CAPIRI (XELIRI Or Irinotecan & Capecitabine)

Total Page:16

File Type:pdf, Size:1020Kb

CAPIRI (XELIRI Or Irinotecan & Capecitabine) CAPIRI (XELIRI or Irinotecan & Capecitabine) DRUG ADMINISTRATION SCHEDULE Day Drug Dose Route Diluent &Rate Glucose 5% 500ml Infusion Fast Running / Line Flush Ondansetron 8mg Oral /Slow bolus/15 min infusion Day 1 Dexamethasone 8mg IV bolus Via Glucose drip 250ml Glucose 5% Irinotecan 200mg/m2 IV Infusion over 2 hours Days 1 800 mg/m2 Capecitabine Oral N/A to 14 twice a day *Ondansetron IV must be infused over 15 minutes in patients over 65 years of age. PREMEDICATION *If acute cholinergic syndrome appears atropine sulphate 250micrograms should be administered by subcutaneous injection unless clinically contraindicated. The manufacturer recommends the use of prophylactic atropine sulphate with subsequent doses of irinotecan. DOSE FORM Capecitabine available as 500mg and 150mg tablets. CYCLE LENGTH AND NUMBER OF DAYS Treatment administered every 21 days, usually for up to 8 cycles. APPROVED INDICATIONS Treatment of Advanced Colorectal Cancer, in patients who would otherwise be considered for Irinotecan-MdG (FOLFIRI). ELIGIABILITY CRITERIA Colorectal cancer patients with adequate renal function. EXCLUSION CRITERIA Patients with baseline renal function less than 30 ml/min. Patients incapable of managing oral chemotherapy themselves or with the assistance of a carer Patients with swallowing difficulties RECOMMENDED TAKE HOME MEDICATION Ondansetron 8mg twice daily for 2 days Dexamethasone 4mg twice daily for 1 day Metoclopramide 10mg three times daily as required Loperamide as required (4mg after first loose stool and 2mgs every 2 hours, to a maximum of 16 (2mg) tablets in 24 hours. For diarrhoea lasting greater than 24 hours give ciprofloxacin 250mg BD. INVESTIGATIONS / MONITORING REQUIRED FBC, U&E’s, LFT’s & tumour markers as appropriate prior to each course of chemotherapy FBC on the day of chemotherapy Where CEA is elevated this should be measured before each cycle. CAPIRI (Capecitabine Irinotecan) CRP09 CR017 V1.4 Page 1 of 5 Issue Date 28.02.18 Expiry Date: 01.03.2021 CAPIRI (XELIRI or Irinotecan & Capecitabine) ASSESSMENT OF RESPONSE Assessed radiologically after 4th cycle. Metastatic: Tumour size and patient symptomatic response REVIEW BY CLINICIAN To be reviewed by either a Nurse, Pharmacist or Clinician before every cycle. NURSE / PHARMACIST LED REVIEW On cycles where not seen by clinician. ADMINISTRATION NOTES Irinotecan must only be given in units where clear arrangements are made to manage possible toxicity related out of hour's admissions. Patients must be made aware of the risk of delayed diarrhoea occurring 24 hours after the administration of Irinotecan and at any time before the next cycle. This means supplying information sheets to the patient and if appropriate to their GP. Early onset diarrhoea (within the first 24 hours). Can be a result of acute cholinergic syndrome and may occur in 9% of patients. Symptoms are short lasting and respond within minutes to administration of atropine (0.25-1mg subcutaneously) Delayed diarrhoea must be treated immediately with high dose Loperamide (4mg after first loose stool and 2mgs every 2 hours, to a maximum of 16 (2mg) tablets in 24 hours. Hospitalise if condition not resolved in 48 hours. Capecitabine should start on the evening of day 1 and continue until the morning of day 15. Capecitabine should be omitted if Grade II toxicity occurs. It can recommence (see Dose Reductions) if toxicity resolves, however the treatment should still stop on day 15. (i.e. Doses are omitted not delayed). Note: Grade II Toxicity includes: Diarrhoea defined as an increase of 4-6 stools per day or nocturnal stools. TOXICITIES Acute cholinergic syndrome (defined as early diarrhoea and various other symptoms such as sweating, abdominal cramping, lacrimation, myosis and salivation) Diarrhoea –risk of severe delayed diarrhoea – can be life threatening Nausea and Vomiting Stomatitis Palmar/Plantar Erythrodysesthesia (PPE) - Can be severe, patients must be forewarned Pyrexia, fatigue, asthenia, anorexia Myelosuppression Hyperbilirubinemia Cardiotoxicity - Occasionally patients may experience coronary artery spasm. Stop Treatment with fluoropyrimidine therapy if this occurs. CAPIRI (Capecitabine Irinotecan) CRP09 CR017 V1.4 Page 2 of 5 Issue Date 28.02.18 Expiry Date: 01.03.2021 CAPIRI (XELIRI or Irinotecan & Capecitabine) DPD Deficiency and Severe Toxicity Risk Dihydropyrimidine dehydrogenase (DPD) plays an important role in the metabolism of fluoropyrimidine drugs 5-fluorouracil (5FU) and capecitabine. Patients with DPD deficiency may be predisposed to experience increased or severe toxicity when receiving 5-FU or capecitabine, and in some cases these events can be fatal. For all patients having capecitabine or fluorouracil, the risk of severe side effects from capecitabine or 5FU if patients have a deficiency of DPD must be mentioned and patient given a copy of the DPD toxicity information leaflet from cancer research UK. Available At http://www.cancerresearchuk.org/about-cancer/cancer-in- general/treatment/chemotherapy/side-effects/dpd-deficiency-and-fluorouracil EXTRAVASATION See NCA / local Policy DOSE MODIFICATION / TREATMENT DELAYS Haematological toxicity: Discuss with consultant if ANC 1 to 1.5 and/ or Platelets < 75 to 100. Delay 1 week if ANC < 1 and/or PLTs < 75. No dose reduction for CTC grade I/II ANC Grade III/IV ANC → delay chemotherapy until recovered, then proceed at 20% capecitabine and Irinotecan dose reduction If further delay(s) for bone marrow suppression occur despite a 20% dose reduction, consider a further 20% dose reduction. Non-haematological toxicity: Diarrhoea Grade 1 (watery stool 2-3 times/day) Loperamide 4mg then 2mg QDS PRN. Grade 2 (watery stool 4-6 times/day) Delay treatment until recovered and give full dose Grade 3/4 (watery stool >7 times/day) Delay until recovered and resume treatment at 25% reduced dose of oxaliplatin and irinotecan Table of dose adjustments according to CTC toxicity (Not PPE/hand/foot syndrome) Grade 2 Grade 3 Grade 4 Interrupt treatment until Interrupt treatment until resolved to grade 0/1, then resolved to grade 0/1, then Discontinue 1st appearance continue at 100% of original continue at 75% of original treatment dose with prophylaxis where dose with prophylaxis possible where possible Interrupt treatment until Interrupt treatment until resolved to grade 0/1, then resolved to grade 0/1, then 2nd appearance continue at 75% of original continue at 50% of original dose dose Interrupt treatment until resolved to grade 0/1, then 3rd appearance Discontinue treatment continue at 50% of original dose th 4 appearance Discontinue treatment CAPIRI (Capecitabine Irinotecan) CRP09 CR017 V1.4 Page 3 of 5 Issue Date 28.02.18 Expiry Date: 01.03.2021 CAPIRI (XELIRI or Irinotecan & Capecitabine) Once the capecitabine dose has been reduced, it should not be increased at a later time. Omitted doses are not replaced or restored, instead the patient should resume the planned treatment cycle. Table of PPE (hand/foot syndrome) toxicity grading for capecitabine only Grade Clinical Functional Management Numbness, Discomfort but no interruption 1 dysesthesia/parathesi of normal activities Painfula, tingling, erythema painless with Discomfort which affects Interrupt treatment 2 swelling or erythema activities of daily living until grade ≤1 Moist desquamation, Severe discomfort, unable to Interrupt treatment 3 ulceration, Blistering, work or perform activities of until grade ≤1 and severe pain daily living reduce dose by 25% Once the capecitabine dose has been reduced, it should not be increased at a later time. Omitted doses are not replaced or restored, instead the patient should resume the