization, robustness, adaptable optimization, applications of robust optimiza- tion AMS subject classifications. 90C31, 93B40, 93D21 DOI. 10.1137/080734510 1. Introduction. Optimization affected by parameter uncertainty has long been a focus of the mathematical programming community. Solutions to optimization problems can exhibit remarkable sensitivity to perturbations in the parameters of the problem (demonstrated in compelling fashion in [16]), thus often rendering a computed solution highly infeasible, suboptimal, or both (in short, potentially worthless). In science and engineering, this is hardly a new notion. In the context of op- timization, the most closely related field is that of robust control (we refer to the textbooks [137]and [68]and the references therein). While there are many high- level similarities, and indeed much of the motivation for the development of robust optimization (RO) came from the robust control community, RO is a distinct field, focusing on traditional optimization-theoretic concepts, particularly algorithms, ge- ometry, and tractability, in addition to modeling power and structural results which are more generically prevalent in the setting of robustness.
    [Show full text]