planned treatment cycle. Hepatic impairment Administration of capecitabine should be interrupted if treatment-related elevations in bilirubin of > 3.0 x ULN or treatment-related elevations in hepatic aminotransferases (ALT, AST) of > 2.5 x ULN occur. Treatment with capecitabine monotherapy may be resumed when bilirubin decreases to ≤ 3.0 x ULN or hepatic aminotransferases decrease to ≤ 2.5 x ULN. Renal function GFR Capecitabine Oxaliplatin 30-50 ml/min 25% dose reduction No action < 30 ml/min Contact prescriber Contact prescriber REFERENCES: 1. Reinacher-Schick AC et al. Activity of the combination of bevacizumab (Bev) with capecitabine/irinotecan (CapIri/Bev) or capecitabine/oxaliplatin (CapOx/Bev) in advanced colorectal cancer (ACRC): a randomized phase II study of the AIO Colorecal Study Group (AIO trial 0604). Am Soc Clin Oncol 2008; Abstract 4030 2. Koopman M et al. Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): a phase III randomised controlled trial. Lancet 2007; 370: 135-42 3. Ducreux M et al. Efficacy and safety of bevacizumab (BEV)-based combination regimens in patients with metastatic colorectal cancer (mCRC): Randomised phase II study of BEV + FOLFIRI versus BEV + XELIRI (FNCLCC ACCORD13/0503 study). Am Soc Clin Oncol, Annual Meeting 2009; Abstract 4086 and associated oral presentation CAPIRI (Capecitabine Irinotecan) CRP09 CR017 V1.4 Page 4 of 5 Issue Date 28.02.18 Expiry Date: 01.03.2021 CAPIRI (XELIRI or Irinotecan & Capecitabine) Document Control Document Title: CAPIRI-XELIRI CNTW protocol CRP09 CR017 Current Document No: CRP09 CR017 1.4 Version: Chris Beck Chemotherapy Pharmacist Date Reviewer: 28.02.18 Northern Cancer Alliance Approved: Steve Williamson Consultant Due for Approved by: 01.03.21 Pharmacist Northern Cancer Alliance Review Summary of 1.1 Amended inconsistencies in dose adjustment advice, updated toxicities list. Changes 1.2 Protocol reviewed. Volume of Irinotecan infusion amended. 1.3 Protocol reviewed and reissued, Antiemetic advice updated 1.4 Protocol reviewed, parameters updated from Chemocare. DPD toxicity advice added CAPIRI (Capecitabine Irinotecan) CRP09 CR017 V1.4 Page 5 of 5 Issue Date 28.02.18 Expiry Date: 01.03.2021 .
Recommended publications
  • A Phase II Study of Paclitaxel and Capecitabine As a First-Line Combination Chemotherapy for Advanced Gastric Cancer
    British Journal of Cancer (2008) 98, 316 – 322 & 2008 Cancer Research UK All rights reserved 0007 – 0920/08 $30.00 www.bjcancer.com A phase II study of paclitaxel and capecitabine as a first-line combination chemotherapy for advanced gastric cancer Clinical Studies HJ Kang1, HM Chang1, TW Kim1, M-H Ryu1, H-J Sohn1, JH Yook2,STOh2, BS Kim2, J-S Lee1 and Y-K Kang*,1 1 2 Division of Oncology, Department of Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea Paclitaxel and capecitabine, which have distinct mechanisms of action and toxicity profiles, have each shown high activity as single agents in gastric cancer. Synergistic interaction between these two drugs was suggested by taxane-induced upregulation of thymidine phosphorylase. We, therefore, evaluated the antitumour activity and toxicities of paclitaxel and capecitabine as first-line therapy in patients with advanced gastric cancer (AGC). Patients with histologically confirmed unresectable or metastatic AGC were treated À2 À2 with capecitabine 825 mg m p.o. twice daily on days 1–14 and paclitaxel 175 mg m i.v. on day 1 every 3 weeks until disease progression or unacceptable toxicities. Between June 2002 and May 2004, 45 patients, of median age 57 years (range ¼ 38–73 years), were treated with the combination of capecitabine and paclitaxel. After a median 6 cycles (range ¼ 1–9 cycles) of chemotherapy, 43 were evaluable for toxicity and response. A total of 2 patients showed complete response and 20 showed partial response making the overall response rate 48.9% (95% CI ¼ 30.3–63.5%).
    [Show full text]
  • A Phase I and Pharmacokinetic Study of Irinotecan Given As a 7-Day
    Vol. 10, 1657–1663, March 1, 2004 Clinical Cancer Research 1657 A Phase I and Pharmacokinetic Study of Irinotecan Given as a 7-Day Continuous Infusion in Metastatic Colorectal Cancer Patients Pretreated with 5-Fluorouracil or Raltitrexed Gianluca Masi,1 Alfredo Falcone,1 for activity, and we observed 3 (25%) partial responses, 2 Antonello Di Paolo,2 Giacomo Allegrini,1 (17%) minor responses, and 4 (33%) disease stabilizations. Romano Danesi,2 Cecilia Barbara,2 Conclusions: The administration of irinotecan as a 1 2 7-day continuous infusion every 21 days is feasible with Samanta Cupini, and Mario Del Tacca diarrhea being the dose-limiting toxicity; recommended 1Division of Medical Oncology, Department of Oncology, Civil 2 2 dose for Phase II studies is 20.0 mg/m /day. The comparison Hospital, Livorno, and Division of Pharmacology and of the present data with those obtained after a standard Chemotherapy, Department of Oncology, Transplants, and Advanced Technologies in Medicine, University of Pisa, Pisa, Italy 30–90 min. i.v. infusion of irinotecan demonstrates that continuous infusion improves the transformation of irinote- can to SN-38 and also results in increased glucuronidation of ABSTRACT the active metabolite. Antitumor activity in pretreated met- Purpose: The purpose is to determine the plasma phar- astatic colorectal cancer patients is encouraging. macokinetics, the maximum-tolerable dose and to prelimi- nary evaluate the antitumor activity of irinotecan admin- INTRODUCTION istered as a 7-day continuous infusion every 21 days in Irinotecan (CPT-11), a semisynthetic derivative of the nat- metastatic colorectal cancer patients pretreated with 5- ural alkaloid camptothecin, is a selective inhibitor of topoi- fluorouracil or raltitrexed.
    [Show full text]
  • A Phase II Study of Capecitabine and Docetaxel Combination Chemotherapy in Patients with Advanced Gastric Cancer
    British Journal of Cancer (2004) 90, 1329 – 1333 & 2004 Cancer Research UK All rights reserved 0007 – 0920/04 $25.00 www.bjcancer.com A phase II study of capecitabine and docetaxel combination chemotherapy in patients with advanced gastric cancer YH Park*,1, B-Y Ryoo1, S-J Choi1and H-T Kim1 1 Division of Haematology and Oncology, Department of Internal Medicine, Korea Institute of Radiological and Medical Science, Seoul, Korea Clinical Capecitabine and docetaxel have considerable single-agent activity in gastric cancer with distinct mechanisms of action and no overlap of key toxicities. A synergistic interaction between these two drugs is mediated by taxane-induced upregulation of thymidine phosphorylase. We investigated the activity and the feasibility of capecitabine and docetaxel combination chemotherapy in patients with previously untreated advanced gastric cancer (AGC). From September 2001 to March 2003, 42 patients with AGC received À2 À2 21-day cycles of oral capecitabine (1250 mg m twice daily on days 1–14) and docetaxel (75 mg m i.v. on day 1). The patients received a total of 164 cycles of chemotherapy. The median age was 53.5 years (range 33–73 years). The overall response rate in the 38 efficacy-evaluable patients was 60% (95% confidence interval, 45–74%). The median progression-free survival was 5.2 months (range, 1.0–15.5 þ months) and the median overall survival was 10.5 months (range, 2.9–23.7 þ months). The most common grade 3/4 adverse events were hand–foot syndrome (HFS: G3 50%), neutropenia (15%) and leucopenia (12%). Further studies of this combination are clearly warranted, albeit with lower doses of both agents (1000 mg mÀ2 twice daily and 60 mg mÀ2) to reduce the rate of HFS and onycholysis.
    [Show full text]
  • Arsenic Trioxide As a Radiation Sensitizer for 131I-Metaiodobenzylguanidine Therapy: Results of a Phase II Study
    Arsenic Trioxide as a Radiation Sensitizer for 131I-Metaiodobenzylguanidine Therapy: Results of a Phase II Study Shakeel Modak1, Pat Zanzonico2, Jorge A. Carrasquillo3, Brian H. Kushner1, Kim Kramer1, Nai-Kong V. Cheung1, Steven M. Larson3, and Neeta Pandit-Taskar3 1Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York; 2Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York; and 3Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York sponse rates when compared with historical data with 131I-MIBG Arsenic trioxide has in vitro and in vivo radiosensitizing properties. alone. We hypothesized that arsenic trioxide would enhance the efficacy of Key Words: radiosensitization; neuroblastoma; malignant the targeted radiotherapeutic agent 131I-metaiodobenzylguanidine pheochromocytoma/paraganglioma; MIBG therapy 131 ( I-MIBG) and tested the combination in a phase II clinical trial. J Nucl Med 2016; 57:231–237 Methods: Patients with recurrent or refractory stage 4 neuroblas- DOI: 10.2967/jnumed.115.161752 toma or metastatic paraganglioma/pheochromocytoma (MP) were treated using an institutional review board–approved protocol (Clinicaltrials.gov identifier NCT00107289). The planned treatment was 131I-MIBG (444 or 666 MBq/kg) intravenously on day 1 plus arsenic trioxide (0.15 or 0.25 mg/m2) intravenously on days 6–10 and 13–17. Toxicity was evaluated using National Cancer Institute Common Metaiodobenzylguanidine (MIBG) is a guanethidine analog Toxicity Criteria, version 3.0. Response was assessed by Interna- that is taken up via the noradrenaline transporter by neuroendo- tional Neuroblastoma Response Criteria or (for MP) by changes in crine malignancies arising from sympathetic neuronal precursors 123I-MIBG or PET scans.
    [Show full text]
  • Metronomic Chemotherapy
    cancers Review Metronomic Chemotherapy Marina Elena Cazzaniga 1,2,*,†, Nicoletta Cordani 1,† , Serena Capici 2, Viola Cogliati 2, Francesca Riva 3 and Maria Grazia Cerrito 1,* 1 School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza (MB), Italy; [email protected] 2 Phase 1 Research Centre, ASST-Monza (MB), 20900 Monza, Italy; [email protected] (S.C.); [email protected] (V.C.) 3 Unit of Clinic Oncology, ASST-Monza (MB), 20900 Monza, Italy; [email protected] * Correspondence: [email protected] (M.E.C.); [email protected] (M.G.C.); Tel.: +39-0392-339-037 (M.E.C.) † Co-first authors. Simple Summary: The present article reviews the state of the art of metronomic chemotherapy use to treat the principal types of cancers, namely breast, non-small cell lung cancer and colorectal ones, and of the most recent progresses in understanding the underlying mechanisms of action. Areas of novelty, in terms of new regimens, new types of cancer suitable for Metronomic chemotherapy (mCHT) and the overview of current ongoing trials, along with a critical review of them, are also provided. Abstract: Metronomic chemotherapy treatment (mCHT) refers to the chronic administration of low doses chemotherapy that can sustain prolonged, and active plasma levels of drugs, producing favorable tolerability and it is a new promising therapeutic approach in solid and in hematologic tumors. mCHT has not only a direct effect on tumor cells, but also an action on cell microenvironment, Citation: Cazzaniga, M.E.; Cordani, by inhibiting tumor angiogenesis, or promoting immune response and for these reasons can be N.; Capici, S.; Cogliati, V.; Riva, F.; considered a multi-target therapy itself.
    [Show full text]
  • Dosage of Capecitabine and Cyclophosphamide Combination Therapy in Patients with Metastatic Breast Cancer
    ANTICANCER RESEARCH 27: 1009-1014 (2007) Dosage of Capecitabine and Cyclophosphamide Combination Therapy in Patients with Metastatic Breast Cancer SHINJI OHNO1, SHOSHU MITSUYAMA2, KAZUO TAMURA3, REIKI NISHIMURA4, MAKI TANAKA5, YUZO HAMADA6, SHOJI KUROKI7 and THE KYUSHU BREAST CANCER STUDY GROUP 1Department of Breast Oncology, National Kyushu Cancer Center Hospital, 3-1-1 Notame, Minami-ku, Fukuoka 811-1395; 2Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu City, Fukuoka 802-0077; 3First Department of Internal Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0818; 4Department of Breast and Endocrine Surgery, Kumamoto City Hospital, 1-1-60 Kotoh Kumamoto City, Kumamoto 862-8505; 5Department of Surgery, Social Insurance Kurume Daiichi Hospital, 21 Kushihara-machi, Kurume City, Fukuoka 830-0013; 6Department of Breast Surgery, Hirose Hospital, 1-12-12 Watanabedouri Chuo-ku, Fukuoka 810-0004; 7Department of Surgery and Oncology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan Abstract. Background: Capecitabine is a highly effective and taxane therapy is distressing for women and can lead patients well-tolerated treatment for metastatic breast cancer (MBC) and to consider stopping therapy (1). Intense nausea associated extends survival when combined with docetaxel. Capecitabine with anthracycline-based therapy also adversely affects and cyclophosphamide are orally administered and have patients' quality of life (2). Therefore a chemotherapy preclinical synergy and non-overlapping toxicities. Patients and regimen that minimises these effects is likely to be attractive Methods: Sixteen pretreated MBC patients received escalating to patients. Another important consideration with taxane- doses of oral capecitabine 628 to 829 mg/m2 twice daily (bid) and anthracycline-based therapies is the need for regular plus oral cyclophosphamide 33 to 50 mg/m2 bid, on days 1 to 14 clinic visits or hospitalisations for intravenous administration every 21 days.
    [Show full text]
  • Docetaxel Combined with Irinotecan Or 5-Fluorouracil in Patients with Advanced Oesophago-Gastric Cancer: a Randomised Phase II Study
    British Journal of Cancer (2012) 107, 435–441 & 2012 Cancer Research UK All rights reserved 0007 – 0920/12 www.bjcancer.com Docetaxel combined with irinotecan or 5-fluorouracil in patients with advanced oesophago-gastric cancer: a randomised phase II study 1 *,1 2 3 4 5 5 6 A Roy , D Cunningham , R Hawkins ,HSo¨rbye , A Adenis , J-R Barcelo , G Lopez-Vivanco , G Adler , 7 8 9 10 11 12 13 14 J-L Canon , F Lofts , C Castanon , E Fonseca , O Rixe , J Aparicio , J Cassinello , M Nicolson , 15 16 17 17 18 19 20 M Mousseau , A Schalhorn , L D’Hondt , J Kerger , DK Hossfeld , C Garcia Giron , R Rodriguez , 21 22 P Schoffski and J-L Misset 1Department of Medicine, Royal Marsden Hospital, Sutton, London, SM25PT, UK; 2Department of Medical Oncology, University of Manchester, 3 4 Clinical Studies Manchester, M20 4BX UK; Department of Medical Oncology, Haukeland University Hospital, Bergen, Norway; Department of Gastrointestinal 5 6 Oncology, Centre Oscar Lambret, Lille, France; Department of Oncology, Hospital de Cruces Osakidetza, Basque Country, Spain; Department of 7 Medicine, University of Ulm, Robert-Koch-Strasse 8 D-89081, Ulm, Germany; Oncologie Me´dicale, Grand Hopital de Charleroi, 3, Grand’Rue Charleroi, 8 9 6000, Belgium; Department of Oncology, St George’s Hospital NHS Trust, London, UK; Department of Medical Oncology, Hospital Clinico de 10 11 Salamanca, Salamanca, Spain; Department of Medical Oncology, Hospital Universitario Paseo de San Vicente, Salamanca, Spain; Department of ˆ 12 13 Medical Oncology, Salpetrie`re Hospital, Paris, France; Department of Medical Oncology, Hospital Universitario La Fe, Valencia, Spain; Department of Medical Oncology, Hospital General Universitario de Guadalajara, Guadalajara, Spain; 14Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK; 15Department of Oncology and Haematology, University Hospital, CHU de Grenoble, Grenoble, France; 16Klinikum der Universita¨t Mu¨nchen 17 18 Grosshadern, Munich, Germany; Chu Mont Godinne, Avenue Docteur G.
    [Show full text]
  • Cytostatics in Dutch Surface Water: Use, Presence and Risks To
    Cytostatics in Dutch surface water Use, presence and risks to the aquatic environment RIVM Letter report 2018-0067 C. Moermond et al. Cytostatics in Dutch surface water Use, presence and risks to the aquatic environment RIVM Letter report 2018-0067 C. Moermond et al. RIVM Letter report 2018-0067 Colophon © RIVM 2018 Parts of this publication may be reproduced, provided acknowledgement is given to: National Institute for Public Health and the Environment, along with the title and year of publication. DOI 10.21945/RIVM-2018-0067 C. Moermond (auteur/coördinator), RIVM B. Venhuis (auteur/coördinator),RIVM M. van Elk (auteur), RIVM A. Oostlander (auteur), RIVM P. van Vlaardingen (auteur), RIVM M. Marinković (auteur), RIVM J. van Dijk (stagiair; auteur) RIVM Contact: Caroline Moermond VSP-MSP [email protected] This investigation has been performed by order and for the account of the Ministry of Infrastructure and Water management (IenW), within the framework of Green Deal Zorg en Ketenaanpak medicijnresten uit water. This is a publication of: National Institute for Public Health and the Environment P.O. Box 1 | 3720 BA Bilthoven The Netherlands www.rivm.nl/en Page 2 of 140 RIVM Letter report 2018-0067 Synopsis Cytostatics in Dutch surface water Cytostatics are important medicines to treat cancer patients. Via urine, cytostatic residues end up in waste water that is treated in waste water treatment plants and subsequently discharged into surface waters. Research from RIVM shows that for most cytostatics, their residues do not pose a risk to the environment. They are sufficiently metabolised in the human body and removed in waste water treatment plants.
    [Show full text]
  • Capecitabine Induces Rapid, Sustained Response in Two Patients with Extensive Oral Verrucous Carcinoma1
    580 Vol. 9, 580–585, February 2003 Clinical Cancer Research Advances in Brief Capecitabine Induces Rapid, Sustained Response in Two Patients with Extensive Oral Verrucous Carcinoma1 Anastasios Salesiotis, Richie Soong, chemical evaluation of pretreatment biopsies from both pa- Robert B. Diasio, Andra Frost, and tients revealed a high level of expression of thymidine phos- Kevin J. Cullen2 phorylase, a key enzyme in the metabolism of capecitabine. Conclusions: Oral VC is a rare entity with a progressive Lombardi Cancer Center, Georgetown University, Washington DC course over years and limited options in terms of treatment. 20007 [A. S., K. C.], and University of Alabama Cancer Center, Birmingham, Alabama [R. D., R. S., A. F.] Preliminary observations in two elderly patients demon- strate that capecitabine, an oral fluoropyrimidine, is well tolerated and may induce rapid, clinically significant re- Abstract sponse. Although not curative, it may provide a cost-effec- Purpose: Oral verrucous carcinoma (VC) has been tra- tive alternative for elderly patients with a significant im- ditionally treated with surgery or radiation with frequent provement in their quality of life. recurrences and significant morbidity. We describe rapid and dramatic response to oral capecitabine in two patients Introduction with advanced refractory VC. Verrucous carcinomata are rare tumors of the oral cavity, Experimental Design: VC is a rare tumor of the oral representing anywhere from 1 to 10% of all oral squamous cavity. It does not metastasize but over time causes morbid- malignancies (1–5). Although oral presentations are most com- ity and mortality through local invasion. Radiation and mon, VC3 may also be present in the larynx or elsewhere in the surgery have been the main treatment modalities but are aerodigestive tract (6).
    [Show full text]
  • Arsenic Trioxide As a Vascular Disrupting Agent: Synergistic Effect
    Translational Oncology Volume 6 Number 1 February 2013 pp. 83–91 83 www.transonc.com Arsenic Trioxide as a Vascular Jong Cheol Lee*,2, Ho Yong Lee†,2, Chang Hoon Moon†, Seung Ju Lee†,WonHyeokLee†,HeeJeongCha‡, Disrupting Agent: Synergistic Sungchan Park§,YoungHanLee¶, Hyun Jin Park¶, ¶ †,# Effect with Irinotecan on Ho-Taek Song and Young Joo Min Tumor Growth Delay *Department of Otorhinolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 1 † in a CT26 Allograft Model Republic of Korea; Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea; ‡Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea; §Department of Urology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea; ¶Department of Radiology and Research Institute of Radiological Science, College of Medicine, Yonsei University, Seoul, Republic of Korea; #Division of Hematology-Oncology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea Abstract The mechanism of action of arsenic trioxide (ATO) has been shown to be complex, influencing numerous signal trans- duction pathways and resulting in a vast range of cellular effects. Among these mechanisms of action, ATO has been shown to cause acute vascular shutdown and massive tumor necrosis in a murine solid tumor model like vascular disrupting agent (VDA). However, relatively little is understood about this VDA-like property and its potential utility in developing clinical regimens. We focused on this VDA-like action of ATO. On the basis of the endothelial cell cyto- toxicity assay and tubulin polymerization assay, we observed that higher concentrations and longer treatment with ATO reduced the level of α-andβ-tubulin and inhibited the polymerization of tubulin.
    [Show full text]
  • Colorectal Cancer
    Chemotherapy Protocol COLORECTAL CANCER CAPECITABINE-MITOMYCIN Regimen • Colorectal Cancer – Capecitabine-Mitomycin Indication • Second / third line therapy of metastatic/advanced colorectal cancer • WHO performance status 0, 1, 2 Adverse Effects Drug Adverse Effect Capecitabine Palmar-plantar erythrodysesthesia, diarrhoea, mucositis, chest pain Mitomycin Nephrotoxicity, myelosuppression (cumulative) The adverse effects listed are not exhaustive. Please refer to the relevant Summary of Product Characteristics for full details. Monitoring Regimen • FBC, LFT’s and U&E’s prior to each cycle • Patients with complete or partial dihydropyrimidine dehydrogenase (DPD) deficiency are at increased risk of severe and fatal toxicity during treatment with capecitabine. All patients should be tested for DPD deficiency before initiation (cycle 1) to minimise the risk of these reactions. Dose Modifications The dose modifications listed are for haematological, liver and renal function only. Dose adjustments may be necessary for other toxicities as well. In principle all dose reductions due to adverse drug reactions should not be re- escalated in subsequent cycles without consultant approval. It is also a general rule for chemotherapy that if a third dose reduction is necessary treatment should be stopped. Version 1.3 (November 2020) Page 1 of 6 Colorectal – Capecitabine-Mitomycin Please discuss all dose reductions / delays with the relevant consultant before prescribing, if appropriate. The approach may be different depending on the clinical circumstances. The following is a general guide only. Haematological Prior to prescribing the following criteria must be met. Criteria Eligible Level Neutrophil equal to or more than 1.5x10 9/L Platelets equal to or more than 100x10 9/L Consider blood transfusion if patient symptomatic of anaemia or has a haemoglobin of less than 8g/dL For haematological toxicity, if the neutrophil count is less than 1.5 10 9/L or the platelet count is less than 100 10 9/L, delay the mitomycin treatment until these levels are achieved.
    [Show full text]
  • Predicted Concentrations of Anticancer Drugs in the Aquatic Environment
    Journal of Hazardous Materials 392 (2020) 122330 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Predicted concentrations of anticancer drugs in the aquatic environment: What should we monitor and where should we treat? T M.B. Cristóvãoa,f, R. Janssensb, A. Yadavc, S. Pandeyd, P. Luisb, B. Van der Bruggene, K.K. Dubeyc, M.K. Mandald, J.G. Crespof, V.J. Pereiraa,g,* a iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal b Materials and Process Engineering, UCLouvain, Louvain-la-Neuve, Belgium c Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India d National Institute of Technology Durgapur, M.G. Avenue, Durgapur, West Bengal, India e KULeuven, Leuven, Belgium f LAQV-REQUIMTE/Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal g Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Editor: D. Aga Anticancer drugs have been detected in the aquatic environment, they have a potent mechanism of action and Keywords: their consumption is expected to drastically increase in the future. Consequently, it is crucial to routinely Anticancer drugs monitor the occurrence of anticancer drugs and to develop effective treatment options to avoid their release into Consumption pattern the environment. Hospitalized and outpatients Prior to implementing a monitoring program, it is important to define which anticancer drugs are more prone Entry route to be found in the surface waters. In this study the consumption of anticancer drugs in the Lisbon region Predicted environmental concentrations (Portugal), Belgium and Haryana state (India) were used to estimate the concentrations that can be expected in surface waters.
    [Show full text]